Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation—Maternal and Offspring Health Effects
Abstract
:1. Introduction
2. Rhodiola
2.1. Characteristic and Immunomodulatory Properties
2.2. Effects on Mothers
2.3. Effects on Offspring
3. Echinacea
3.1. Characteristic and Immunomodulatory Properties
3.2. Effects on Mothers
3.3. Effects on Offspring
4. Ginseng
4.1. Characteristic and Immunomodulatory Properties
4.2. General Effect of Ginseng
4.3. Effects on Mothers
4.4. Effects on Offspring
5. Camellia
5.1. Characteristic and Immunomodulatory Properties
5.2. Effects on Mothers
5.3. Effects on Offspring
6. Limitations in Medicinal Herbs Usage
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hecht, A. Drug safety labeling for doctors. FDA Consum. 1979, 13, 12–13. [Google Scholar] [PubMed]
- Skopińska-Różewska, E.; Mościcka-Wesołowska, M.; Wasiutyński, A.; Małdyk, J.; Malejczyk, M.; Pazdur, J. Lymphatic system of mice born from mothers treated with ampicillin or cloxacillin during gestation. Arch. Immunol. Ther. Exp. 1986, 34, 203–208. [Google Scholar]
- Jedrychowski, W.; Gałaś, A.; Whyatt, R.; Perera, F. The prenatal use of antibiotics and the development of allergic disease in one year old infants. A preliminary study. Int. J. Occup. Med. Environ. Health 2006, 19, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Li, Q.; Gu, Y.; Wan, B.; Huang, J.; Xu, X.; Huang, R.; Zhang, Y. Leonurine suppresses neuroinflammation through promoting oligodendrocyte maturation. J. Cell Mol. Med. 2019, 23, 1470–1485. [Google Scholar] [CrossRef]
- Soutar, D.A.; Doucette, C.D.; Liwski, R.S.; Hoskin, D.W. Piperine, a Pungent Alkaloid from Black Pepper, Inhibits B Lymphocyte Activation and Effector Functions. Phytother. Res. 2017, 31, 466–474. [Google Scholar] [CrossRef]
- Sang, X.-X.; Wang, R.-L.; Zhang, C.-E.; Liu, S.-J.; Shen, H.-H.; Guo, Y.-M.; Zhang, Y.-M.; Niu, M.; Wang, J.-B.; Bai, Z.-F.; et al. Sophocarpine Protects Mice from ConA-Induced Hepatitis via Inhibition of the IFN-Gamma/STAT1 Pathway. Front. Pharmacol. 2017, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-Y.; Han, S.-K.; Son, E.-H.; Pyo, S.-N.; Yun, Y.-S.; Yi, S.-Y. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int. Immunopharmacol. 2002, 2, 857–865. [Google Scholar] [CrossRef]
- Jiménez-Arellanes, A.; Luna-Herrera, J.; Cornejo-Garrido, J.; López-García, S.; Castro-Mussot, M.E.; Meckes-Fischer, M.; Mata-Espinosa, D.; Marquina, B.; Torres, J.; Hernández-Pando, R. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement. Altern. Med. 2013, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Ayeka, P.A.; Bian, Y.; Githaiga, P.M.; Zhao, Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement. Altern. Med. 2017, 17, 536. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Jie, S.; Hanchuan, D.; Moucheng, W. Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. Int. Immunopharmacol. 2005, 5, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Dhar, K.L.; Puri, S.C.; Qurishi, M.A.; Khajuria, A.; Gupta, A.; Qazi, G.N. Isolation, characterization and biological evaluation of datura lactones as potential immunomodulators. Bioorg. Med. Chem. 2005, 13, 6672–6677. [Google Scholar] [CrossRef]
- Chung, J.W.; Choi, R.J.; Seo, E.-K.; Nam, J.-W.; Dong, M.-S.; Shin, E.M.; Guo, L.Y.; Kim, Y.S. Anti-inflammatory effects of (Z)-ligustilide through suppression of mitogen-activated protein kinases and nuclear factor-κB activation pathways. Arch. Pharm. Res. 2012, 35, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-Z.; Huang, J.-H.; Xiao, Z.-M.; Li, J.-H.; Li, X.-M.; Lu, H.-B. Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J. Neurol. Sci. 2013, 324, 94–99. [Google Scholar] [CrossRef]
- Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Corrigendum: Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 2018, 9, 1178. [Google Scholar] [CrossRef]
- Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved Oral Absorption of Quercetin from Quercetin Phytosome®, a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 169–177. [Google Scholar] [CrossRef]
- Tyagi, N.; Song, Y.H.; De, R. Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy. J. Drug Target 2019, 27, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Liu, Y.; Wu, L.; Senchina, D.S.; Wurtele, E.S.; Murphy, P.A.; Kohut, M.L.; Cunnick, J.E. Enhancement of innate and adaptive immune functions by multiple Echinacea species. J. Med. Food 2007, 10, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Orhan, D.D.; Ozçelik, B.; Ozgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cano, F.J.; Massot-Cladera, M.; Rodríguez-Lagunas, M.J.; Castell, M. Flavonoids Affect Host-Microbiota Crosstalk through TLR Modulation. Antioxid 2014, 3, 649–670. [Google Scholar] [CrossRef] [Green Version]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Leyva-López, N.; Gutierrez-Grijalva, E.P.; Ambriz-Perez, D.L.; Heredia, J.B. Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. Int. J. Mol. Sci. 2016, 17, 921. [Google Scholar] [CrossRef]
