Association of Low Serum l-Carnitine Levels with Peripheral Arterial Stiffness in Patients Who Undergo Kidney Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Measurements
2.3. Brachial–Ankle Pulse Wave Velocity and Blood Pressure Measurement
2.4. Biochemical Determination
2.5. Liquid Chromatography and Mass Spectrometry Analysis
2.6. Metabolic Syndrome and Its Components
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.; Held, P.J.; Port, F.K. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Seung, J.; Lee, J.H.; Chung, B.H.; Yang, C.W. Clinical significance of pre-transplant arterial stiffness and the impact of kidney transplantation on arterial stiffness. PLoS ONE 2015, 10, e0139138. [Google Scholar] [CrossRef] [PubMed]
- Khoshdel, A.R.; Carney, S.L. Arterial stiffness in kidney transplant recipients: An overview of methodology and applications. Urol. J. 2008, 5, 3–14. [Google Scholar] [PubMed]
- Webb, D.R.; Khunti, K.; Silverman, R.; Gray, L.J.; Srinivasan, B.; Lacy, P.S.; Williams, B.; Davies, M.J. Impact of metabolic indices on central artery stiffness: Independent association of insulin resistance and glucose with aortic pulse wave velocity. Diabetologia 2010, 53, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
- Tsuchikura, S.; Shoji, T.; Kimoto, E.; Shinohara, K.; Hatsuda, S.; Koyama, H.; Emoto, M.; Nishizawa, Y. Central versus peripheral arterial stiffness in association with coronary, cerebral and peripheral arterial disease. Atherosclerosis 2010, 211, 480–485. [Google Scholar] [CrossRef]
- Tomiyama, H.; Yamashina, A. Non-invasive vascular function tests: Their pathophysiological background and clinical application. Circ. J. 2010, 74, 24–33. [Google Scholar] [CrossRef]
- Meani, P.; Maloberti, A.; Sormani, P.; Colombo, G.; Giupponi, L.; Stucchi, M.; Varrenti, M.; Vallerio, P.; Facchetti, R.; Grassi, G.; et al. Determinants of carotid-femoral pulse wave velocity progression in hypertensive patients over a 3.7 years follow-up. Blood Press. 2018, 27, 32–40. [Google Scholar] [CrossRef]
- Tanaka, H.; Munakata, M.; Kawano, Y.; Ohishi, M.; Shoji, T.; Sugawara, J.; Tomiyama, H.; Yamashina, A.; Yasuda, H.; Sawayama, T.; et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J. Hypertens. 2009, 27, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
- Choo, J.; Shin, C.; Barinas-Mitchell, E.; Masaki, K.; Willcox, B.J.; Seto, T.B.; Ueshima, H.; Lee, S.; Miura, K.; Venkitachalam, L.; et al. Regional pulse wave velocities and their cardiovascular risk factors among healthy middle-aged men: A cross-sectional population-based study. BMC Cardiovasc. Disord. 2014, 14. [Google Scholar] [CrossRef]
- Maloberti, A.; Vallerio, P.; Triglione, N.; Occhi, L.; Panzeri, F.; Bassi, I.; Pansera, F.; Piccinelli, E.; Peretti, A.; Garatti, L.; et al. Vascular aging and disease of the large vessels: Role of inflammation. High Blood Press. Cardiovasc. Prev. 2019, 26, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Granata, S.; Dalla Gassa, A.; Tomei, P.; Lupo, A.; Zaza, G. Mitochondria: A new therapeutic target in chronic kidney disease. Nutr. Metab. 2015, 12. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewski, Z.; Kisielnicka, E.; Krol, E.; Fox, J.; Kuchta, G.; Rutkowski, B.; Lysiak-Szydlowska, W. Carnitine metabolism changes during the first year after a successful kidney transplantation. Transplant. Proc. 1997, 29, 224–226. [Google Scholar] [CrossRef]
