Dietary Diversity and Child Development in the Far West of Nepal: A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Diet Characteristics
3.2. Diet and developmental scores
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lu, C.; Black, M.M.; Richter, L.M. Risk of poor development in young children in low-income and middle-income countries: An estimation and analysis at the global, regional, and country level. Lancet Glob. Health 2016, 4, e916–e922. [Google Scholar] [CrossRef]
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B. Developmental potential in the first 5 years for children in developing countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Engle, P.L.; Black, M.M.; Behrman, J.R.; Cabral de Mello, M.; Gertler, P.J.; Kapiriri, L.; Martorell, R.; Young, M.E. Strategies to avoid the loss of developmental potential in more than 200 million children in the developing world. Lancet 2007, 369, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.P.; Wachs, T.D.; Gardner, J.M.; Lozoff, B.; Wasserman, G.A.; Pollitt, E.; Carter, J.A. Child development: Risk factors for adverse outcomes in developing countries. Lancet 2007, 369, 145–157. [Google Scholar] [CrossRef]
- Walker, S.P.; Wachs, T.D.; Grantham-McGregor, S.; Black, M.M.; Nelson, C.A.; Huffman, S.L.; Baker-Henningham, H.; Chang, S.M.; Hamadani, J.D.; Lozoff, B.; et al. Inequality in early childhood: Risk and protective factors for early child development. Lancet 2011, 378, 1325–1338. [Google Scholar] [CrossRef]
- Ribe, I.G.; Svensen, E.; Lyngmo, B.A.; Mduma, E.; Hinderaker, S.G. Determinants of early child development in rural Tanzania. Child. Adolesc. Psychiatry Ment. Health 2018, 12, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, R.J.; Rogawski, E.T.; Murray-Kolb, L.E.; Maphula, A.; Svensen, E.; Tofail, F.; Rasheed, M.; Abreu, C.; Vasquez, A.O.; Shrestha, R.; et al. Early childhood growth and cognitive outcomes: Findings from the MAL-ED study. Matern. Child. Nutr. 2018. [Google Scholar] [CrossRef]
- Black, M.M.; Walker, S.P.; Fernald, L.C.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Shiffman, J. Early childhood development coming of age: Science through the life course. Lancet 2017, 389, 77–90. [Google Scholar] [CrossRef]
- Bradley, R.H.; Corwyn, R.F. Socioeconomic status and child development. Annu. Rev. Psychol. 2002, 53, 371–399. [Google Scholar] [CrossRef]
- Linver, M.R.; Brooks-Gunn, J.; Kohen, D.E. Family processes as pathways from income to young children’s development. Dev. Psychol. 2002, 38, 719–734. [Google Scholar] [CrossRef]
- Larson, L.M.; Martorell, R.; Bauer, P.J. A Path Analysis of Nutrition, Stimulation, and Child Development Among Young Children in Bihar, India. Child. Dev. 2018, 89, 1871–1886. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; McCoy, D.C.; Yousafzai, A.K.; Salhi, C.; Fink, G. Paternal stimulation and early child development in low-and middle-income countries. Pediatrics 2016, 138, e20161357. [Google Scholar] [CrossRef]
- Grantham-McGregor, S. A review of studies of the effect of severe malnutrition on mental development. J. Nutr. 1995, 125, 2233s–2238s. [Google Scholar] [CrossRef]
- Mendez, M.A.; Adair, L.S. Severity and timing of stunting in the first two years of life affect performance on cognitive tests in late childhood. J. Nutr. 1999, 129, 1555–1562. [Google Scholar] [CrossRef]
- Chang, S.M.; Walker, S.P.; Grantham-McGregor, S.; Powell, C.A. Early childhood stunting and later behaviour and school achievement. J. Child Psychol. Psychiatry Allied Discip. 2002, 43, 775–783. [Google Scholar] [CrossRef]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Gorman, K.S.; Pollitt, E. Relationship between weight and body proportionality at birth, growth during the first year of life, and cognitive development at 36, 48, and 60 months. Infant Behav. Dev. 1992, 15, 279–296. [Google Scholar] [CrossRef]