- Mirossay, L.; Varinská, L.; Mojžiš, J. Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int. J. Mol. Sci. 2017, 19, 27. [Google Scholar] [CrossRef]
- Skopiński, P.; Skopińska-Różewska, E.; Sommer, E.; Chorostowska-Wynimko, J.; Rogala, E.; Cendrowska, I.; Chrystowska, D.; Filewska, M.; Białas-Chromiec, B.; Bany, J. Chocolate feeding of pregnant mice influences length of limbs of their progeny. Pol. J. Vet. Sci. 2003, 6, 57–59. [Google Scholar] [PubMed]
- Skopiński, P.; Szaflik, J.; Duda-Król, B.; Nartowska, J.; Sommer, E.; Chorostowska-Wynimko, J.; Demkow, U.; Skopinska-Rózewska, E. Suppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfone. Int. J. Mol. Med. 2004, 14, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Skopińska-Różewska, E.; Balan, B.J.; Sommer, E.; Chorostowska-Wynimko, J.; Bany, J.; Wasiutynski, A.; Siwicki, A.K. The influence of chocolate feeding of pregnant mice on the immunological response of their progeny. Pol. J. Food Nutr. Sci. 2004, 54, 67–70. [Google Scholar]
- Chorostowska-Wynimko, J.; Skopińska-Różewska, E.; Sommer, E.; Rogala, E.; Skopiński, P.; Wojtasik, E. Multiple effects of theobromine on fetus development and postnatal status of the immune system. Int. J. Tissue React. 2004, 26, 53–60. [Google Scholar] [PubMed]
- Patera, J.; Chorostowska-Wynimko, J.; Słodkowska, J.; Borowska, A.; Skopiński, P.; Sommer, E.; Wasiutyński, A.; Skopińska-Różewska, E. Morphometric and functional abnormalities of kidneys in the progeny of mice fed chocolate during pregnancy and lactation. Folia Histochem. Cytobiol. 2006, 44, 207–211. [Google Scholar]
- Lewicki, S.; Skopińska-Różewska, E.; Lewicka, A.; Zdanowski, R. Long-term supplementation of Rhodiola kirilowii extracts during pregnancy and lactation does not affect mother health status. J. Matern. Fetal Neonatal. Med. 2019, 32, 838–844. [Google Scholar] [CrossRef]
- Lewicki, S.; Stankiewicz, W.; Skopińska-Różewska, E.; Wilczak, J.; Leśniak, M.; Suska, M.; Siwicki, A.K.; Skopiński, P.; Zdanowski, R. Spleen content of selected polyphenols, splenocytes morphology and function in mice fed Rhodiola kirilowii extracts during pregnancy and lactation. Pol. J. Vet. Sci. 2015, 18, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Zdanowski, R.; Skopińska-Różewska, E.; Wilczak, J.; Borecka, A.; Lewicka, A.; Lewicki, S. Different effects of feeding pregnant and lactating mice Rhodiola kirilowii aqueous and hydro-alcoholic extracts on their serum angiogenic activity and content of selected polyphenols. Cent. Eur. J. Immunol. 2017, 42, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, S.; Skopińska-Różewska, E.; Zdanowski, R. The decrease in number of splenic lymphocytes in mice fed Rhodiola kirilowii during pregnancy and lactation concerns mainly CD19+ and CD4+ cells. Cent. Eur. J. Immunol. 2017, 42, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, S.; Skopińska-Różewska, E.; Brewczyńska, A.; Zdanowski, R. Administration of Rhodiola kirilowii Extracts during Mouse Pregnancy and Lactation Stimulates Innate but Not Adaptive Immunity of the Offspring. J. Immunol. Res. 2017, 2017, 8081642. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, S.; Bałan, B.J.; Skopińska-Różewska, E.; Zdanowski, R.; Stelmasiak, M.; Szymański, Ł.; Stankiewicz, W. Modulatory effects of feeding pregnant and lactating mice Rhodiola kirilowii extracts on the immune system of offspring. Exp. Ther. Med. 2016, 12, 3450–3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewicki, S.; Orłowski, P.; Krzyżowska, M.; Kiepura, A.; Skopińska-Różewska, E.; Zdanowski, R. The effect of feeding mice during gestation and nursing with Rhodiola kirilowii extracts or epigallocatechin on CD4 and CD8 cells number and distribution in the spleen of their progeny. Cent. Eur. J. Immunol. 2017, 42, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Bień, K.; Lewicki, S.; Zdanowski, R.; Skopińska-Różewska, E.; Krzyżowska, M. Feeding Pregnant and Lactating Mice Rhodiola kirilowii Extracts helps to Preserve Thymus Function of their Adult Progeny. Pol. J. Vet. Sci. 2016, 19, 581–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabbou, S.; Rotolo, L.; Kovitvadhi, A.; Bergagna, S.; Dezzutto, D.; Barbero, R.; Rubiolo, P.; Schiavone, A.; De Marco, M.; Helal, A.N.; et al. Rabbit dietary supplementation with pale purple coneflower. 1. Effects on the reproductive performance and immune parameters of does. Animal 2016, 10, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Maass, N.; Bauer, J.; Paulicks, B.R.; Böhmer, B.M.; Roth-Maier, D.A. Efficiency of Echinacea purpurea on performance and immune status in pigs. J. Anim. Physiol. Anim. Nutr. 2005, 89, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Chow, G.; Johns, T.; Miller, S.C. Dietary Echinacea purpurea during murine pregnancy: Effect on maternal hemopoiesis and fetal growth. Biol. Neonatol. 2006, 89, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Barcz, E.; Sommer, E.; Nartowska, J.; Balan, B.; Chorostowska-Wynimko, J.; Skopińska-Rózewska, E. Influence of Echinacea purpurea intake during pregnancy on fetal growth and tissue angiogenic activity. Folia Histochem. Cytobiol. 2007, 45 (Suppl. 1), S35–S39. [Google Scholar]
