Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Enzyme Preparations
2.2. Raw Material and Pretreatment of Lupin Seeds
2.3. Chemical Composition
2.4. Dietary Fibre Analyses
2.5. Monosaccharide Composition
2.6. Fractionation of Lupin Cotyledons and Hulls
2.6.1. Removal of Protein from Lupin Cotyledons by Pronase Hydrolysis
2.6.2. Isolation of Cell Wall Material
2.6.3. Sequential Extraction of Cell Wall Material
2.7. In Vitro Digestion
2.8. In Vitro Interactions with Bile Acids
2.9. Rheological Measurements
2.9.1. Viscosity
2.9.2. Dynamic Oscillatory Rheology
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Dietary Fibre Composition
3.2. Fractionation and Monosaccharide Composition of Cell Wall Polysaccharides
3.3. Rheological Measurements
3.3.1. Viscosity
3.3.2. Dynamic Oscillatory Rheology
3.3.3. Evaluation of Rheological Properties
3.4. Interactions with Primary Bile Acids
3.4.1. Viscous Interactions
3.4.2. Adsorptive Interactions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DM | dry matter |
GCA | glycocholic acid |
GCDC | glycochenodesoxycholic acid |
TCA | taurocholic acid |
TCDC | taurochenodesoxycholic acid |
References
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef] [PubMed]
- Kouris-Blazos, A.; Belski, R. Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac. J. Clin. Nutr. 2016, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- American Association of Cereal Chemists. The Definition of Dietary Fiber (Report of the Dietary Fiber Definition Committee to the Board of Directors of the American Association of Cereal Chemists). Cereal Foods World 2001, 48, 112–126. [Google Scholar]
- Lunn, J.; Buttriss, J.L. Carbohydrates and dietary fibre. Nutr. Bull. 2007, 32, 21–64. [Google Scholar] [CrossRef]
- Hall, R.S.; Baxter, A.L.; Fryirs, C.; Johnson, S.K. Liking of health-functional foods containing lupin kernel fibre following repeated consumption in a dietary intervention setting. Appetite 2010, 55, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Pfoertner, H.P.; Fischer, J. Dietary Fibres of Lupins and Other Grain Legumes. In Advanced Dietary Fibre Technology; McCleary, B.V., Prosky, L., Eds.; Blackwell Science: Oxford, UK; Malden, MA, USA, 2001. [Google Scholar]
- Bähr, M.; Fechner, A.; Hasenkopf, K.; Mittermaier, S.; Jahreis, G. Chemical composition of dehulled seeds of selected lupin cultivars in comparison to pea and soya bean. LWT Food Sci. Technol. 2014, 59, 587–590. [Google Scholar] [CrossRef]
- Brillouet, J.-M.; Riochet, D. Cell wall polysaccharides and lignin in cotyledons and hulls of seeds from various lupin (Lupinus L.) species. J. Sci. Food Agric. 1983, 34, 861–868. [Google Scholar] [CrossRef]
- Bingham, S.A.; Day, N.E.; Luben, R.; Ferrari, P.; Slimani, N.; Norat, T.; Clavel-Chapelon, F.; Kesse, E.; Nieters, A.; Boeing, H.; et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet 2003, 361, 1496–1501. [Google Scholar] [CrossRef]
- Blackwood, A.D.; Salter, J.; Dettmar, P.W.; Chaplin, M.F. Dietary fibre, physicochemical properties and their relationship to health. J. R. Soc. Promot. Health 2000, 120, 242–247. [Google Scholar] [CrossRef]
- Fechner, A.; Fenske, K.; Jahreis, G. Effects of legume kernel fibres and citrus fibre on putative risk factors for colorectal cancer: A randomised, double-blind, crossover human intervention trial. Nutr. J. 2013, 12, 101. [Google Scholar] [CrossRef]
