Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Design of Study
2.2. Supplementation
2.3. Palatability of Supplements
2.4. Food Intake
2.5. Physical Activity Level
2.6. Body Composition
2.7. Biochemical Parameters
2.8. Quality of Life
2.9. Statistical Analysis
3. Results
3.1. Patients
3.2. Palatability
3.3. Food Intake
3.4. Body Composition
3.5. Biochemical Parameters
3.6. Quality of Life
4. Discussion
Study Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedder, D.O.; Koro, C.E.; L’Italien, G.J. New National Cholesterol Education Program III Guidelines for Primary Prevention Lipid-Lowering Drug Therapy. Circulation 2002, 105, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-W.; Li, C.-I.; Li, T.-C.; Liu, C.-S.; Lin, C.-H.; Lin, W.-Y.; Lin, C.-C. Association of Sarcopenic Obesity with Higher Serum High-Sensitivity C-Reactive Protein Levels in Chinese Older Males—A Community-Based Study (Taichung Community Health Study-Elderly, TCHS-E). PLoS ONE 2015, 10, e0132908. [Google Scholar] [CrossRef]
- Shetty, G.K.; Economides, P.A.; Horton, E.S.; Mantzoros, C.S.; Veves, A. Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 2004, 27, 2450–2457. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Zhao, S.; Garvey, W.T. Leptin, An Adipokine With Central Importance in the Global Obesity Problem. Glob. Heart 2017, 13, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Taché, Y. Role of brain NUCB2/nesfatin-1 in the regulation of food intake. Curr. Pharm. Des. 2013, 19, 6955–6959. [Google Scholar] [CrossRef]
- Fontaine, K.R.; Barofsky, I. Obesity and health-related quality of life. Obes. Rev. 2001, 2, 173–182. [Google Scholar] [CrossRef]
- Devries, M.C.; Phillips, S.M. Supplemental Protein in Support of Muscle Mass and Health: Advantage Whey. J. Food Sci. 2015, 80, A8–A15. [Google Scholar] [CrossRef]
- Xu, R.; Liu, N.; Xu, X.; Kong, B. Antioxidative effects of whey protein on peroxide-induced cytotoxicity. J. Dairy Sci. 2011, 94, 3739–3746. [Google Scholar] [CrossRef] [Green Version]
- Solah, V.A.; Kerr, D.A.; Adikara, C.D.; Meng, X.; Binns, C.W.; Zhu, K.; Devine, A.; Prince, R.L. Differences in satiety effects of alginate- and whey protein-based foods. Appetite 2010, 54, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr. Metab. (Lond.) 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Wainstein, J.; Landau, Z.; Ahren, B.; Barnea, M.; Bar-Dayan, Y.; Froy, O. High-energy breakfast based on whey protein reduces body weight, postprandial glycemia and HbA 1C in Type 2 diabetes. J. Nutr. Biochem. 2017, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M. Metabolic Advantages of Higher Protein Diets and Benefits of Dairy Foods on Weight Management, Glycemic Regulation and Bone. J. Food Sci. 2015, 80, A2–A7. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. Current Concepts and Unresolved Questions in Dietary Protein Requirements and Supplements in Adults. Front. Nutr. 2017, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef]
- Hays, N.P.; Kim, H.; Wells, A.M.; Kajkenova, O.; Evans, W.J. Effects of Whey and Fortified Collagen Hydrolysate Protein Supplements on Nitrogen Balance and Body Composition in Older Women. J. Am. Diet. Assoc. 2009, 109, 1082–1087. [Google Scholar] [CrossRef]
- Zdzieblik, D.; Oesser, S.; Baumstark, M.W.; Gollhofer, A.; König, D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. Br. J. Nutr. 2015, 114, 1237–1245. [Google Scholar] [CrossRef]
- World Health Organization. Diabetes: Diabetes Country Profiles 2016. Available online: https://www.who.int/diabetes/country-profiles/bra_en.pdf (accessed on 10 May 2018).