- Kovitvadhi, A.; Gai, F.; Dabbou, S.; Ferrocino, I.; Rotolo, L.; Falzone, M.; Vignolini, C.; Gennero, M.S.; Bergagna, S.; Dezzutto, D.; et al. Rabbit dietary supplementation with pale purple coneflower. 2. Effects on the performances, bacterial community, blood parameters and immunity of growing rabbits. Animal 2016, 10, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, K.; Havnen, G.C.; Holst, L.; Nordeng, H. Pregnancy outcomes after prenatal exposure to Echinacea: The Norwegian Mother and Child Cohort Study. Eur. J. Clin. Pharmacol. 2016, 72, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Sarkar, M.; Au, W.; Pietrzak, K.; Comas, B.; Smith, M.; Jaeger, T.V.; Einarson, A.; Koren, G. Pregnancy outcome following gestational exposure to Echinacea: A prospective controlled study. Arch. Intern. Med. 2000, 160, 3141–3143. [Google Scholar] [CrossRef]
- Perri, D.; Dugoua, J.-J.; Mills, E.; Koren, G. Safety and efficacy of Echinacea (Echinacea angustafolia, e. purpurea and e. pallida) during pregnancy and lactation. Can. J. Clin. Pharm. 2006, 13, e262–e267. [Google Scholar]
- Xi, Q.-Y.; Jiang, Y.; Zhao, S.; Zeng, B.; Wang, F.; Wang, L.-N.; Jiang, Q.-Y.; Zhang, Y.-L. Effect of ginseng polysaccharides on the immunity and growth of piglets by dietary supplementation during late pregnancy and lactating sows. Anim. Sci. J. 2017, 88, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Concha, C.; Hu, S.; Holmberg, O. The proliferative responses of cow stripping milk and blood lymphocytes to pokeweed mitogen and ginseng in vitro. Vet. Res. 1996, 27, 107–115. [Google Scholar] [PubMed]
- Hu, S.; Concha, C.; Johannisson, A.; Meglia, G.; Waller, K.P. Effect of subcutaneous injection of ginseng on cows with subclinical Staphylococcus aureus mastitis. J. Vet. Med. B Infect. Dis. Vet. Public Health 2001, 48, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.O.; Lee, H.-Y.; Won, H.; Nah, S.-S.; Lee, H.-Y.; Kim, H.-K.; Kwon, J.-T.; Kim, H.-J. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress. Int. J. Mol. Med. 2015, 35, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Saadeldin, I.M.; Hussein, M.A.; Suleiman, A.H.; Abohassan, M.G.; Ahmed, M.M.; Moustafa, A.A.; Moumen, A.F.; Abdel-Aziz Swelum, A. Ameliorative effect of ginseng extract on phthalate and bisphenol A reprotoxicity during pregnancy in rats. Environ. Sci. Pollut. Res. Int. 2018, 25, 21205–21215. [Google Scholar] [CrossRef] [PubMed]
- Wanderley, M.I.; Saraiva, K.L.A.; César Vieira, J.S.B.; Peixoto, C.A.; Udrisar, D.P. Foetal exposure to Panax ginseng extract reverts the effects of prenatal dexamethasone in the synthesis of testosterone by Leydig cells of the adult rat. Int. J. Exp. Pathol. 2013, 94, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Belanger, D.; Calder, M.D.; Gianetto-Berruti, A.; Lui, E.M.; Watson, A.J.; Feyles, V. Effects of American Ginseng on Preimplantation Development and Pregnancy in Mice. Am. J. Chin. Med. 2016, 44, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Hachul, A.C.L.; Boldarine, V.T.; Neto, N.I.P.; Moreno, M.F.; Carvalho, P.O.; Sawaya, A.C.H.F.; Ribeiro, E.B.; do Nascimento, C.M.O.; Oyama, L.M. Effect of the consumption of green tea extract during pregnancy and lactation on metabolism of mothers and 28d-old offspring. Sci. Rep. 2018, 8, 1869. [Google Scholar] [CrossRef]
- Matsumoto, E.; Kataoka, S.; Mukai, Y.; Sato, M.; Sato, S. Green tea extract intake during lactation modified cardiac macrophage infiltration and AMP-activated protein kinase phosphorylation in weanling rats from undernourished mother during gestation and lactation. J. Dev. Orig. Health Dis. 2017, 8, 178–187. [Google Scholar] [CrossRef]
- Dey, A.; Gomes, A.; Dasgupta, S.C. Black Tea (Camellia sinensis) Extract Induced Prenatal and Postnatal Toxicity in Experimental Albino rats. Pharm. Mag. 2017, 13, S769–S774. [Google Scholar]
- Dey, A.; Gomes, A.; Dasgupta, S.C. Black Tea (Camellia sinensis) Extract Induced Changes in Blood and Liver Parameters on Pregnant and Lactating Experimental Albino Rats. Proc. Zool. Soc. 2019, 72, 25–31. [Google Scholar] [CrossRef]