- Kim, M.; Jung, S.; Lee, S.H.; Lee, J.H. Association between arterial stiffness and serum l-octanoylcarnitine and lactosylceramide in overweight middle-aged subjects: 3-year follow-up study. PLoS ONE 2015, 10, e0119519. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Chen, Y.C.; Ho, G.J.; Shih, M.H.; Chou, K.C.; Hsu, B.G. Serum leptin levels positively correlate with peripheral arterial stiffness in kidney transplantation patients. Transplant. Proc. 2014, 46, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.J.; Lee, M.C.; Lee, C.J.; Chen, Y.C.; Hsu, B.G. Hypoadiponectinemia correlates with arterial stiffness in kidney transplantation patients. Clin. Exp. Nephrol. 2015, 19, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.G.; Liou, H.H.; Lee, C.J.; Chen, Y.C.; Ho, G.J.; Lee, M.C. Serum sclerostin as an independent marker of peripheral arterial stiffness in renal transplantation recipients: A cross-sectional study. Medicine 2016, 95, e3300. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, Y.; Li, J.; Ma, W.; Guo, X.; Luo, Y.; Hu, D. The predictive value of brachial-ankle pulse wave velocity in coronary atherosclerosis and peripheral artery diseases in urban Chinese patients. Hypertens. Res. 2008, 31, 1079–1085. [Google Scholar] [CrossRef]
- Steuer, C.; Schutz, P.; Bernasconi, L.; Huber, A.R. Simultaneous determination of phosphatidylcholine-derived quaternary ammonium compounds by a LC-MS/MS method in human blood plasma, serum and urine samples. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2016, 1008, 206–211. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Gomez-Sanchez, L.; Garcia-Ortiz, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Fernando, R.; Marti, R.; Agudo-Conde, C.; Rodriguez-Sanchez, E.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Association of metabolic syndrome and its components with arterial stiffness in Caucasian subjects of the MARK study: A cross-sectional trial. Cardiovasc. Diabetol. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Sutton-Tyrrell, K.; Newman, A.; Simonsick, E.M.; Havlik, R.; Pahor, M.; Lakatta, E.; Spurgeon, H.; Vaitkevicius, P. Aortic stiffness is associated with visceral adiposity in older adults enrolled in the study of health, aging, and body composition. Hypertension 2001, 38, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Madonna, R.; De Caterina, R. Atherogenesis and diabetes: Focus on insulin resistance and hyperinsulinemia. Rev. Esp. Cardiol. 2012, 65, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Oh, B.H. Aging and arterial stiffness. Circ. J. 2010, 74, 2257–2262. [Google Scholar] [CrossRef] [PubMed]
- Strozecki, P.; Adamowicz, A.; Kozlowski, M.; Wlodarczyk, Z.; Manitius, J. Progressive arterial stiffening in kidney transplant recipients. Ann. Transplant. 2011, 16, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M. Brachial-ankle pulse wave velocity: Background, method, and clinical evidence. Pulse 2016, 3, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Bremer, J. Carnitine—Metabolism and functions. Physiol. Rev. 1983, 63, 1420–1480. [Google Scholar] [CrossRef]
- Westerbacka, J.; Yki-Jarvinen, H. Arterial stiffness and insulin resistance. Semin. Vasc. Med. 2002, 2, 157–164. [Google Scholar] [CrossRef]
- Kolodziejczyk, J.; Saluk-Juszczak, J.; Wachowicz, B. l-Carnitine protects plasma components against oxidative alterations. Nutrition 2011, 27, 693–699. [Google Scholar] [CrossRef]
- Biolo, G.; Stulle, M.; Bianco, F.; Mengozzi, G.; Barazzoni, R.; Vasile, A.; Panzetta, G.; Guarnieri, G. Insulin action on glucose and protein metabolism during l-carnitine supplementation in maintenance haemodialysis patients. Nephrol. Dial. Transplant. 2008, 23, 991–997. [Google Scholar] [CrossRef]
