Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants Selection: Inclusion and Exclusion Criteria
2.2. Experimental Design
2.3. Supplementation and Diet Control
2.4. Wingate Test
2.5. Electromyographic Assessment
2.6. Blood Lactate
2.7. Neuromuscular Fatigue
2.8. Handgrip Strength
2.9. Statistical Analysis
3. Results
3.1. Wingate Test
3.2. Electromyographic Assessment and Neuromuscular Efficiency
3.3. Blood Lactate
3.4. Neuromuscular Fatigue (CMJ) and Handgrip Strength
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maughan, R.J.; Burke, L.M.; Dvorák, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Peeling, P.; Binnie, M.J.; Goods, P.S.; Sim, M.; Burke, L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef]
- Australian Institute of Sport. ABCD Classification System. Available online: http://www.ausport.gov.au/ais/nutrition/supplements/classification (accessed on 9 March 2018).
- Graham, T. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Einother, S.J.L.; Giesbrecht, T. Caffeine as an attention enhancer: Reviewing existing assumptions. Psychopharmacology 2013, 225, 251–274. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Williams, J.H. Caffeine, neuromuscular function and high-intensity exercise performance. J. Sports Med. Phys. Fit. 1991, 31, 481–489. [Google Scholar]
- Magkos, F.; Kavouras, S.A. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef]
- Cornish, R.S.; Bolam, K.A.; Skiner, T.L. Effect of Caffeine on Exercise Capacity and Function in Prostate Cancer Survivors. Med. Sci. Sports Exerc. 2015, 47, 468–475. [Google Scholar] [CrossRef]
- Dean, S.; Braakhuis, A.; Paton, C. The effects of ECG on fat oxidation and endurance performance in male cyclists. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 624–644. [Google Scholar] [CrossRef]
- Spriet, L.L. Exercise and Sport Performance with Low Doses of Caffeine. Sports Med. 2014, 44, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Mata-Ordoñez, F.; Sanchez-Oliver, A.; Domínguez, R. Importancia de la nutrición en las estrategias de pérdida de pérdida de peso en deportes de combate. J. Sport Health Res. 2018, 10, 1–12. [Google Scholar]
- Campos, F.A.; Bertuzzi, R.; Dourado, A.C.; Santos, V.G.F.; Franchini, E. Energy demands in taekwondo athletes during combat simulation. Eur. J. Appl. Physiol. 2012, 112, 1221–1228. [Google Scholar] [CrossRef]
- Bridge, C.A.; Santos, J.F.D.S.; Chaabene, H.; Pieter, W.; Franchini, E. Physical and Physiological Profiles of Taekwondo Athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Franchini, E.; Artioli, G.G.; Brito, C.J. Judo combat: Time-motion analysis and physiology. Int. J. Perform. Anal. Sport 2013, 13, 624–641. [Google Scholar] [CrossRef]
- García-Pallarés, J.; López-Gullón, J.M.; Muriel, X.; Diaz, A.; Izquierdo, M. Physical fitness factors to predict male Olympic wrestling performance. Eur. J. Appl. Physiol. 2011, 111, 1747–1758. [Google Scholar] [CrossRef]
- Ratamess, N. Strength and Conditioning for Grappling Sports. Strength Cond. J. 2011, 33, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Aedma, M.; Timpmann, S.; Ööpik, V. Effect of Caffeine on Upper-Body Anaerobic Performance in Wrestlers in Simulated Competition-Day Conditions. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Drust, B.; Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. Circadian Rhythms in Sports Performance—An Update. Chrono-Int. 2005, 22, 21–44. [Google Scholar] [CrossRef]
- Lozano Estevan, M.C.; Martínez, R.C. Manual de Tecnología Farmacéutica; Lozano, M.C., Córdoba, D., Córdoba, M., Eds.; Elsevier: Barcelona, Spain, 2012; Chapter 5; pp. 343–353. [Google Scholar]
- Harland, B.F. Caffeine and nutrition. Nutrition 2000, 16, 522–526. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- SENIAM project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles). Available online: http://www.seniam.org/ (accessed on 1 March 2018).