- Otake, M.; Sakurai, K.; Watanabe, M.; Mori, C. Association Between Serum Folate Levels and Caffeinated Beverage Consumption in Pregnant Women in Chiba: The Japan Environment and Children’s Study. J. Epidemiol. 2018, 28, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.-D.; Guo, J.-J.; Zhou, L.; Wang, N. Epigallocatechin gallate enhances treatment efficacy of oral nifedipine against pregnancy-induced severe pre-eclampsia: A double-blind, randomized and placebo-controlled clinical study. J. Clin. Pharm. Ther. 2018, 43, 21–25. [Google Scholar] [CrossRef]
- Wei, S.-Q.; Xu, H.; Xiong, X.; Luo, Z.-C.; Audibert, F.; Fraser, W.D. Tea consumption during pregnancy and the risk of pre-eclampsia. Int. J. Gynaecol Obstet. 2009, 105, 123–126. [Google Scholar] [CrossRef]
- Okubo, H.; Miyake, Y.; Tanaka, K.; Sasaki, S.; Hirota, Y. Maternal total caffeine intake, mainly from Japanese and Chinese tea, during pregnancy was associated with risk of preterm birth: The Osaka Maternal and Child Health Study. Nutr. Res. 2015, 35, 309–316. [Google Scholar] [CrossRef]
- Yang, J.; Chen, M.J.; Wang, X.X.; Sun, X.; Wang, X.; Wang, X.R.; Xia, Y.K. Association between maternal tea consumption in pregnancy and birth outcomes. Chin. J. Prev. Med. 2018, 52, 1013–1017. [Google Scholar]
- Hachul, A.C.L.; Boldarine, V.T.; Neto, N.I.P.; Moreno, M.F.; Ribeiro, E.B.; do Nascimento, C.M.O.; Oyama, L.M. Maternal consumption of green tea extract during pregnancy and lactation alters offspring’s metabolism in rats. PLoS ONE 2018, 13, e0199969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Su, S.; Yu, X.; Li, Y. Dietary epigallocatechin 3-gallate supplement improves maternal and neonatal treatment outcome of gestational diabetes mellitus: A double-blind randomised controlled trial. J. Hum. Nutr. Diet. 2017, 30, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, A.L.; Herring, B.J.; Lockard, J.E.; Miller, B.M.; Kim, H.; Hood, R.D.; Bailey, M.M. Exposure to green tea extract alters the incidence of specific cyclophosphamide-induced malformations. Birth Defects Res. B Dev. Reprod. Toxicol. 2012, 95, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zdanowski, R.; Skopińska-Różewska, E.; Wasiutyński, A.; Skopiński, P.; Siwicki, A.K.; Sobiczewska, E.; Lewicki, S.; Buchwald, W.; Kocik, J.; Stankiewicz, W. The effect of Rhodiola kirilowii extracts on tumor-induced angiogenesis in mice. Cent. Eur. J. Immunol. 2012, 37, 131–139. [Google Scholar]
- Grace, M.H.; Yousef, G.G.; Kurmukov, A.G.; Raskin, I.; Lila, M.A. Phytochemical Characterization of an Adaptogenic Preparation from Rhodiola heterodonta. Nat. Prod. Commun. 2009, 4, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-T.; Li, C.-Y.; Wang, C.-H.; Wang, Y.-F.; Wang, X.-D.; Wang, H.-T.; Zhu, Y.; Jiang, M.-M.; Gao, X.-M. Phenolic Compounds from the Roots of Rhodiola crenulata and Their Antioxidant and Inducing IFN-γ Production Activities. Molecules 2015, 20, 13725–13739. [Google Scholar] [CrossRef] [PubMed]
- Grech-Baran, M.; Pietrosiuk, A.; Sykłowska-Baranek, K.; Giebułtowicz, J. Activity of tyrosol glucosyltransferase in Rhodiola kirilowii transgenic root cultures. Planta Med. 2012, 78, PI228. [Google Scholar] [CrossRef]
- Mishra, K.P.; Ganju, L.; Singh, S.B. Anti-cellular and immunomodulatory potential of aqueous extract of Rhodiola imbricata rhizome. Immunopharmacol. Immunotoxicol. 2012, 34, 513–518. [Google Scholar] [CrossRef]
- Cui, J.-L.; Guo, T.-T.; Ren, Z.-X.; Zhang, N.-S.; Wang, M.-L. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS ONE 2015, 10, e0118204. [Google Scholar] [CrossRef]
- Wójcik, R.; Siwicki, A.K.; Skopińska-Różewska, E.; Wasiutyński, A.; Sommer, E.; Furmanowa, M. The effect of Chinese medicinal herb Rhodiola kirilowii extracts on cellular immunity in mice and rats. Pol. J. Vet. Sci. 2009, 12, 399–405. [Google Scholar]
- Zdanowski, R.; Lewicki, S.; Skopińska-Różewska, E.; Buchwald, W.; Mrozikiewicz, P.M.; Stankiewicz, W. Alcohol- and water-based extracts obtained from Rhodiola rosea affect differently the number and metabolic activity of circulating granulocytes in Balb/c mice. Ann. Agric. Environ. Med. 2014, 21, 120–123. [Google Scholar]
- Bany, J.; Zdanowska, D.; Skopińska-Różewska, E.; Sommer, E.; Siwicki, A.K.; Wasiutyński, A. The effect of Rhodiola rosea extracts on the bacterial infection in mice. Cent. Eur. J. Immunol. 2009, 34, 35–37. [Google Scholar]
- Zuo, G.; Li, Z.; Chen, L.; Xu, X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antivir. Res. 2007, 76, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-C.; Zhao, M.; Zong, Y.-Y.; Chan, C.-Y.; Che, C.-T. Chemical constituents and anti-tuberculosis activity of root of Rhodiola kirilowii. China J. Chin. Mater. Med. 2008, 33, 1561–1565. [Google Scholar]