- Grantham-McGregor, S.M.; Lira, P.I.C.; Ashworth, A.; Morris, S.S.; Assunçao, A.M.S. The development of low birth weight term infants and the effects of the environment in Northeast Brazil. J. Pediatrics 1998, 132, 661–666. [Google Scholar] [CrossRef]
- Landry, S.H.; Smith, K.E.; Swank, P.R. Responsive parenting: Establishing early foundations for social, communication, and independent problem-solving skills. Dev. Psychol. 2006, 42, 627–642. [Google Scholar] [CrossRef]
- Leroy, J.L.; Frongillo, E.A. Perspective: What does stunting really mean? A critical review of the evidence. Adv. Nutr. 2019, 10, 196–204. [Google Scholar] [CrossRef]
- Prado, E.L.; Shankar, A.H.; Stein, A.D.; Larson, L.M. Does Improved Growth Mean Improved Neurobehavioral Development? Adv. Nutr. 2019, 10, 725–726. [Google Scholar] [CrossRef]
- Jones, A.D.; Ickes, S.B.; Smith, L.E.; Mbuya, M.N.; Chasekwa, B.; Heidkamp, R.A.; Menon, P.; Zongrone, A.A.; Stoltzfus, R.J. World Health Organization infant and young child feeding indicators and their associations with child anthropometry: A synthesis of recent findings. Matern. Child. Nutr. 2014, 10, 1–17. [Google Scholar] [CrossRef]
- Krasevec, J.; An, X.; Kumapley, R.; Begin, F.; Frongillo, E.A. Diet quality and risk of stunting among infants and young children in low- and middle-income countries. Matern. Child. Nutr. 2017, 13 (Suppl. 2). [Google Scholar] [CrossRef]
- Thorne-Lyman, A.; Spiegelman, D.; Fawzi, W.W. Is the strength of association between indicators of dietary quality and the nutritional status of children being underestimated? Matern. Child Nutr. 2014, 10, 159–160. [Google Scholar] [CrossRef]
- Ruel, M.T. Operationalizing dietary diversity: A review of measurement issues and research priorities. J. Nutr. 2003, 133, 3911s–3926s. [Google Scholar] [CrossRef]
- Arimond, M.; Wiesmann, D.; Becquey, E.; Carriquiry, A.; Daniels, M.C.; Deitchler, M.; Fanou-Fogny, N.; Joseph, M.L.; Kennedy, G.; Martin-Prevel, Y.; et al. Simple food group diversity indicators predict micronutrient adequacy of women’s diets in 5 diverse, resource-poor settings. J. Nutr. 2010, 140, 2059s–2069s. [Google Scholar] [CrossRef]
- FANTA Project. Developing and Validating Simple Indicators of Dietary Quality and Energy Intake of Infants and Young Children in Developing Countries: Additional Analysis of 10 data Sets. Report Submitted to the Food and Nutrition Technical Assistance (FANTA) Project/Academy for Educational Development (AED); Food and Nutrition Technical Assistance: Washington, DC, USA, 2007. [Google Scholar]
- Arimond, M.; Ruel, M.T. Dietary diversity is associated with child nutritional status: Evidence from 11 demographic and health surveys. J. Nutr. 2004, 134, 2579–2585. [Google Scholar] [CrossRef]
- Dewey, K.G. The challenge of meeting nutrient needs of infants and young children during the period of complementary feeding: An evolutionary perspective. J. Nutr. 2013, 143, 2050–2054. [Google Scholar] [CrossRef]
- Murphy, S.P.; Allen, L.H. Nutritional importance of animal source foods. J. Nutr. 2003, 133, 3932s–3935s. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. The importance of milk and other animal-source foods for children in low-income countries. Food Nutr. Bull. 2011, 32, 227–243. [Google Scholar] [CrossRef]
- Allen, L.H. Global dietary patterns and diets in childhood: Implications for health outcomes. Ann. Nutr. Metab. 2012, 61 (Suppl. 1), 29–37. [Google Scholar] [CrossRef]