- Moritani, T.; Muro, M. Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 260–265. [Google Scholar] [CrossRef]
- Lucia, A.; San Juan, A.F.; Montilla, M.; CaNete, S.; Santalla, A.; Earnest, C.; Pérez, M. In professional road cyclists, low pedaling cadences are less efficient. Med. Sci. Sports Exerc. 2004, 36, 1048–1054. [Google Scholar] [CrossRef]
- Hug, F.; Dorel, S. Electromyographic analysis of pedaling: A review. J. Electromyogr. Kinesiol. 2009, 19, 182–198. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Asiain, X.; Izquierdo, M.; Postigo, A.; Aguado, R.; Alonso, J.M.; Ibáñez, J. Vertical Jump Performance and Blood Ammonia and Lactate Levels During Typical Training Sessions in Elite 400-m Runners. J. Strength Cond. Res. 2010, 24, 1138–1149. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity Loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Moreno-Pérez, D.; Maté-Muñoz, J.L.; Domínguez, R.; Pallarés, J.G.; Mora-Rodriguez, R.; Ortega, J.F. Circadian rhythm effect on physical tennis performance in trained male players. J. Sports Sci. 2017, 35, 2121–2128. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge, Lawrence Erlbaum Associates Publisher: New York, NY, USA, 1988. [Google Scholar]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019. bjsports-2018. [Google Scholar] [CrossRef]
- López-González, L.M.; Sánchez-Oliver, A.J.; Mata, F.; Jodra, P.; Antonio, J.; Domínguez, R. Acute caffeine supplementation in combat sports: A systematic review. J. Int. Soc. Sports Nutr. 2018, 15, 60. [Google Scholar] [CrossRef]
- Paton, C.D.; Hopkins, W.G. Variation in performance of elite cyclists from race to race. Eur. J. Sport Sci. 2006, 6, 25–31. [Google Scholar] [CrossRef]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; Da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Parolin, M.L.; Chesley, A.; Matsos, M.P.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. Metab. 1999, 277, E890–E990. [Google Scholar] [CrossRef]
- Del Coso, J.; Salinero, J.J.; González-Millán, C.; Abian-Vicen, J.; Pérez-González, B. Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. J. Int. Soc. Sports Nutr. 2012, 9, 21. [Google Scholar] [CrossRef]
- Faina, I.E. Energy expenditure, aerodynamics and medical problems in cycling: An update. Sports Med. 1992, 14, 43–63. [Google Scholar]
- Simmonds, M.J.; Minahan, C.L.; Sabapathy, S. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur. J. Appl. Physiol. 2010, 109, 287–295. [Google Scholar] [CrossRef]
- Coswig, V.S.; Gentil, P.; Irigon, F.; Del Vecchio, F.B. Caffeine ingestion changes time-motion and technical-tactical aspects in simulated boxing matches: A randomized double-blind PLA-controlled crossover study. Eur. J. Sport Sci. 2018, 18, 975–983. [Google Scholar] [CrossRef]
- Greer, F.; Morales, J.; Coles, M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl. Physiol. Nutr. Metab. 2006, 31, 597–603. [Google Scholar] [CrossRef]
- Crowe, M.J.; Leicht, A.S.; Spinks, W.L. Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 528–544. [Google Scholar] [CrossRef]