- Flaim, C.; Kob, M.; Di Pierro, A.M.; Herrmann, M.; Lucchin, L. Effects of a whey proteins supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus o impaired fasting glucose: A pilot study. J. Nutr. Biochem. 2017, 50, 95–102. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Matsudo, S.; Araújo, T.; Marsudo, V.; Andrade, D.; Andrade, E.; Braggion, G. Questionário Internacional de Atividade Física (IPAQ): Estudo de Validade e Reprodutibilidade no Brasil. Rev. Bras. Ativ. Física Saúde 2012, 6, 5–18. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual, 1st ed.; Human Kinetic Books: Champaign, IL, USA, 1988; Volume 159, ISBN 978-0873221214. [Google Scholar]
- Pimentel, G.D.; Moreto, F.; Takahashi, M.M.; Portero-McLellan, K.C.; Burini, R.C. Sagital abdominal diameter but not waist circumference is strongly associated with glycemia, triacilglycerols and HDL-C levels in overweight adults. Nutr. Hosp. 2011, 26, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- ISCD. International Society for Bone Densitometry. Available online: https://www.iscd.org/education/cmece-live-courses/body-composition/ (accessed on 13 October 2017).
- Matthews, D.R.; Matthews, D.R.; Hosker, J.P.; Hosker, J.P.; Rudenski, A.S.; Rudenski, A.S.; Naylor, B.A.; Naylor, B.A.; Treacher, D.F.; Treacher, D.F.; et al. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E.; Snow, K.K.; Kosinski, M.; Gandek, B. SF-36 Health Survey Manual and Interpretation Guide. Bost. N. Engl. Med. Cent. 1993, 1. [Google Scholar] [CrossRef]
- Tahavorgar, A.; Vafa, M.; Shidfar, F.; Gohari, M.; Heydari, I. Whey protein preloads are more beneficial than soy protein preloads in regulating appetite, calorie intake, anthropometry and body composition of overweight and obese men. Nutr. Res. 2014, 34, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein “requirements” beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016, 41, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Wycherley, T.P.; Buckley, J.D.; Noakes, M.; Clifton, P.M.; Brinkworth, G.D. Comparison of the effects of weight loss from a high-protein versus standard-protein energy-restricted diet on strength and aerobic capacity in overweight and obese men. Eur. J. Nutr. 2013, 52, 317–325. [Google Scholar] [CrossRef]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [CrossRef] [Green Version]
- Sousa, G.T.; Lira, F.S.; Rosa, J.C.; de Oliveira, E.P.; Oyama, L.M.; Santos, R.V.; Pimentel, G.D. Dietary whey protein lessens several risk factors for metabolic diseases: A review. Lipids Health Dis. 2012, 11, 67. [Google Scholar] [CrossRef]
- Tomé, D.; Schwarz, J.; Darcel, N.; Fromentin, G. Protein, amino acids, vagus nerve signaling and the brain. Am. J. Clin. Nutr. 2009, 90, 838S–843S. [Google Scholar] [CrossRef]