- Whaley, S.E.; Sigman, M.; Neumann, C.; Bwibo, N.; Guthrie, D.; Weiss, R.E.; Alber, S.; Murphy, S.P. The impact of dietary intervention on the cognitive development of Kenyan school children. J. Nutr. 2003, 133, 3965s–3971s. [Google Scholar] [CrossRef]
- Gibson, R.S.; Yeudall, F.; Drost, N.; Mtitimuni, B.M.; Cullinan, T.R. Experiences of a community-based dietary intervention to enhance micronutrient adequacy of diets low in animal source foods and high in phytate: A case study in rural Malawian children. J. Nutr. 2003, 133, 3992s–3999s. [Google Scholar] [CrossRef]
- Britto, P.R.; Ulkuer, N. Child development in developing countries: Child rights and policy implications. Child. Dev. 2012, 83, 92–103. [Google Scholar] [CrossRef]
- Prado, E.L.; Abbeddou, S.; Adu-Afarwuah, S.; Arimond, M.; Ashorn, P.; Ashorn, U.; Bendabenda, J.; Brown, K.H.; Hess, S.Y.; Kortekangas, E. Predictors and pathways of language and motor development in four prospective cohorts of young children in Ghana, Malawi, and Burkina Faso. J. Child. Psychol. Psychiatry 2017, 58, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Habicht, J.-P.; Victora, C.; Vaughan, J.P. Evaluation designs for adequacy, plausibility and probability of public health programme performance and impact. Int. J. Epidemiol. 1999, 28, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, G.; Ballard, T.; Dop, M.C. Guidelines for Measuring Household and Individual Dietary Diversity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Swindale, A.; Bilinsky, P. Household Dietary Diversity Score (HDDS) for Measurement of Household Food Access: Indicator Guide; Food and Nutrition Technical Assistance: Washington, DC, USA, 2006. [Google Scholar]
- Singh, A.; Yeh, C.J.; Boone Blanchard, S. Ages and Stages Questionnaire: A global screening scale. Bol. Med. Del Hosp. Infant. De Mex. 2017, 74, 5–12. [Google Scholar] [CrossRef]
- Small, J.W.; Hix-Small, H.; Vargas-Baron, E.; Marks, K.P. Comparative use of the Ages and Stages Questionnaires in low- and middle-income countries. Dev. Med. Child. Neurol. 2019, 61, 431–443. [Google Scholar] [CrossRef]
- Kvestad, I.; Hysing, M.; Shrestha, M.; Ulak, M.; Thorne-Lyman, A.L.; Henjum, S.; Ueland, P.M.; Midttun, O.; Fawzi, W.; Chandyo, R.K.; et al. Vitamin B-12 status in infancy is positively associated with development and cognitive functioning 5 y later in Nepalese children. Am. J. Clin. Nutr. 2017, 105, 1122–1131. [Google Scholar] [CrossRef] [Green Version]
- Kvestad, I.; Taneja, S.; Kumar, T.; Bhandari, N.; Strand, T.A.; Hysing, M. The assessment of developmental status using the Ages and Stages questionnaire-3 in nutritional research in north Indian young children. Nutr. J. 2013, 12, 50. [Google Scholar] [CrossRef]
- Shrestha, M.; Strand, T.A.; Ulak, M.; Chandyo, R.K.; Ranjitkar, S.; Hysing, M.; Shrestha, L.; Kvestad, I. The feasibility of the Ages and Stages Questionnaire for the assessment of child development in a community setting in Nepal. Child. Care Health Dev. 2019, 45, 394–402. [Google Scholar] [CrossRef]
- Henjum, S.; Kvestad, I.; Shrestha, M.; Ulak, M.; Chandyo, R.K.; Thorne-Lyman, A.L.; Shrestha, P.S.; Kjellevold, M.; Hysing, M.; Strand, T.A. Erythrocyte DHA and AA in infancy is not associated with developmental status and cognitive functioning five years later in Nepalese children. Nutr. J. 2018, 17, 70. [Google Scholar] [CrossRef] [Green Version]
- So, R. Steps to Constructing the New DHS Wealth Index. Available online: https://www.dhsprogram.com/programming/wealth%20index/Steps_to_constructing_the_new_DHS_Wealth_Index.pdf (accessed on 25 June 2019).