- Khanna, K.; Mishra, K.P.; Ganju, L.; Singh, S.B. Golden root: A wholesome treat of immunity. Biomed. Pharmacother. 2017, 87, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Barman, D.; Nen, P.; Mandal, S.C.; Kumar, V. Immunostimulants for Aquaculture Health Management. J. Mar. Sci. Res. Dev. 2013, 3, 134. [Google Scholar] [CrossRef]
- Lewicki, S.; Skopińska-Różewska, E.; Bałan, B.J.; Kalicki, B.; Patera, J.; Wilczak, J.; Wasiutyński, A.; Zdanowski, R. Morphofunctional Renal Alterations in Progeny of Mice Fed Rhodiola kirilowii Extracts or Epigallocatechin During Pregnancy and Lactation. J. Med. Food 2017, 20, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, M.; Farnsworth, N.R. Echinacea angustifolia in rhinovirus infections. N. Engl. J. Med. 2005, 353, 1971–1972. [Google Scholar] [PubMed]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2005, 57, 929–954. [Google Scholar] [CrossRef] [PubMed]
- Schoop, R.; Klein, P.; Suter, A.; Johnston, S.L. Echinacea in the prevention of induced rhinovirus colds: A meta-analysis. Clin. Ther. 2006, 28, 174–183. [Google Scholar] [CrossRef]
- Shah, S.A.; Sander, S.; White, C.M.; Rinaldi, M.; Coleman, C.I. Evaluation of Echinacea for the prevention and treatment of the common cold: A meta-analysis. Lancet Infect. Dis. 2007, 7, 473–480. [Google Scholar] [CrossRef]
- Cheminat, A.; Zawatzky, R.; Becker, H.; Brouillard, R. Caffeoyl conjugates from Echinacea species: Structures and biological activity. Phytochemistry 1988, 27, 2787–2794. [Google Scholar] [CrossRef]
- Melchart, D.; Clemm, C.; Weber, B.; Draczynski, T.; Worku, F.; Linde, K.; Weidenhammer, W.; Wagner, H.; Saller, R. Polysaccharides isolated from Echinacea purpurea herba cell cultures to counteract undesired effects of chemotherapy—A pilot study. Phytother. Res. 2002, 16, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Luettig, B.; Steinmüller, C.; Gifford, G.E.; Wagner, H.; Lohmann-Matthes, M.L. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. J. Natl. Cancer Inst. 1989, 81, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Torres, M. Redox signaling in macrophages. Mol. Asp. Med. 2001, 22, 189–216. [Google Scholar] [CrossRef]
- Hobbs, A.J.; Higgs, A.; Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 191–220. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Haney, D.; Wu, L.; Solco, A.; Murphy, P.A.; Wurtele, E.S.; Kohut, M.L.; Cunnick, J.E. Alcohol extracts of Echinacea inhibit production of nitric oxide and tumor necrosis factor-alpha by macrophages in vitro. Food Agric. Immunol. 2007, 18, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Brüne, B.; Götz, C.; Meßmer, U.K.; Sandau, K.; Hirvonen, M.-R.; Lapetina, E.G. Superoxide Formation and Macrophage Resistance to Nitric Oxide-mediated Apoptosis. J. Biol. Chem. 1997, 272, 7253–7258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.Y.; Tucci, M.; Baker, R.C. Lipopolysaccharide-stimulated nitric oxide production and inhibition of cell proliferation is antagonized by ethanol in a clonal macrophage cell line. Alcohol 2000, 20, 37–43. [Google Scholar] [CrossRef]
- Facino, R.M.; Carini, M.; Aldini, G.; Saibene, L.; Pietta, P.; Mauri, P. Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation: A potential use of Echinacea extracts in the prevention of skin photodamage. Planta Med. 1995, 61, 510–514. [Google Scholar] [CrossRef]
- Hu, C.; Kitts, D.D. Studies on the antioxidant activity of Echinacea root extract. J. Agric. Food Chem. 2000, 48, 1466–1472. [Google Scholar] [CrossRef]
- Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal. 2004, 35, 289–301. [Google Scholar] [CrossRef]
- Dalby-Brown, L.; Barsett, H.; Landbo, A.-K.R.; Meyer, A.S.; Mølgaard, P. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 2005, 53, 9413–9423. [Google Scholar] [CrossRef] [PubMed]
- Choi, K. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Bae, O.-N.; Park, J.H. Recent methodology in ginseng analysis. J. Ginseng Res. 2012, 36, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Rhule, A.; Navarro, S.; Smith, J.R.; Shepherd, D.M. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J. Ethnopharmacol. 2006, 106, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Shin, J.-W.; Chun, K.-S.; Park, K.-K.; Chung, W.-Y.; Bang, Y.-J.; Sung, J.-H.; Surh, Y.-J. Antitumor promotional effects of a novel intestinal bacterial metabolite (IH-901) derived from the protopanaxadiol-type ginsenosides in mouse skin. Carcinogenesis 2005, 26, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-A.; Hyam, S.R.; Jang, S.-E.; Han, M.J.; Kim, D.-H. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J. Agric. Food Chem. 2012, 60, 9595–9602. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Murthy, H.N.; Hahn, E.-J.; Lee, H.L.; Paek, K.-Y. Parameters affecting the extraction of ginsenosides from the adventitious roots of ginseng (Panax ginseng C.A. Meyer). Sep. Purif. Technol. 2007, 56, 401–406. [Google Scholar] [CrossRef]