- Fechner, A.; Kiehntopf, M.; Jahreis, G. The Formation of Short-Chain Fatty Acids Is Positively Associated with the Blood Lipid–Lowering Effect of Lupin Kernel Fiber in Moderately Hypercholesterolemic Adults. J. Nutr. 2014, 144, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.S.; Johnson, S.K.; Baxter, A.L.; Ball, M.J. Lupin kernel fibre-enriched foods beneficially modify serum lipids in men. Eur. J. Clin. Nutr. 2005, 59, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.K.; Chua, V.; Hall, R.S.; Baxter, A.L. Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men. Br. J. Nutr. 2007, 95, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Naumann, S.; Schweiggert-Weisz, U.; Eglmeier, J.; Haller, D.; Eisner, P. In Vitro Interactions of Dietary Fibre Enriched Food Ingredients with Primary and Secondary Bile Acids. Nutrients 2019, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.A.; Lan, T.; Rao, A. Bile acid transporters. J. Lipid Res. 2009, 50, 2340–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Naumann, S.; Schweiggert-Weisz, U.; Bader-Mittermaier, S.; Haller, D.; Eisner, P. Differentiation of Adsorptive and Viscous Effects of Dietary Fibres on Bile Acid Release by Means of in Vitro Digestion and Dialysis. Int. J. Mol. Sci. 2018, 19, 2193. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 2000, 33, 233–245. [Google Scholar] [CrossRef]
- Turnbull, C.M.; Baxter, A.L.; Johnson, S.K. Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract. Int. J. Food Sci. Nutr. 2005, 56, 87–94. [Google Scholar] [CrossRef]
- Singh, J.; Metrani, R.; Shivanagoudra, S.R.; Jayaprakasha, G.K.; Patil, B.S. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. J. Agric. Food. Chem. 2019, 67, 9124–9138. [Google Scholar] [CrossRef]
- Sayar, S.; Jannink, J.-L.; White, P.J. In Vitro Bile Acid Binding of Flours from Oat Lines Varying in Percentage and Molecular Weight Distribution of β-Glucan. J. Agric. Food Chem. 2005, 53, 8797–8803. [Google Scholar] [CrossRef] [PubMed]
- Zacherl, C.; Eisner, P.; Engel, K.-H. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem. 2011, 126, 423–428. [Google Scholar] [CrossRef]
- Gunness, P.; Flanagan, B.M.; Gidley, M.J. Molecular interactions between cereal soluble dietary fibre polymers and a model bile salt deduced from 13C NMR titration. J. Cereal Sci. 2010, 52, 444–449. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Woodruff, C.L. In Vitro Binding of Bile Acids by Rice Bran, Oat Bran, Barley and β-Glucan Enriched Barley. Cereal Chem. 2003, 80, 260–263. [Google Scholar] [CrossRef]
- Cornfine, C.; Hasenkopf, K.; Eisner, P.; Schweiggert, U. Influence of chemical and physical modification on the bile acid binding capacity of dietary fibre from lupins (Lupinus angustifolius L.). Food Chem. 2010, 122, 638–644. [Google Scholar] [CrossRef]
- Eastwood, M.A.; Hamilton, D. Studies on the adsorption of bile salts to non-absorbed components of diet. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1968, 152, 165–173. [Google Scholar] [CrossRef]
- Gallaher, D.; Schneeman, B.O. Intestinal interaction of bile acids, phospholipids, dietary fibers, and cholestyramine. Am. J. Physiol. Gastrointest. Liver Physiol. 1986, 250, G420–G426. [Google Scholar] [CrossRef]
- Górecka, D.; Korczak, J.; Balcerowski, E.; Decyk, K. Sorption of Bile Acids and Cholesterol by Dietary Fiber of Carrots, Cabbage and Apples. Available online: http://www.ejpau.media.pl/ (accessed on 30 May 2019).