- FAO. Compendium of Agricultural-Environmental Indicators (1989–91 to 2000); Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Sigman, M.; Neumann, C.; Jansen, A.A.; Bwibo, N. Cognitive abilities of Kenyan children in relation to nutrition, family characteristics, and education. Child. Dev. 1989, 60, 1463–1474. [Google Scholar] [CrossRef]
- Wachs, T.D.B.Z.; Yunis, W.M.F.; McCabe, G.; Harrison, G.; Sweifi, E.; Kirksey, A.; Galal, O.; Jerome, N.; Shaheen, F. Nutritional intake and context as predictors of cognition and adaptive behaviour of Egyption school-age children. Int. J. Behav. Dev. 1995, 18, 425–450. [Google Scholar] [CrossRef]
- Larson, L.M.; Young, M.F.; Ramakrishnan, U.; Webb Girard, A.; Verma, P.; Chaudhuri, I.; Srikantiah, S.; Martorell, R. A Cross-Sectional Survey in Rural Bihar, India, Indicates That Nutritional Status, Diet, and Stimulation Are Associated with Motor and Mental Development in Young Children. J. Nutr. 2017, 147, 1578–1585. [Google Scholar] [CrossRef]
- Neumann, C.G.; Murphy, S.P.; Gewa, C.; Grillenberger, M.; Bwibo, N.O. Meat supplementation improves growth, cognitive, and behavioral outcomes in Kenyan children. J. Nutr. 2007, 137, 1119–1123. [Google Scholar] [CrossRef]
- Neumann, C.; Harris, D.M.; Rogers, L.M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 2002, 22, 193–220. [Google Scholar] [CrossRef]
- Kvestad, I.; Taneja, S.; Kumar, T.; Hysing, M.; Refsum, H.; Yajnik, C.S.; Bhandari, N.; Strand, T.A.; Folate and Vitamin B12 Study Group. Vitamin B12 and folic acid improve gross motor and problem-solving skills in young North Indian children: A randomized placebo-controlled trial. PLoS ONE 2015, 10, e0129915. [Google Scholar] [CrossRef]
- Rivera, J.A.; Hotz, C.; Gonzalez-Cossio, T.; Neufeld, L.; Garcia-Guerra, A. The effect of micronutrient deficiencies on child growth: A review of results from community-based supplementation trials. J. Nutr. 2003, 133, 4010s–4020s. [Google Scholar] [CrossRef]
- Iannotti, L.L.; Lutter, C.K.; Stewart, C.P.; Gallegos Riofrio, C.A.; Malo, C.; Reinhart, G.; Palacios, A.; Karp, C.; Chapnick, M.; Cox, K.; et al. Eggs in Early Complementary Feeding and Child Growth: A Randomized Controlled Trial. Pediatrics 2017, 140. [Google Scholar] [CrossRef]
- Nana, C.P.; Brouwer, I.D.; Zagre, N.M.; Kok, F.J.; Traore, A.S. Community assessment of availability, consumption, and cultural acceptability of food sources of (pro)vitamin A: Toward the development of a dietary intervention among preschool children in rural Burkina Faso. Food Nutr. Bull. 2005, 26, 356–365. [Google Scholar] [CrossRef]
- Gibson, R.S.; Perlas, L.; Hotz, C. Improving the bioavailability of nutrients in plant foods at the household level. Proc. Nutr. Soc. 2006, 65, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Haapala, E.A.; Eloranta, A.-M.; Venäläinen, T.; Schwab, U.; Lindi, V.; Lakka, T.A. Associations of diet quality with cognition in children—The Physical Activity and Nutrition in Children Study. Br. J. Nutr. 2015, 114, 1080–1087. [Google Scholar] [CrossRef]
- Bishwajit, G.; O’Leary, D.P.; Ghosh, S.; Sanni, Y.; Shangfeng, T.; Zhanchun, F. Association between depression and fruit and vegetable consumption among adults in South Asia. BMC Psychiatry 2017, 17, 15. [Google Scholar] [CrossRef]