- Pertosa, G.; Grandaliano, G.; Simone, S.; Soccio, M.; Schena, F.P. Inflammation and carnitine in hemodialysis patients. J. Ren. Nutr. 2005, 15, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Debska-Slizien, A.; Owczarzak, A.; Kunicka, D.; Lysiak-Szydlowska, W.; Rutkowski, B. Plasma carnitine profile during chronic renal anemia treatment with recombinant human erythropoietin. Int. J. Artif. Organs. 2003, 26, 33–38. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Lavie, C.J.; Fares, H.; Menezes, A.R.; O’Keefe, J.H. l-carnitine in the secondary prevention of cardiovascular disease: Systematic review and meta-analysis. Mayo Clin. Proc. 2013, 88, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Lessiani, G.; Santilli, F.; Boccatonda, A.; Iodice, P.; Liani, R.; Tripaldi, R.; Saggini, R.; Davì, G. Arterial stiffness and sedentary lifestyle: Role of oxidative stress. Vascul. Pharmacol. 2016, 79, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Aroor, A.R.; Jia, G.; Sowers, J.R. Cellular mechanisms underlying obesity-induced arterial stiffness. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R387–R398. [Google Scholar] [CrossRef]
- Koh, A.S.; Gao, F.; Liu, J.; Fridianto, K.T.; Ching, J.; Tan, R.S.; Wong, J.I.; Chua, S.J.; Leng, S.; Zhong, L.; et al. Metabolomic profile of arterial stiffness in aged adults. Diab. Vasc. Dis. Res. 2018, 15, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.Y.; Kim, J.Y.; Paik, J.K.; Kim, O.Y.; Paik, Y.H.; Lee, E.J.; Lee, J.H. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin. Endocrinol. 2012, 76, 674–682. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Chen, Y.; Zhao, Y.J.; Liu, L.W.; Li, J.; Wang, S.L.; Alolga, R.N.; Yin, Y.; Wang, X.M.; et al. Comprehensive metabolomic characterization of coronary artery diseases. J. Am. Coll. Cardiol. 2016, 68, 1281–1293. [Google Scholar] [CrossRef]
- Korogiannou, M.; Xagas, E.; Marinaki, S.; Sarafidis, P.; Boletis, J.N. Arterial stiffness in patients with renal transplantation; associations with co-morbid conditions, evolution, and prognostic importance for cardiovascular and renal outcomes. Front. Cardiovasc. Med. 2019, 6. [Google Scholar] [CrossRef]
- Spagnoli, L.G.; Corsi, M.; Villaschi, S.; Palmieri, G.; Maccari, F. Myocardial carnitine deficiency in acute myocardial infarction. Lancet 1982, 1, 1419–1420. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
Items | All Participants (N = 65) | Control Group (N = 29) | PAS Group (N = 36) | p-Value |
---|---|---|---|---|
Age (years) | 51.32 ± 9.26 | 48.72 ± 9.77 | 53.42 ± 8.40 | 0.041 * |
KT duration (months) | 71.97 ± 44.21 | 58.38 ± 29.37 | 82.92 ± 51.06 | 0.025 * |
Height (cm) | 162.37 ± 8.35 | 163.38 ± 9.09 | 161.56 ± 7.74 | 0.386 |
Body weight (kg) | 63.06 ± 12.32 | 60.83 ± 10.17 | 64.86 ± 13.68 | 0.192 |
Body mass index (kg/m2) | 23.88 ± 4.21 | 22.80 ± 3.48 | 24.75 ± 4.59 | 0.064 |
Waist circumference (cm) | 85.56 ± 11.11 | 81.67 ± 8.84 | 88.69 ± 11.86 | 0.010 * |
Systolic blood pressure (mmHg) | 139.12 ± 16.80 | 132.07 ± 13.16 | 144.81 ± 17.40 | 0.002 * |
Diastolic blood pressure (mmHg) | 87.28 ± 10.93 | 84.59 ± 11.24 | 89.44 ± 10.32 | 0.075 |
Left baPWV (m/s) | 13.94 ± 2.51 | 12.02 ± 1.41 | 15.48 ± 2.11 | <0.001 * |
Right baPWV (m/s) | 14.13 ± 2.69 | 12.29 ± 1.69 | 15.62 ± 2.42 | <0.001 * |
Albumin (mg/dL) | 4.14 ± 0.47 | 4.08 ± 0.53 | 4.19 ± 0.43 | 0.346 |
Globulin (mg/dL) | 2.84 ± 0.62 | 2.81 ± 0.56 | 2.85 ± 0.67 | 0.804 |
Total cholesterol (mg/dL) | 195.92 ± 46.34 | 187.80 ± 37.64 | 202.47 ± 51.90 | 0.207 |
Triglyceride (mg/dL) | 120.00 (79.50–175.00) | 99.00 (69.50–149.00) | 135.50 (84.75–215.50) | 0.040 * |
HDL-C (mg/dL) | 50.88 ± 15.52 | 55.34 ± 13.19 | 47.28 ± 16.47 | 0.036 * |
LDL-C (mg/dL) | 107.19 ± 35.13 | 105.12 ± 33.33 | 108.86 ± 36.90 | 0.673 |
Fasting glucose (mg/dL) | 94.00 (85.50–111.00) | 92.00 (85.00–98.00) | 97.50 (86.50–134.75) | 0.129 |