- Byeon, S.E.; Lee, J.; Kim, J.H.; Yang, W.S.; Kwak, Y.-S.; Kim, S.Y.; Choung, E.S.; Rhee, M.H.; Cho, J.Y. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediat. Inflamm. 2012, 2012, 732860. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Lee, J.G.; Park, S.Y.; Bae, O.N.; Kim, D.-H.; Park, J.H. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 2010, 11, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.O.; Kim, Y.; Lee, K.; Na, S.W.; Hong, S.P.; Valan Arasu, M.; Yoon, Y.W.; Kim, J. Panax ginseng Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An In Vivo Study. Evid. Based Complement. Altern. Med. 2015, 2015, 817096. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Tahir, M.; Shoro, A.A. Ginseng Induced Fetal Skeletal Malformations. 2008. Available online: http://www.pjmhsonline.com/ginseng_induced_fetal_skeletal_m.htm (accessed on 29 June 2019).
- Kim, M.-H.; Byon, Y.-Y.; Ko, E.-J.; Song, J.-Y.; Yun, Y.-S.; Shin, T.; Joo, H.-G. Immunomodulatory activity of ginsan, a polysaccharide of panax ginseng, on dendritic cells. Korean J. Physiol. Pharmacol. 2009, 13, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-Y.; Song, J.-Y.; Yun, Y.-S.; Yang, H.-O.; Rhee, D.-K.; Pyo, S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol. 2002, 24, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Jie, Y.H.; Cammisuli, S.; Baggiolini, M. Immunomodulatory effects of Panax Ginseng C.A. Meyer in the mouse. Agents Actions 1984, 15, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-Y.; Song, J.-Y.; Yun, Y.-S.; Jeong, G.; Choi, I.-S. Protection of Staphylococcus aureus-infected septic mice by suppression of early acute inflammation and enhanced antimicrobial activity by ginsan. FEMS Immunol. Med. Microbiol. 2006, 46, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.Y.; Kwok, H.H.; Chan, R.W.Y.; Peiris, M.J.S.; Mak, N.K.; Wong, R.N.S.; Chan, M.C.W.; Yue, P.Y.K. Dual functions of ginsenosides in protecting human endothelial cells against influenza H9N2-induced inflammation and apoptosis. J. Ethnopharmacol. 2011, 137, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, C.; Chakrabarti, N.; Chatterjee, M.; Mukherjee, S.; Sarkar, K.; Chaudhuri, A.R. Black tea (Camellia sinensis) decoction shows immunomodulatory properties on an experimental animal model and in human peripheral mononuclear cells. Pharmacogn. Res. 2012, 4, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-L.; Chen, T.-S.; Liou, S.-Y.; Hsieh, C.-C. Immunomodulatory effects of EGCG fraction of green tea extract in innate and adaptive immunity via T regulatory cells in murine model. Immunopharmacol. Immunotoxicol. 2014, 36, 364–370. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. The role of tea in human health: An update. J. Am. Coll. Nutr. 2002, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhu, Q.Y.; Tsang, D.; Huang, Y. Degradation of green tea catechins in tea drinks. J. Agric. Food Chem. 2001, 49, 477–482. [Google Scholar] [CrossRef]
- Chen, N.; Bezzina, R.; Hinch, E.; Lewandowski, P.A.; Cameron-Smith, D.; Mathai, M.L.; Jois, M.; Sinclair, A.J.; Begg, D.P.; Wark, J.D.; et al. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr. Res. 2009, 29, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Anderson, R.A.; Polansky, M.M. Tea enhances insulin activity. J. Agric. Food Chem. 2002, 50, 7182–7186. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Tsuno, N.H.; Kitayama, J.; Okaji, Y.; Yazawa, K.; Asakage, M.; Hori, N.; Watanabe, T.; Takahashi, K.; Nagawa, H. Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b. J. Allergy Clin. Immunol. 2004, 113, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.P.; McCormick, T.G.; Nance, C.L.; Shearer, W.T. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J. Allergy Clin. Immunol. 2006, 118, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Bruch, D.; Gatto, L.A.; Kittur, D.S. Green tea extract prolongs allograft survival as an adjunctive therapy along with low dose cyclosporine A. J. Surg. Res. 2009, 154, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M. The beneficial effects of tea on immune function and inflammation: A review of evidence from in vitro, animal, and human research. Nutr. Res. 2007, 27, 373–379. [Google Scholar] [CrossRef]
- Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J. Immunol. 2003, 170, 4335–4341. [Google Scholar] [CrossRef] [PubMed]
- Frei, B.; Higdon, J.V. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 2003, 133, 3275S–3284S. [Google Scholar] [CrossRef] [PubMed]
- Datta, P.; Sarkar, A.; Biswas, A.K.; Gomes, A. Anti arthritic activity of aqueous extract of Indian black tea in experimental and clinical study. Orient. Pharm. Exp. Med. 2012, 12, 265–271. [Google Scholar] [CrossRef]