- Duncan, G.J.; Brooks-Gunn, J. Family poverty, welfare reform, and child development. Child. Dev. 2000, 71, 188–196. [Google Scholar] [CrossRef]
- Engle, P.L.; Black, M.M. The effect of poverty on child development and educational outcomes. Ann. N. Y. Acad. Sci. 2008, 1136, 243–256. [Google Scholar] [CrossRef]
- Kim, R.; Mejia-Guevara, I.; Corsi, D.J.; Aguayo, V.M.; Subramanian, S.V. Relative importance of 13 correlates of child stunting in South Asia: Insights from nationally representative data from Afghanistan, Bangladesh, India, Nepal, and Pakistan. Soc. Sci. Med. (1982) 2017, 187, 144–154. [Google Scholar] [CrossRef]
- Carneiro, P.; Meghir, C.; Parey, M. Maternal education, home environments, and the development of children and adolescents. J. Eur. Econ. Assoc. 2013, 11, 123–160. [Google Scholar] [CrossRef]
- Pries, A.M.; Rehman, A.M.; Filteau, S.; Sharma, N.; Upadhyay, A.; Ferguson, E.L. Unhealthy snack food and beverage consumption is associated with lower dietary adequacy and length-for-age z-Scores among 12–23-month-olds in Kathmandu, Valley, Nepal. J. Nutr. 2019. [Google Scholar] [CrossRef]
n | Mean (SD) or % | |
---|---|---|
Child sex- female (%) | 305 | 47.9 |
Child age at baseline (months) | 303 | 14.9 (4.8) |
Maternal education (%) | ||
None/non formal education | 225 | 73.8 |
At least some primary | 60 | 19.7 |
At least some secondary or SLC | 20 | 6.6 |
Highest male education in household (%) | ||
None | 113 | 37.3 |
At least some primary | 97 | 32.0 |
At least some secondary or SLC | 67 | 22.1 |
No male in household/female headed household | 26 | 8.6 |
Land owned m2 (mean, sd) | 305 | 8255 (14838) |
Wealth score | 306 | 0.12 (1.04) |
Study area (%) | ||
Control | 104 | 34.1 |
Intervention | 84 | 27.5 |
Partial intervention | 117 | 38.4 |
Height-for-age z score | 299 | −1.84 (1.56) |
Weight-for-age z score | 299 | −1.87 (1.09) |
Weight-for-height z score | 299 | −1.24 (1.07) |
Head circumference z score | 299 | −1.17 (1.18) |
Stunted HAZ < −2) (%) | 299 | 44 |
Wasted (WHZ < −2) (%) | 299 | 24 |
Underweight (WAZ < −2) (%) | 299 | 46 |
Microcephalic (HCZ < −2) (%) | 299 | 25 |
Individual Rounds of Data Collection | Dietary Diversity ≥ 4 Groups (%) | Any Animal Source Food Consumption (%) | Any Vegetable Consumption (%) | Any Processed Food Consumption (%) |
---|---|---|---|---|
Round 1 1 (n = 299) | 53.5 | 40.5 | 49.2 | 78.9 |
Round 2 1 (n = 287) | 62.4 | 59.6 | 36.6 | 87.8 |
Round 3 1 (n = 305) | 70.5 | 60.0 | 88.2 | 84.6 |
Sum of days consumed across rounds 2 | ||||
0 days | 11.0 | 17.8 | 4.6 | 1.4 |
1 day | 20.2 | 24.9 | 35.8 | 9.6 |
2 days | 40.8 | 40.9 | 40.4 | 25.9 |
3 days | 28.0 | 16.4 | 19.2 | 63.1 |
Total | 100.0 | 100.0 | 100.0 | 100.0 |
Median | IQR | |
---|---|---|
Personal social | 40 | 30–50 |
Problem solving | 40 | 30–50 |
Gross motor | 60 | 40–60 |
Fine motor | 40 | 30–50 |
Communications | 50 | 40–60 |
Total | 218 | 184–250 |
Variables | # Days Meeting Minimum Dietary Diversity, Continuous | |
---|---|---|
Value (95% CI) | P | |
Linear regression | ||
Total ASQ-3 | ||
Crude β | 9.6 (3.5, 15.6) | <0.0001 |
Adjusted β 1 | 4.6 (−2.0, 11.2) | 0.17 |
Logistic regression2 | ||
Total ASQ-3 | ||
Crude OR | 0.61 (0.46, 0.81) | <0.001 |
Adjusted OR 1 | 0.65 (0.46, 0.92) | 0.02 |
Communication | ||
Crude | 0.72 (0.55, 0.94) | 0.02 |
Adjusted 1 | 0.79 (0.57, 1.09) | 0.15 |
Gross motor | ||