- Frestedt, J.L.; Zenk, J.L.; Kuskowski, M.A.; Ward, L.S.; Bastian, E.D. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: A randomized human clinical study. Nutr. Metab. (Lond.) 2008, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.J.; Stote, K.S.; Paul, D.R.; Harris, G.K.; Rumpler, W.V.; Clevidence, B.A. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J. Nutr. 2011, 141, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Abargouei, A.S.; Janghorbani, M.; Salehi-Marzijarani, M.; Esmaillzadeh, A. Effect of dairy consumption on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Int. J. Obes. 2012, 36, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Tipton, K.D.; van Loon, L.J.C.; Verdijk, L.B.; Paddon-Jones, D.; Close, G.L. Exceptional body composition changes attributed to collagen peptide supplementation and resistance training in older sarcopenic men. Br. J. Nutr. 2016, 116, 569–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein Ingestion to Stimulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older Versus Younger Men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef]
- Finger, D.; Goltz, F.R.; Umpierre, D.; Meyer, E.; Rosa, L.H.T.; Schneider, C.D. Effects of Protein Supplementation in Older Adults Undergoing Resistance Training: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 245–255. [Google Scholar] [CrossRef]
- Oikawa, S.Y.; McGlory, C.; D’Souza, L.K.; Morgan, A.K.; Saddler, N.I.; Baker, S.K.; Parise, G.; Phillips, S.M. A randomized controlled trial of the impact of protein supplementation on leg lean mass and integrated muscle protein synthesis during inactivity and energy restriction in older persons. Am. J. Clin. Nutr. 2018, 108, 1060–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients 2018, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Ayada, C.; Toru, Ü.; Korkut, Y. Nesfatin-1 and its effects on different systems. Hippokratia 2015, 19, 4–10. [Google Scholar]
- Shimizu, H.; Oh-I, S.; Hashimoto, K.; Nakata, M.; Yamamoto, S.; Yoshida, N.; Eguchi, H.; Kato, I.; Inoue, K.; Satoh, T.; et al. Peripheral Administration of Nesfatin-1 Reduces Food Intake in Mice: The Leptin-Independent Mechanism. Endocrinology 2009, 150, 662–671. [Google Scholar] [CrossRef]
- Pan, W.; Hsuchou, H.; Kastin, A.J. Nesfatin-1 crosses the blood–brain barrier without saturation. Peptides 2007, 28, 2223–2228. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Hallschmid, M.; Kern, W.; Lehnert, H.; Randeva, H.S. Decreased Cerebrospinal Fluid/Plasma Ratio of the Novel Satiety Molecule, Nesfatin-1/NUCB-2, in Obese Humans: Evidence of Nesfatin-1/NUCB-2 Resistance and Implications for Obesity Treatment. J. Clin. Endocrinol. Metab. 2011, 96, E669–E673. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Shimizu, H.; Yamada, M.; Osaki, A.; Oh-I, S.; Ariyama, Y.; Takahashi, H.; Okada, S.; Hashimoto, K.; Satoh, T.; et al. Fasting Concentrations of Nesfatin-1 Are Negatively Correlated with Body Mass Index in Non-Obese Males. Clin. Endocrinol. (Oxf.) 2010, 73, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, K.; Hossein-nezhad, A.; Keshavarz, S.A.; Koohdani, F.; Eshraghian, M.R.; Saboor-Yaraghi, A.A.; Hosseini, S.; Chamari, M.; Zareei, M.; Djalali, M. Association of nesfatin-1 level with body composition, dietary intake and resting metabolic rate in obese and morbid obese subjects. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Gemming, L.; Jiang, Y.; Swinburn, B.; Utter, J.; Mhurchu, C.N. Under-reporting remains a key limitation of self-reported dietary intake: An analysis of the 2008/09 New Zealand Adult Nutrition Survey. Eur. J. Clin. Nutr. 2014, 68, 259–264. [Google Scholar] [CrossRef] [PubMed]