- Kritchevsky, D.; Story, J.A. Comparison of the Binding of Various Bile Acids and Bile Salts in Vitro by Several Types of Fiber. J. Nutr. 1976, 106, 1292–1294. [Google Scholar] [CrossRef]
- Sayar, S.; Jannink, J.-L.; White, P.J. In Vitro Bile Acid Binding Activity within Flour Fractions from Oat Lines with Typical and High β-Glucan Amounts. J. Agric. Food Chem. 2006, 54, 5142–5148. [Google Scholar] [CrossRef]
- Elhardallou, S.B. The bile acids binding of the fibre-rich fractions of three starchy legumes. Plant Foods Hum. Nutr. 1992, 42, 207–218. [Google Scholar] [CrossRef]
- Funk, C.; Grabber, J.H.; Steinhart, H.; Bunzel, M. Artificial Lignification of Maize Cell Walls Does Not Affect in Vitro Bile Acid Adsorption. Cereal Chem. 2008, 85, 14–18. [Google Scholar] [CrossRef]
- Górecka, D.; Korczak, J.; Konieczny, P.; Hes, M.; Flaczyk, E. Adsorption of bile acids by cereal products. Cereal Foods World 2005, 50, 176. [Google Scholar]
- Nixon, A.; Mason, A.; Bilton, R. The binding of bile acids by in vitro enzymically digested vegetable fibre. Biochem. Soc. Trans. 1986, 14, 369–370. [Google Scholar] [CrossRef] [Green Version]
- Gunness, P.; Flanagan, B.M.; Shelat, K.; Gilbert, R.G.; Gidley, M.J. Kinetic analysis of bile salt passage across a dialysis membrane in the presence of cereal soluble dietary fibre polymers. Food Chem. 2012, 134, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Deutsches Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Amtliche Sammlung von Untersuchungsverfahren nach § 64 Lebensmittel- und Futtermittelgesetzbuch (LFGB), Verfahren zur Probenahme und Untersuchung von Lebensmitteln; Beuth: Berlin, Germany, 2005. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W.L.J., Ed.; The Scientific Association Dedicated to Analytical Excellence: Washington, DC, USA, 2016; Volume 2. [Google Scholar]
- Pendl, R.; Bauer, M.; Caviezel, R.; Schulthess, P. Determination of total fat in foods and feeds by the caviezel method, based on a gas chromatographic technique. J. AOAC Int. 1998, 81, 907–917. [Google Scholar]
- Beutler, H.-O. Enzymatische Bestimmung von Stärke in Lebensmitteln mit Hilfe der Hexokinase-Methode. Starch Stärke 1978, 30, 309–312. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Schieber, A.; Fügel, R.; Henke, M.; Carle, R. Determination of the fruit content of strawberry fruit preparations by gravimetric quantification of hemicellulose. Food Chem. 2005, 91, 365–371. [Google Scholar] [CrossRef]
- Fügel, R.; Carle, R.; Schieber, A. A novel approach to quality and authenticity control of fruit products using fractionation and characterisation of cell wall polysaccharides. Food Chem. 2004, 87, 141–150. [Google Scholar] [CrossRef]
- Mohamed, A.; Rayas-Duarte, P. Nonstarchy polysaccharide analysis of cotyledon and hull of Lupinus albus. Cereal Chem. 1995, 72, 648–651. [Google Scholar]
- Egger, L.; Ménard, O.; Delgado-Andrade, C.; Alvito, P.; Assunção, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Cattenoz, T.; Clemente, A.; et al. The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Res. Int. 2016, 88 Pt B, 217–225. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, S.; Cutrignelli, M.I.; Lo Presti, V.; Tudisco, R.; Chiofalo, V.; Grossi, M.; Infascelli, F.; Chiofalo, B. Characterization and effect of year of harvest on the nutritional properties of three varieties of white lupine (Lupinus albus L.). J. Sci. Food Agric. 2015, 95, 3127–3136. [Google Scholar] [CrossRef] [PubMed]