Crude | 0.71 (0.54, 0.93) | 0.02 |
Adjusted 1 | 1.02 (0.72, 1.46) | 0.90 |
Fine motor | ||
Crude | 0.97 (0.75, 1.25) | 0.80 |
Adjusted 1 | 0.92 (0.67, 1.26) | 0.60 |
Problem solving | ||
Crude | 0.85 (0.66, 1.09) | 0.20 |
Adjusted 1 | 0.92 (0.68, 1.23) | 0.56 |
Personal-social | ||
Crude | 0.72 (0.56, 0.94) | 0.01 |
Adjusted 1 | 0.84 (0.60, 1.17) | 0.31 |
Variables | Animal Source Food, Each Day Consumed | Any Vegetable, Each Day Consumed | Processed Food, Each Day Consumed | |||
---|---|---|---|---|---|---|
Value (95% CI) | P | Value (95% CI) | P | Value (95% CI) | P | |
Linear regression | ||||||
Total ASQ-3 2 | ||||||
Crude β | 9.6 (3.9, 15.4) | <0.01 | 15.7 (9.0, 22.3) | <0.0001 | −3.9 (−11.6, 3.9) | 0.32 |
Adjusted β 1 | 6.1 (0.2, 12.1) | 0.04 | 9.3 (2.4, 16.3) | <0.01 | −2.6 (−11.1, 6.0) | 0.55 |
Logistic regression | ||||||
Total ASQ-3 2 | ||||||
Crude OR | 0.60 (0.45, 0.80) | <0.001 | 0.51 (0.36, 0.73) | <0.001 | 1.04 (0.71, 1.51) | 0.85 |
Adjusted OR 1 | 0.64 (0.46, 0.89) | <0.01 | 0.60 (0.41, 0.90) | 0.01 | 0.99 (0.62, 1.59) | 0.97 |
Communication | ||||||
Crude | 0.63 (0.48, 0.84) | <0.01 | 0.59 (0.42, 0.83) | <0.01 | 1.19 (0.82, 1.74) | 0.36 |
Adjusted 1 | 0.68 (0.50, 0.94) | 0.02 | 0.69 (0.47, 1.00) | <0.05 | 1.20 (0.76, 1.91) | 0.44 |
Gross motor | ||||||
Crude | 0.87 (0.66, 1.14) | 0.31 | 0.67 (0.49, 0.94) | 0.02 | 0.93 (0.66, 1.33) | 0.71 |
Adjusted 1 | 1.10 (0.79, 1.54) | 0.57 | 1.07 (0.71, 1.62) | 0.76 | 1.04 (0.64, 1.70) | 0.88 |
Fine motor | ||||||
Crude | 0.94 (0.73, 1.22) | 0.66 | 0.65 (0.47, 0.88) | <0.01 | 1.51 (1.04, 2.19) | 0.03 |
Adjusted 1 | 1.00 (0.74, 1.34) | 0.98 | 0.60 (0.42, 0.86) | <0.01 | 1.22 (0.79, 1.91) | 0.37 |
Problem solving | ||||||
Crude | 0.77 (0.60, 0.99) | <0.05 | 0.70 (0.52, 0.94) | 0.02 | 1.31 (0.93, 1.85) | 0.12 |
Adjusted 1 | 0.84 (0.64, 1.12) | 0.23 | 0.76 (0.54, 1.05) | 0.09 | 1.41 (0.93, 2.14) | 0.11 |
Personal-social | ||||||
Crude | 0.87 (0.67, 1.12) | 0.28 | 0.61 (0.45, 0.84) | <0.01 | 0.81 (0.58, 1.13) | 0.22 |
Adjusted 1 | 0.96 (0.71, 1.31) | 0.82 | 0.78 (0.54, 1.13) | 0.02 | 0.65 (0.41, 1.03) | 0.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorne-Lyman, A.L.; Shrestha, M.; Fawzi, W.W.; Pasqualino, M.; Strand, T.A.; Kvestad, I.; Hysing, M.; Joshi, N.; Lohani, M.; Miller, L.C. Dietary Diversity and Child Development in the Far West of Nepal: A Cohort Study. Nutrients 2019, 11, 1799. https://doi.org/10.3390/nu11081799
Thorne-Lyman AL, Shrestha M, Fawzi WW, Pasqualino M, Strand TA, Kvestad I, Hysing M, Joshi N, Lohani M, Miller LC. Dietary Diversity and Child Development in the Far West of Nepal: A Cohort Study. Nutrients. 2019; 11(8):1799. https://doi.org/10.3390/nu11081799
Chicago/Turabian StyleThorne-Lyman, Andrew L., Merina Shrestha, Wafaie W. Fawzi, Monica Pasqualino, Tor A. Strand, Ingrid Kvestad, Mari Hysing, Neena Joshi, Mahendra Lohani, and Laurie C. Miller. 2019. "Dietary Diversity and Child Development in the Far West of Nepal: A Cohort Study" Nutrients 11, no. 8: 1799. https://doi.org/10.3390/nu11081799
APA StyleThorne-Lyman, A. L., Shrestha, M., Fawzi, W. W., Pasqualino, M., Strand, T. A., Kvestad, I., Hysing, M., Joshi, N., Lohani, M., & Miller, L. C. (2019). Dietary Diversity and Child Development in the Far West of Nepal: A Cohort Study. Nutrients, 11(8), 1799. https://doi.org/10.3390/nu11081799