Variables | Collagen (n = 20) | Whey Protein (n = 17) | p2 |
---|---|---|---|
Age (years) | 43 ± 1.8 | 37.8 ± 2.9 | 0.135 |
Anthropometry | |||
Body weight (kg) | 79.9 ± 2.6 | 81.6 ± 3.5 | 0.694 |
Height (m) | 160.5 ± 1.1 | 161.5 ± 1.3 | 0.549 |
BMI (kg/m2) | 30.9 ± 0.8 | 31.1 ± 1 | 0.887 |
WC (cm) | 92.5 ± 1.7 | 93 ± 2.1 | 0.839 |
SAD (cm) | 26.6 ± 0.4 | 27.1 ± 0.6 | 0.531 |
Body composition | |||
Lean body mass (kg) | 39.7 ± 1.4 | 40.5 ± 1.9 | 0.754 |
Lean body mass (%) | 49.9 ± 1.1 | 49.8 ± 1.3 | 0.962 |
Fat body mass (kg) | 37.4 ± 1.7 | 38.4 ± 2.1 | 0.725 |
Fat body mas (%) | 48.3 ± 1.2 | 48.4 ± 1.3 | 0.950 |
Android fat (kg) | 3.1 ± 0.1 | 3.3 ± 0.2 | 0.637 |
Gynoid fat (kg) | 6.8 ± 0.3 | 7.1 ± 0.4 | 0.612 |
Biochemical parameters | |||
Hs-CRP (mg/dL) | 6.3 ± 1.7 | 11.7 ± 2.9 | 0.109 |
Glucose (mg/dL) | 90.9 ± 2.6 | 86 ± 1.4 | 0.136 |
Insulin (μU/mL) | 11.7 ± 1.4 | 13.5 ± 1.6 | 0.408 |
HOMA-IR | 2.7 ± 0.4 | 2.8 ± 0.3 | 0.820 |
HOMA-β | 161.1 ± 17 | 227.7 ± 30.5 | 0.055 |
Cholesterol (mg/dL) | 194.4 ± 9.1 | 179 ± 10.1 | 0.266 |
Triacylglycerol (mg/dL) | 154.1 ± 20 | 160.2 ± 22 | 0.836 |
HDL-c (mg/dL) | 57 ± 2.2 | 52 ± 2.6 | 0.155 |
LDL-c (mg/dL) | 106.6 ± 7.5 | 95 ± 8.2 | 0.306 |
VLDL (mg/dL) | 30.8 ± 4 | 32 ± 4.4 | 0.836 |
Adiponectin (μg/mL) | 22 ± 0.2 | 22 ± 0.1 | 0.981 |
Leptin (ng/mL) | 87 ± 4.7 | 79.2 ± 7 | 0.353 |
Nesfatin (ng/mL) | 3.2 ± 0.5 | 6.9 ± 2.1 | 0.123 |
Physical activity level | |||
Met (min/week) | 1122 ± 513.2 | 1284.1 ± 512.9 | 0.926 |
Variables | Collagen (n = 20) | Whey Protein (n = 17) | p2 | ||||
---|---|---|---|---|---|---|---|
Pre | During | Post | Pre | During | Post | ||
Calorie (kcal) | 1522.6 ± 113.5 | 1610.6 ± 90.7 | 1696.9 ± 90.3 | 1450.1 ± 131.4 | 1939.1 ± 165.1 | 1712.4 ± 153.9 | 0.103 |
Carbohydrate (g) | 174.3 ± 11.7 | 174.4 ± 10.2 | 188.1 ± 11.9 | 147 ± 16.6 | 230 ± 23.3 | 204.2 ± 24.9 | 0.797 |
Protein (g) | 59.8 ± 3.5 | 93.5 ± 4.6 | 99.7 ± 4.9 | 74.1 ± 7.1 | 103.1 ± 7.9 | 91.5 ± 5.5 | 0.085 |
Lipids (g) | 59.9 ± 6.8 | 58.1 ± 4.2 | 59.4 ± 3.9 | 61.1 ± 6.4 | 70.8 ± 9.0 | 60.3 ± 4.5 | 0.109 |
Fibre (g) | 13.9 ± 1.1 | 14.1 ± 0.8 | 15.2 ± 1.5 | 10 ± 1 †‡ | 16.6 ± 2 | 13.5 ± 1.8 | 0.008 * |
Variables | Collagen (n = 20) | Whey Protein (n = 17) | p2 | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
Body weight (kg) | 79.9 ± 2.6 | 80.5 ± 2.6 | 81.6 ± 3.5 | 81.3 ± 3.5 | 0.089 |
BMI (kg/m2) | 30.9 ± 0.8 | 31.2 ± 0.8 ‡ | 31.1 ± 1 | 31.0 ± 1 † | 0.044 * |
WC (cm) | 92.5 ± 1.7 | 92.2 ± 1.8 | 93.0 ± 2.1 | 92.2 ± 2.2 | 0.596 |
SAD (cm) | 26.6 ± 0.4 | 26.3 ± 0.5 | 27.1 ± 0.6 | 26.8 ± 0.8 | 0.385 |
LBM (kg) | 39.7 ± 1.4 | 40.2 ± 1.4 | 40.5 ± 1.8 | 41.0 ± 1.9 | 0.982 |
LBM (%) | 49.9 ± 1.1 | 50.1 ± 1 | 49.8 ± 1.3 | 50.7 ± 1.3 | 0.370 |
BF (kg) | 37.4 ± 1.7 | 37.6 ± 1.6 | 38.4 ± 2.1 | 37.6 ± 2.1 | 0.157 |
FBF (%) | 48.3 ± 1.2 | 48.1 ± 1.1 | 48.4 ± 1.3 | 47.5 ± 1.3 | 0.345 |