- Isbrucker, R.A.; Edwards, J.A.; Wolz, E.; Davidovich, A.; Bausch, J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: Teratogenicity and reproductive toxicity studies in rats. Food Chem. Toxicol. 2006, 44, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Meng, J.; Xu, K.; Xiao, R.; Xu, M.; Liu, Y.; Zhao, Y.; Yao, P.; Yan, H.; Liu, L. Evaluation of oral subchronic toxicity of Pu-erh green tea (camellia sinensis var. assamica) extract in Sprague Dawley rats. J. Ethnopharmacol. 2012, 142, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Kayiran, S.M.; Ince, D.A.; Aldemir, D.; Gurakan, B. Investigating the effect of black tea consumption during pregnancy on the oxidant/antioxidant status of breastmilk. Breastfeed. Med. 2013, 8, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Jochum, F.; Alteheld, B.; Meinardus, P.; Dahlinger, N.; Nomayo, A.; Stehle, P. Mothers’ Consumption of Soy Drink But Not Black Tea Increases the Flavonoid Content of Term Breast Milk: A Pilot Randomized, Controlled Intervention Study. Ann. Nutr. Metab. 2017, 70, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.K.; Oberholzer, V.G. Ginseng--is there a use in clinical medicine? Postgrad Med. J. 1988, 64, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Saito, H.; Tsuchiya, M. Pharmacological studies of Panax Ginseng root: Pharmacological properties of a crude saponin fraction. Jpn. J. Pharmacol. 1972, 22, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, P.; Shin, C.Y. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J. Ginseng Res. 2013, 37, 8–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacprzak, K.M. Chemistry and Biology of Cinchona Alkaloids. In Natural Products; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 605–641. ISBN 978-3-642-22143-9. [Google Scholar]
- Karle, J.M.; Bhattacharjee, A.K. Stereoelectronic features of the cinchona alkaloids determine their differential antimalarial activity. Bioorg. Med. Chem. 1999, 7, 1769–1774. [Google Scholar] [CrossRef]
- Druilhe, P.; Brandicourt, O.; Chongsuphajaisiddhi, T.; Berthe, J. Activity of a combination of three cinchona bark alkaloids against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 1988, 32, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Bałan, B.J.; Skopińska-Różewska, E.; Skopiński, P.; Zdanowski, R.; Leśniak, M.; Kiepura, A.; Lewicki, S. Morphometric abnormalities in the spleen of the progeny of mice fed epigallocatechin during gestation and nursing. Pol. J. Vet. Sci. 2017, 20, 5–12. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (Ed.) National Policy on Traditional Medicine and Regulation of Herbal Medicines: Report of a WHO Global Survey; World Health Organization: Geneva, Switzerland, 2005; ISBN 978-92-4-159323-6. [Google Scholar]
- Chan, K. Some aspects of toxic contaminants in herbal medicines. Chemosphere 2003, 52, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Bouterfas, K.; Mehdadi, Z.; Elaoufi, M.M.; Latreche, A.; Benchiha, W. Antioxidant activity and total phenolic and flavonoids content variations of leaves extracts of white Horehound (Marrubium vulgare Linné) from three geographical origins. Ann. Pharm. Fr. 2016, 74, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Arnold, T.; Tanner, C.; Hatch, W. Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar. Ecol. Prog. Ser. 1995, 123, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Marrassini, C.; Peralta, I.; Anesini, C. Comparative study of the polyphenol content-related anti-inflammatory and antioxidant activities of two Urera aurantiaca specimens from different geographical areas. Chin. Med. 2018, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Herb or Extract | Key Substances | Pharmacological Action | |
---|---|---|---|
Mother | Offspring | ||
Rhodiola | phenylethanoid salidroside and tyrosol, phenolic acids (i.e., chlorogenic, ferulic, ellagic and p-coumaric), and flavonoids (i.e., fisetin, naringenin, kaempferol, epicatechin, luteolin, quercetin, epigallocatechin and (+)-catechin) | reduces the percentage of cells with a respiratory burst in granulocytes (supplementation with RKW) [28] increases in the percentage of granulocytes and monocytes in the blood with the respiratory burst (supplementation with RKW-A) [28] contributes to changes in spleen morphology and structure [29] increases the concentration of VEGF and bFGF [30] reduces the number of CD4 + and CD19 + cells and the total number of NK cells [31] | increases hemoglobin concentration (about 0.6 mg/dL) [32] decreases in the mean percentage of lymphocytes in peripheral blood, and an increase in the mean percentage of granulocytes [32] decreases in the percentage of CD3+ cells and CD4+ [32] increases the concentration of IL-10 in the serum [33] stimulate the phagocytosis process [32] significant difference in tissue localization and the number of CD8+ cells [34] contributes to a higher number of CD8+ cells in the central part of the spleen [34] influence cell proliferation in response to mitogen supplementation (LPS, PHA and ConA) [29] decreases the number of apoptotic cells [35] decreases the concentration of VEGF in the sera [30] |