- Keisler, B.D.; Armsey, T.D. Caffeine as an ergogenic aid. Curr. Sports Med. Rep. 2006, 5, 215–219. [Google Scholar] [CrossRef]
- Woolf, K.; Bidwell, W.K.; Carlson, A.G. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 412–429. [Google Scholar] [CrossRef]
- Lamina, S.; Musa, D.I. Efecto ergogénico de diversas dosis de cafeína en café sobre la potencia aeróbica máxima de jóvenes africanos. Afr. Health Sci. 2009, 10, 270–274. [Google Scholar]
- MacIntosh, B.R.; Neptune, R.R.; Horton, J.F. Cadence, power, and muscle activation in cycle ergometry. Med. Sci. Sports Exerc. 2000, 32, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Cortez, L.; Mackay, K.; Contreras, E.; Peñailillo, L. Efecto agudo de la investigación de cafeína sobre el tiempo de reacción y la actividad electromiográfica de la patada circular Dollyo Chagi en taekwondistas. Rev. Int. Cienc. Del Deport. 2017, 13, 52–62. [Google Scholar] [CrossRef]
- Santos, V.G.F.; Santos, V.R.F.; Felippe, L.J.C.; Almeida, J.W.; Bertuzzi, R.; Kiss, M.A.P.D.M.; Lima-Silva, A.E. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo. Nutrients 2014, 6, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Souissi, M.; Abedelmalek, S.; Chtourou, H.; Boussita, A.; Hakim, A.; Sahnoun, Z. Effects of time-of-day and caffeine ingestion on mood states, simple reaction time, and short-term maximal performance in elite judoists. Boil. Rhythm. Res. 2013, 44, 897–907. [Google Scholar] [CrossRef]
- Kalmar, J.M. The Influence of Caffeine on Voluntary Muscle Activation. Med. Sci. Sports Exerc. 2005, 37, 2113–2119. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D. Dietary supplements and team-sport performance. Sports Med. 2010, 40, 995–1017. [Google Scholar] [CrossRef]
- Mohr, M.; Bangsbo, J.; Nielsen, J.J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J. Appl. Physiol. 2011, 111, 1372–1379. [Google Scholar] [CrossRef]
- Glaister, M.; Muniz-Pumares, D.; Patterson, S.D.; Foley, P.; McInnes, G. Caffeine supplementation and peak anaerobic power output. Eur. J. Sport Sci. 2015, 15, 400–406. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Felippe, L.J.C.; Silva-Cavalcante, M.D.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine Ingestion after Rapid Weight Loss in Judo Athletes Reduces Perceived Effort and Increases Plasma Lactate Concentration without Improving Performance. Nutrients 2014, 6, 2931–2945. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Silva, J.P.; Santos, J.F.D.S.; Branco, B.H.M.; Abad, C.C.C.; De Oliveira, L.F.; LoTurco, I.; Franchini, E. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation. PLoS ONE 2015, 10, e0142078. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abian-Vicen, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Esbjörnsson-Liljedahl, M.; Sundberg, C.J.; Norman, B.; Jansson, E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J. Appl. Physiol. 1999, 87, 1326–1332. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Garnacho-Castaño, M.V.; Cuenca, E.; García-Fernández, P.; Muñoz-González, A.; de Jesús, F.; Lozano-Estevan, M.D.C.; Fernandes da Silva, S.; Veiga-Herreros, P.; Maté-Muñoz, J.L. Effects of beetroot juice supplementation on a 30-s high-intensity inertial cycle ergometer test. Nutrients 2017, 9, 1360. [Google Scholar] [CrossRef]