Android fat (kg) | 3.1 ± 0.1 | 3.2 ± 0.1 | 3.3 ± 0.2 | 3.1 ± 0.2 † ‡ | 0.031 * |
Gynoid fat (kg) | 6.8 ± 0.3 | 6.9 ± 0.4 | 7.1 ± 0.4 | 7 ± 0.4 | 0.092 |
Variables | Collagen (n = 20) | Whey Protein (n = 17) | p2 | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
Hs-CRP (mg/dL) | 6.3 ± 1.7 | 7.6 ± 2.1 | 11.7 ± 2.8 | 9.7 ± 2 | 0.244 |
Glucose (mg/dL) | 90.9 ± 2.6 | 90.4 ± 2.5 | 86 ± 1.4 | 83 ± 1.6 | 0.512 |
Insulin (μU/mL) | 11.7 ± 1.4 | 12.4 ± 1.5 | 13.5 ± 1.6 | 10.3 ± 1.3 | 0.095 |
HOMA-IR | 2.7 ± 0.4 | 2.8 ± 0.4 | 2.8 ± 0.3 | 2.1 ± 0.2 | 0.094 |
HOMA-β | 161.1 ± 17 | 169.9 ± 15.4 | 227.7 ± 30.5 | 229.8 ± 52.2 | 0.807 |
Cholesterol (mg/dL) | 194.4 ± 9.1 | 188.5 ± 10.3 | 179 ± 10.1 | 186 ± 12.8 | 0.133 |
Triacylglycerol (mg/dL) | 154.1 ± 20 | 161.1 ± 21 | 160.2 ± 22 | 132.7 ± 14 | 0.135 |
HDL-c (mg/dL) | 57 ± 2.2 | 55.7 ± 1.9 | 52 ± 2.6 | 55.4 ± 3.1 | 0.179 |
LDL-c (mg/dL) | 106.6 ± 7.5 | 100.5 ± 8.5 | 95 ± 8.2 | 103.9 ± 10.5 | 0.051 |
VLDL (mg/dL) | 30.8 ± 4 | 32.2 ± 4.2 | 32 ± 4.4 | 26.5 ± 2.8 | 0.135 |
Adiponectin (μg/mL) | 22 ± 0.2 | 21.2 ± 1.0 | 22 ± 0.1 | 22.1 ± 0.1 | 0.747 |
Leptin (ng/mL) | 86.3 ± 4.7 | 87.4 ± 5.1 | 79.2 ± 7 | 93.2 ± 4.2 | 0.128 |
Nesfatin (ng/mL) | 3.5 ± 0.4 | 3.6 ± 0.5 | 6.9 ± 2.1 | 12.6 ± 2.4 †‡ | 0.014 * |
Variables | Collagen (n = 20) | Whey Protein (n = 17) | p2 | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
Physical activity | 83.5 ± 4.4 | 85 ± 3 | 79.4 ± 3.9 | 84.1 ± 3.5 | 0.505 |
Physical role | 73.7 ± 6.6 | 85 ± 6.3 | 86.7 ± 5.7 | 82.3 ± 6.3 | 0.167 |
Emotional role | 75 ± 8.6 | 96.6 ± 3.3 | 80.3 ± 6.4 | 78.4 ± 9 | 0.108 |
Vitality | 61.5 ± 5.6 | 68 ± 5.3 | 59.1 ± 6.6 | 70.5 ± 4.8 | 0.424 |
Mental health | 66 ± 6.8 | 73.6 ± 5.2 | 66.3 ± 6.3 | 77.8 ± 4.3 | 0.425 |
Social activity | 75 ± 6.2 | 82.5 ± 5 | 74.2 ± 6.6 | 86.0 ± 4.7 | 0.570 |
Pain | 64.3 ± 6.8 | 72.3 ± 5.7 | 65.4 ± 4.7 | 80.1 ± 5.2 | 0.386 |
General health | 73.3 ± 4.6 | 76.1 ± 4.2 | 71.3 ± 6.2 | 73.2 ± 5.6 | 0.868 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giglio, B.M.; Schincaglia, R.M.; da Silva, A.S.; Fazani, I.C.S.; Monteiro, P.A.; Mota, J.F.; Cunha, J.P.; Pichard, C.; Pimentel, G.D. Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study. Nutrients 2019, 11, 2051. https://doi.org/10.3390/nu11092051
Giglio BM, Schincaglia RM, da Silva AS, Fazani ICS, Monteiro PA, Mota JF, Cunha JP, Pichard C, Pimentel GD. Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study. Nutrients. 2019; 11(9):2051. https://doi.org/10.3390/nu11092051
Chicago/Turabian StyleGiglio, Bruna M., Raquel M. Schincaglia, Alexandre S. da Silva, Ieda C. S. Fazani, Paula A. Monteiro, João F. Mota, Juliana P. Cunha, Claude Pichard, and Gustavo D. Pimentel. 2019. "Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study" Nutrients 11, no. 9: 2051. https://doi.org/10.3390/nu11092051
APA StyleGiglio, B. M., Schincaglia, R. M., da Silva, A. S., Fazani, I. C. S., Monteiro, P. A., Mota, J. F., Cunha, J. P., Pichard, C., & Pimentel, G. D. (2019). Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study. Nutrients, 11(9), 2051. https://doi.org/10.3390/nu11092051