Blood urea nitrogen (mg/dL) | 23.00 (17.00–34.50) | 19.00 (15.50–30.50) | 24.00 (18.00–36.50) | 0.101 |
Creatinine (mg/dL) | 1.60 (1.20–2.10) | 1.40 (1.10–2.35) | 1.70 (1.50–2.10) | 0.159 |
Glomerular filtration rate (mL/min) | 43.62 ± 21.74 | 46.93 ± 23.27 | 40.94 ± 20.37 | 0.273 |
Total calcium (mg/dL) | 9.16 ± 1.06 | 9.25 ± 0.88 | 9.10 ± 1.20 | 0.588 |
Phosphorus (mg/dL) | 3.43 ± 0.85 | 3.37 ± 0.86 | 3.48 ± 0.85 | 0.612 |
Intact parathyroid hormone (pg/mL) | 118.20 (75.20–169.05) | 118.58 (81.30–177.20) | 116.90 (63.08–167.85) | 0.329 |
Insulin (μIU/mL) | 9.96 ± 4.65 | 8.00 ± 3.49 | 11.54 ± 4.90 | 0.002 * |
HOMA-IR | 2.45 (1.41–3.33) | 1.84 (1.25–2.62) | 2.91 (1.57–3.77) | 0.002 * |
l-carnitine (μg/mL) | 32.04 (23.18–39.25) | 36.47 (28.24–54.06) | 24.73 (19.40–34.11) | < 0.001 * |
Characteristic | Control Group (%) | PAS Group (%) | p-Value | |
---|---|---|---|---|
Gender | Male | 13 (44.8) | 22 (61.1) | 0.191 |
Female | 16 (55.2) | 14 (38.9) | ||
Diabetes | No | 25 (86.2) | 17 (47.2) | 0.001 * |
Yes | 4 (13.8) | 19 (52.8) | ||
Hypertension | No | 19 (65.5) | 14 (38.9) | 0.033 * |
Yes | 10 (34.5) | 22 (61.1) | ||
Transplantation model | Cadaveric | 27 (93.1) | 29 (80.6) | 0.145 |
Living | 2 (6.9) | 7 (19.4) | ||
Metabolic syndrome | No | 23 (79.3) | 20 (55.6) | 0.044 * |
Yes | 6 (20.7) | 16 (44.4) | ||
Tacrolimus use | No | 11 (37.9) | 15 (41.7) | 0.760 |
Yes | 18 (62.1) | 21 (58.3) | ||
Mycophenolate mofetil or mycophenolic acid use | No | 6 (20.7) | 12 (33.3) | 0.257 |
Yes | 23 (79.3) | 24 (66.7) | ||
Steroid use | No | 4 (13.8) | 7 (19.4) | 0.546 |
Yes | 25 (86.2) | 29 (80.6) | ||
Rapamycin use | No | 24 (82.8) | 28 (77.8) | 0.618 |
Yes | 5 (17.2) | 8 (22.2) | ||
Cyclosporine use | No | 23 (79.3) | 28 (77.8) | 0.881 |
Yes | 6 (20.7) | 8 (22.2) | ||
Statin use | No | 17 (58.6) | 20 (55.6) | 0.804 |
Yes | 12 (41.4) | 16 (44.4) | ||
Fibrate use | No | 26 (89.7) | 29 (80.6) | 0.312 |
Yes | 3 (10.3) | 7 (19.4) |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
L-carnitine, μg/mL | 0.916 | 0.842–0.998 | 0.044 * |
KT duration, month | 1.028 | 1.003–1.054 | 0.029 * |
Diabetes, present | 4.563 | 0.171–121.971 | 0.365 |
Hypertension, present | 2.909 | 0.137–61.952 | 0.494 |
Metabolic syndrome, present | 0.053 | 0.001–2.298 | 0.127 |
Age, year | 1.056 | 0.925–1.206 | 0.422 |
Waist circumference, cm | 1.110 | 0.984–1.252 | 0.088 |
Systolic blood pressure, mmHg | 1.068 | 0.953–1.197 | 0.259 |
Triglyceride, mg/dL | 1.010 | 0.997–1.024 | 0.126 |
HDL-C, mg/dL | 0.941 | 0.877–1.010 | 0.093 |
Insulin, μIU/mL | 1.266 | 0.763–2.102 | 0.361 |
HOMA-IR | 0.857 | 0.165–4.449 | 0.854 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.-H.; Lee, M.-C.; Ho, G.-J.; Liu, C.-H.; Hsu, B.-G. Association of Low Serum l-Carnitine Levels with Peripheral Arterial Stiffness in Patients Who Undergo Kidney Transplantation. Nutrients 2019, 11, 2000. https://doi.org/10.3390/nu11092000
Lai Y-H, Lee M-C, Ho G-J, Liu C-H, Hsu B-G. Association of Low Serum l-Carnitine Levels with Peripheral Arterial Stiffness in Patients Who Undergo Kidney Transplantation. Nutrients. 2019; 11(9):2000. https://doi.org/10.3390/nu11092000
Chicago/Turabian StyleLai, Yu-Hsien, Ming-Che Lee, Guan-Jin Ho, Chin-Hung Liu, and Bang-Gee Hsu. 2019. "Association of Low Serum l-Carnitine Levels with Peripheral Arterial Stiffness in Patients Who Undergo Kidney Transplantation" Nutrients 11, no. 9: 2000. https://doi.org/10.3390/nu11092000
APA StyleLai, Y. -H., Lee, M. -C., Ho, G. -J., Liu, C. -H., & Hsu, B. -G. (2019). Association of Low Serum l-Carnitine Levels with Peripheral Arterial Stiffness in Patients Who Undergo Kidney Transplantation. Nutrients, 11(9), 2000. https://doi.org/10.3390/nu11092000