- Musco, N.; Cutrignelli, M.I.; Calabrò, S.; Tudisco, R.; Infascelli, F.; Grazioli, R.; Lo Presti, V.; Gresta, F.; Chiofalo, B. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1227–1241. [Google Scholar] [CrossRef] [PubMed]
- Muranyi, I.S.; Otto, C.; Pickardt, C.; Koehler, P.; Schweiggert-Weisz, U. Microscopic characterisation and composition of proteins from lupin seed (Lupinus angustifolius L.) as affected by the isolation procedure. Food Res. Int. 2013, 54, 1419–1429. [Google Scholar] [CrossRef]
- Al-Kaisey, M.T.; Wilkie, K.C.B. The polysaccharides of agricultural lupin seeds. Carbohydr. Res. 1992, 227, 147–161. [Google Scholar] [CrossRef]
- Evans, A.J.; Cheung, P.C.K.; Cheetham, N.W.H. The carbohydrate composition of cotyledons and hulls of cultivars of Lupinus angustifolius from Western Australia. J. Sci. Food Agric. 1993, 61, 189–194. [Google Scholar] [CrossRef]
- Belo, P.S.; De Lumen, B.O. Pectic substance content of detergent-extracted dietary fibers. J. Agric. Food Chem. 1981, 29, 370–373. [Google Scholar] [CrossRef]
- Crawshaw, L.A.; Reid, J.S.G. Changes in cell-wall polysaccharides in relation to seedling development and the mobilisation of reserves in the cotyledons of Lupinus angustifolius cv. Unicrop. Planta 1984, 160, 449–454. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Cheung, P.C.K.; Evans, A.J. Structure of the principal non-starch polysaccharide from the cotyledons of Lupinus angustifolius (cultivar Gungurru). Carbohydr. Polym. 1993, 22, 37–47. [Google Scholar] [CrossRef]
- Carre, B.; Brillouet, J.M.; Thibault, J.F. Characterization of polysaccharides from white lupine (Lupinus albus L.) cotyledons. J. Agric. Food Chem. 1985, 33, 285–292. [Google Scholar] [CrossRef]
- Bailey, R.W.; Mills, S.E.; Hove, E.L. Composition of sweet and bitter lupin seed hulls with observations on the apparent digestibility of sweet lupin seed hulls by young rats. J. Sci. Food Agric. 1974, 25, 955–961. [Google Scholar] [CrossRef]
- Chen, J.Y.; Piva, M.; Labuza, T.P. Evaluation of Water Binding Capacity (WBC) of Food Fiber Sources. J. Food Sci. 1984, 49, 59–63. [Google Scholar] [CrossRef]
- Macheras, P.; Koupparis, M.; Tsaprounis, C. An automated flow injection-serial dynamic dialysis technique for drug-protein binding studies. Int. J. Pharm. 1986, 30, 123–132. [Google Scholar] [CrossRef]
- Van Bennekum, A.M.; Nguyen, D.V.; Schulthess, G.; Hauser, H.; Phillips, M.C. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: Relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr. 2005, 94, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Bähr, M.; Fechner, A.; Kiehntopf, M.; Jahreis, G. Consuming a mixed diet enriched with lupin protein beneficially affects plasma lipids in hypercholesterolemic subjects: A randomized controlled trial. Clin. Nutr. 2015, 34, 7–14. [Google Scholar] [CrossRef]
- Bettzieche, A.; Brandsch, C.; Eder, K.; Stangl, G.I. Lupin protein acts hypocholesterolemic and increases milk fat content in lactating rats by influencing the expression of genes involved in cholesterol homeostasis and triglyceride synthesis. Mol. Nutr. Food Res. 2009, 53, 1134–1142. [Google Scholar] [CrossRef]
- Fontanari, G.G.; Batistuti, J.P.; Cruz, R.J.D.; Saldiva, P.H.N.; Arêas, J.A.G. Cholesterol-lowering effect of whole lupin (Lupinus albus) seed and its protein isolate. Food Chem. 2012, 132, 1521–1526. [Google Scholar] [CrossRef]
- Yoshie-Stark, Y.; Wäsche, A. In vitro binding of bile acids by lupin protein isolates and their hydrolysates. Food Chem. 2004, 88, 179–184. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Smith, G.E. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines. Food Chem. 2007, 101, 1046–1051. [Google Scholar] [CrossRef]