Echinacea | alkamides, ketoalkenes, caffeic acid derivatives, polysaccharides, glycoproteins, and caftaric acid | does not affect hematological and reproductive parameters [36] no influences on the enzyme results [37] decreases the level of crude protein in colostrum [37] decreases the level of antibodies in the plasma [37] decreases the number of spleen lymphocytes and nucleated erythroid cells [38] contributes to more frequent miscarriages in the early stages of pregnancy [38] | decreases the number of embryos in litter and significantly diminished VEGF and bFGF content of embryos tissue [39] increases phagocytic activity in blood [40] increases bacterial diversity [40] non-teratogenic, does not increase the risk of malformations [41,42,43] |
Ginseng | polysaccharides, flavonoids, fatty acids, peptides, and saponins (mainly ginsenosides) | increases the total IgG concentration in milk and serum of sows, which was associated with elevated levels of cytokines: IL-2, IL-6, TNF- α, and IFN-γ [44] stimulates the effect of isolated lymphocytes after pokeweed mitogen stimulation [45] stimulates the innate immunity in cows with Staphylococcus aureus infection [46] increases phagocytosis, oxidative burst activity of blood neutrophils and number of monocytes [46] | increases IL-2 and TNF-α concentration in the piglets’ serum [44] reduces the incidence of schizophrenia in the offspring [47] alleviates the toxic effects of phthalates and bisphenol A [48] reverses the negative effect of dexamethasone on the synthesis of testosterone in Leydig cells [49] teratogenic effect [50] |
Camellia | epigallocatechin, epicatechin, epicatechin gallate | increases the ratio of IL-10/TNF-α and IL-1β in mesenteric adipose tissue and causes a decrease in catalase in the liver [51] inhibits the penetration of macrophages and increases the expression of AMPK (during lactation) [52] contributes to alterations in urinary calcium, creatinine, and urea during the prenatal period, nephrotoxicity [53] increases levels of proinflammatory cytokines and decreases anti-inflammatory cytokines levels in serum [53] decreases of hemoglobin concentration and loss of the biconcave structure of erythrocytes [54] increases of WBC level in the mother’s blood and induced significant changes in the histology of liver and serum enzymes [54] decreases the level of folic acid [55] increases the efficacy of oral nifedipine treatment in severe pregnancy-induced preeclampsia [56] may be associated with an increased risk of pre-eclampsia [57] | increases the risk of premature birth [58] risk factor for low birth weight of offspring [59] protect against dyslipidemia, glucose intolerance, and fat accumulation [60] pro-inflammatory effect on the adipose tissue (not on a high-fat diet) [60] decreases the retroperitoneal adipose tissue relative weight and SOD activity but increases adiponectin, LPS, IL-10 and IL-6 content and IL-10/TNF-α ratio in retroperitoneal, IL-10 and TNF-α content in gonadal, and IL-6 content in mesenteric adipose tissues [51] improves the results of treatment of maternal gestational diabetes [61] reduces neonatal complications [61] can decreases the number of malformations in fetuses after exposure to cyclophosphamide, but too high dose increases the toxicity of cyclophosphamide [62] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewicka, A.; Szymański, Ł.; Rusiecka, K.; Kucza, A.; Jakubczyk, A.; Zdanowski, R.; Lewicki, S. Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation—Maternal and Offspring Health Effects. Nutrients 2019, 11, 1958. https://doi.org/10.3390/nu11081958
Lewicka A, Szymański Ł, Rusiecka K, Kucza A, Jakubczyk A, Zdanowski R, Lewicki S. Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation—Maternal and Offspring Health Effects. Nutrients. 2019; 11(8):1958. https://doi.org/10.3390/nu11081958
Chicago/Turabian StyleLewicka, Aneta, Łukasz Szymański, Kamila Rusiecka, Anna Kucza, Anna Jakubczyk, Robert Zdanowski, and Sławomir Lewicki. 2019. "Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation—Maternal and Offspring Health Effects" Nutrients 11, no. 8: 1958. https://doi.org/10.3390/nu11081958
APA StyleLewicka, A., Szymański, Ł., Rusiecka, K., Kucza, A., Jakubczyk, A., Zdanowski, R., & Lewicki, S. (2019). Supplementation of Plants with Immunomodulatory Properties during Pregnancy and Lactation—Maternal and Offspring Health Effects. Nutrients, 11(8), 1958. https://doi.org/10.3390/nu11081958