- Cuenca, E.; Jodra, P.; Pérez-López, A.; González-Rodríguez, L.G.; Fernandes da Silva, S.; Veiga-Herreros, P.; Domínguez, R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients 2018, 10, 1222. [Google Scholar] [CrossRef]
- Mora-Rodriguez, R.; Pallares, J.G.; López-Samanes, Á.; Ortega, J.F.; Fernandez-Elias, V.E. Caffeine Ingestion Reverses the Circadian Rhythm Effects on Neuromuscular Performance in Highly Resistance-Trained Men. PLoS ONE 2012, 7, e33807. [Google Scholar] [CrossRef]
- Del Coso, J.; Pérez-López, A.; Abian-Vicen, L.; Salinero, J.J.; Lara, B.; Valadés, D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef]
- Astley, C.; Souza, D.B.; Polito, M.D. Acute Specific Effects of Caffeine-containing Energy Drink on Different Physical Performances in Resistance-trained Men. Int. J. Exerc. Sci. 2018, 11, 260–268. [Google Scholar]
- Warren, G.L.; Park, N.D.; Marexca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Negaresh, R.; Del Coso, J.; Mokhtarzade, M.; Lima-Silva, A.E.; Baker, J.S.; Willems, M.E.T.; Talebvand, S.; Khodadoost, M.; Farhani, F. Effects of different dosages of caffeine administration on wrestling performance during a simulated tournament. Eur. J. Sport Sci. 2019, 19, 499–507. [Google Scholar] [CrossRef]
Variable | Experimental Condition | Wpeak-EMGWpeak | TWpeak-TEMGpeak | Wmean-EMGmean | Wmin-EMGWmin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M ± SD | p-Value | ES | M ± SD | p-Value | ES | M ± SD | p-Value | ES | M ± SD | p-Value | ES | ||
Woutput | Placebo | 10.20 ± 0.59 | <0.01 * | 1.26 | 8.88 ± 1.64 | 0.01 * | 0.58 | 8.25 ± 0.37 | 0.01 * | 1.29 | 6.19 ± 0.56 | 0.123 | 0.75 |
Caffeine | 10.84 ± 0.49 | 8.00 ± 1.60 | 8.68 ± 0.34 | 6.49 ± 0.22 | |||||||||
EMGVL | Placebo | 0.78 ± 0.09 | 0.268 | 0.71 | 12.25 ± 9.27 | 0.270 | 0.68 | 0.74 ± 0.11 | 0.247 | 0.62 | 0.41 ± 0.15 | 0.332 | 0.47 |
Caffeine | 0.69 ± 0.17 | 7.38 ± 5.58 | 0.66 ± 0.16 | 0.33 ± 0.21 | |||||||||
EMGBF | Placebo | 0.67 ± 0.19 | 0.435 | 0.29 | 8.63 ± 3.70 | 0.292 | 0.36 | 0.55 ± 0.14 | 0.254 | 0.37 | 0.26 ± 0.11 | 0.430 | 0.37 |
Caffeine | 0.72 ± 0.18 | 12.13 ± 8.43 | 0.60 ± 0.15 | 0.31 ± 0.17 | |||||||||
EMGGM | Placebo | 0.68 ± 0.16 | 0.311 | 0.73 | 3.63 ± 3.66 | 0.022 * | 0.91 | 0.64 ± 0.08 | 0.728 | 0.25 | 0.36 ± 0.31 | 0.387 | 0.22 |
Caffeine | 0.56 ± 0.19 | 8.00 ± 6.26 | 0.62 ± 0.09 | 0.31 ± 0.15 | |||||||||
EMGTA | Placebo | 0.73 ± 0.21 | 0.984 | 0.00 | 7.75 ± 3.45 | 0.722 | 0.16 | 0.63 ± 0.10 | 0.298 | 0.59 | 0.23 ± 0.12 | 0.423 | 0.26 |
Caffeine | 0.73 ± 0.20 | 7.13 ± 4.55 | 0.55 ± 0.18 | 0.20 ± 0.13 | |||||||||
EMGGL | Placebo | 0.74 ± 0.15 | 0.824 | 0.16 | 8.00 ± 5.37 | 0.936 | 0.05 | 0.67 ± 0.12 | 0.935 | 0.09 | 0.40 ± 0.11 | 0.980 | 0.00 |
Caffeine | 0.76 ± 0.12 | 7.75 ± 5.03 | 0.66 ± 0.13 | 0.40 ± 0.16 | |||||||||
EMGMED | Placebo | 0.72 ± 0.07 | 0.607 | 0.60 | 0.65 ± 0.05 | 0.261 | 0.44 | 0.33 ± 0.07 | 0.343 | 0.22 | |||
Caffeine | 0.69 ± 0.03 | 0.62 ± 0.09 | 0.31 ± 0.12 |