Cotyledon | Hull | ||
---|---|---|---|
DM | [g/100 g] | 88.13 ± 0.11 | 91.53 ± 0.02 |
ash | [g/100 g DM] | 4.26 ± 0.14 | 2.60 ± 0.05 |
protein | [g/100 g DM] | 40.13 ± 0.13 | 1.98 ± 0.04 |
fat | [g/100 g DM] | 9.47 ± 0.07 | <0.5 |
carbohydrates | [g/100 g DM] | 8.38 ± 2.15 | 4.08 ± 0.76 |
starch | [g/100 g DM] | 0.07 ± 0.02 | 0.03 ± 0.00 |
TDF | [g/100 g DM] | 37.77 ± 2.14 | 91.31 ± 0.76 |
IDF | [g/100 g DM] | 34.59 ± 0.96 | 90.10 ± 0.56 |
SDF | [g/100 g DM] | 3.18 ± 1.91 | 1.21 ± 0.52 |
NDF | [g/100 g DM] | 11.34 ± 1.52 | 82.59 ± 0.40 |
ADF | [g/100 g DM] | 5.25 ± 0.30 | 74.81 ± 0.50 |
ADL | [g/100 g DM] | 0.37 ± 0.09 | 1.95 ± 0.46 |
Sample | Arabinose | Rhamnose | Galactose | Glucose | Xylose | Mannose | Uronic Acids |
---|---|---|---|---|---|---|---|
Cotyledon | 11.5 | 1.8 | 67.6 | 7.6 | 2.6 | 0.8 | 8.1 |
C_OHEP | 11.3 | 1.6 | 73.2 | 1.1 | 2.0 | 0.3 | 10.5 |
C_HC | 14.0 | 1.7 | 71.8 | 2.0 | 2.7 | 0.1 | 7.8 |
C_CL | 10.6 | 1.2 | 46.9 | 24.8 | 3.5 | 0.7 | 12.3 |
Hull | 8.3 | 0.4 | 1.8 | 59.1 | 15.7 | 2.6 | 12.1 |
H_OHEP | 20.7 | 1.4 | 13.6 | 1.2 | 7.5 | 25.9 | 29.7 |
H_HC | 2.9 | 0.4 | 4.5 | 9.9 | 71.0 | 5.3 | 6.1 |
H_CL | 7.0 | 0.4 | 0.4 | 77.3 | 3.7 | 0.8 | 10.4 |
Sample | k [h−1] | |||
---|---|---|---|---|
GCA | TCA | GCDC | TCDC | |
Cotyledon | 0.48 ± 0.08 a,b | 0.44 ± 0.07 a,b,c | 0.28 ± 0.03 a | 0.26 ± 0.03 a |
C_OHEP | 0.36 ± 0.03 a | 0.38 ± 0.04 a,b | 0.25 ± 0.02 a | 0.26 ± 0.03 a |
C_HC | 0.58 ± 0.10 b,c | 0.57 ± 0.08 b,c,d | 0.47 ± 0.14 b | 0.45 ± 0.06 b |
C_CL | 0.36 ± 0.06 a | 0.31 ± 0.05 a | 0.26 ± 0.04 a | 0.23 ± 0.04 a |
Hull | 0.74 ± 0.04 c,d | 0.64 ± 0.04 c,d,e | 0.49 ± 0.03 b | 0.46 ± 0.02 b |
H_OHEP | 0.39 ± 0.03 a | 0.34 ± 0.02 a | 0.28 ± 0.01 a | 0.26 ± 0.01 a |
H_HC | 0.69 ± 0.05 c,d | 0.65 ± 0.06 d,e | 0.51 ± 0.02 b,c | 0.48 ± 0.02 b |
H_CL | 0.85 ± 0.04 d,e | 0.74 ± 0.04 d,e,f | 0.62 ± 0.03 b,c,d | 0.59 ± 0.01 c,d |
Cellulose | 0.92 ± 0.07 e,f | 0.82 ± 0.06 e,f | 0.65 ± 0.06 c,d | 0.63 ± 0.06 c,d |
Lignin | 0.74 ± 0.04 c,d | 0.71 ± 0.05 d,e,f | 0.59 ± 0.03 b,c,d | 0.54 ± 0.03 b,c |
Blank | 0.96 ± 0.04 f | 0.93 ± 0.02 f | 0.72 ± 0.03 d | 0.65 ± 0.01 d |
Sample | Bile Acid Adsorption [μmol/100 mg DM] | |
---|---|---|
Cholic Acids | Chenodesoxycholic Acids | |
Cotyledon | 0.16 ± 0.26 a,b | 1.29 ± 0.09 b |
C_OHEP | −0.02 ± 0.50 b | 0.12 ± 0.70 a |
C_HC | −0.03 ± 0.26 b | −0.08 ± 0.19 a |
C_CL | 0.19 ± 0.23 b | 0.50 ± 0.31 a,b |
Hull | 0.22 ± 0.09 b | 0.02 ± 0.20 a |
H_OHEP | 0.10 ± 0.19 b | 0.01 ± 0.26 a |
H_HC | 0.27 ± 0.36 b | 0.29 ± 0.17 a,b |
H_CL | 0.19 ± 0.68 b | 0.26 ± 0.79 a,b |
Cellulose | −0.05 ± 0.12 b | −0.01 ± 0.25 a |
Lignin | 1.29 ± 0.26 a | 4.13 ± 0.42 c |
Blank | 0.00 ± 0.06 b | −0.15 ± 0.04 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumann, S.; Schweiggert-Weisz, U.; Haller, D.; Eisner, P. Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions. Nutrients 2019, 11, 2117. https://doi.org/10.3390/nu11092117
Naumann S, Schweiggert-Weisz U, Haller D, Eisner P. Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions. Nutrients. 2019; 11(9):2117. https://doi.org/10.3390/nu11092117
Chicago/Turabian StyleNaumann, Susanne, Ute Schweiggert-Weisz, Dirk Haller, and Peter Eisner. 2019. "Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions" Nutrients 11, no. 9: 2117. https://doi.org/10.3390/nu11092117
APA StyleNaumann, S., Schweiggert-Weisz, U., Haller, D., & Eisner, P. (2019). Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions. Nutrients, 11(9), 2117. https://doi.org/10.3390/nu11092117