Variable | Split1–5s | Split6–10s | Split11–15s | Split16–20s | Split21–25s | Split26–30s | p-Value Time | p-Value Supplementation | p-Value Time Supplementation | |
---|---|---|---|---|---|---|---|---|---|---|
Woutput | Placebo | 6.61 ± 0.89 #A | 9.98 ± 0.59 #D * | 9.63 ± 0.65 #H * | 8.80 ± 0.64 #L | 7.78 ± 0.36 #O | 6.68 ± 0.38 | <0.001 # | 0.006 * | 0.696 |
Caffeine | 7.05 ± 1.11 #A | 10.54 ± 0.56 #D | 10.19 ± 0.58 #H | 9.18 ± 0.70#L | 8.05 ± 0.56 #O | 7.04 ± 0.34 | ||||
EMGVL | Placebo | 0.72 ± 0.10 | 0.76 ± 0.10 | 0.79 ± 0.10 | 0.79 ± 0.14 #M | 0.73 ± 0.16 | 0.67 ± 0.17 | 0.018 # | 0.247 | 0.985 |
Caffeine | 0.62 ± 0.19 | 0.69 ± 0.15 | 0.72 ± 0.19 | 0.68 ± 0.16 | 0.64 ± 0.20 | 0.58 ± 0.20 | ||||
EMGBF | Placebo | 0.53 ± 0.14 #B | 0.75 ± 0.10 #E | 0.65 ± 0.16 #I | 0.54 ± 0.22 #N | 0.43 ± 0.19 | 0.36 ± 0.16 #P | 0.002 # | 0.250 | 0.089 |
Caffeine | 0.60 ± 0.14 | 0.71 ± 0.10 | 0.71 ± 0.16 #I | 0.64 ± 0.20 #N | 0.52 ± 0.20 | 0.46 ± 0.19 | ||||
EMGGM | Placebo | 0.73 ± 0.13 | 0.63 ± 0.12 | 0.65 ± 0.08 | 0.65 ± 0.10 | 0.59 ± 0.05 | 0.57 ± 0.10 | 0.094 | 0.734 | 0.286 |
Caffeine | 0.63 ± 0.16 | 0.59 ± 0.19 | 0.61 ± 0.15 | 0.66 ± 0.11 | 0.66 ± 0.12 | 0.56 ± 0.11 | ||||
EMGTA | Placebo | 0.61 ± 0.16 #B | 0.75 ± 0.16 | 0.76 ± 0.11 #J | 0.65 ± 0.14 #M | 0.56 ± 0.11 | 0.47 ± 0.08 #Q | <0.001# | 0.298 | 0.033₸ |
Caffeine | 0.57 ± 0.17 | 0.70 ± 0.16 #F | 0.59 ± 0.22 #K | 0.51 ± 0.20 | 0.45 ± 0.22 | 0.43 ± 0.24 | ||||
EMGGL | Placebo | 0.77 ± 0.12 #C | 0.76 ± 0.09 #G | 0.68 ± 0.14 | 0.65 ± 0.14 | 0.61 ± 0.16 | 0.53 ± 0.16 | <0.001# | 0.948 | 0.592 |
Caffeine | 0.75 ± 0.11#C | 0.73 ± 0.08 | 0.68 ± 0.18 | 0.70 ± 0.19 #M | 0.61 ± 0.19 | 0.51 ± 0.17 |
Variable | Experimental Condition | NMEWpeak | NMEWmean | ||||
---|---|---|---|---|---|---|---|
M ± SD | p-Value | ES | M ± SD | p-Value | ES | ||
NMEVL | Placebo | 13.29 ± 1.63 | 0.115 | 1.01 | 11.34 ± 1.98 | 0.105 | 0.95 |
Caffeine | 16.71 ± 4.87 | 13.99 ± 3.71 | |||||
NMEBF | Placebo | 16.75 ± 5.87 | 0.785 | 0.12 | 16.19 ± 5.00 | 0.678 | 0.17 |
Caffeine | 16.11 ± 5.28 | 15.39 ± 5.30 | |||||
NMEGM | Placebo | 15.74 ± 4.01 | 0.187 | 0.89 | 13.14 ± 1.75 | 0.261 | 0.61 |
Caffeine | 22.18 ± 10.19 | 14.27 ± 2.19 | |||||
NMETA | Placebo | 15.72 ± 7.59 | 0.957 | 0.04 | 13.43 ± 3.06 | 0.181 | 0.83 |
Caffeine | 15.93 ± 4.66 | 18.11 ± 7.94 | |||||
NMEGL | Placebo | 14.47 ± 3.77 | 0.947 | 0.04 | 12.76 ± 2.88 | 0.556 | 0.31 |
Caffeine | 14.58 ± 2.20 | 13.82 ± 4.35 | |||||
NMEMED | Placebo | 14.35 ± 1.99 | 0.184 | 0.77 | 12.87 ± 1.41 | 0.054 | 0.74 |
Caffeine | 15.92 ± 2.34 | 14.36 ± 2.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Juan, A.F.; López-Samanes, Á.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Pérez-López, A.; Domínguez, R. Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients 2019, 11, 2120. https://doi.org/10.3390/nu11092120
San Juan AF, López-Samanes Á, Jodra P, Valenzuela PL, Rueda J, Veiga-Herreros P, Pérez-López A, Domínguez R. Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients. 2019; 11(9):2120. https://doi.org/10.3390/nu11092120
Chicago/Turabian StyleSan Juan, Alejandro F., Álvaro López-Samanes, Pablo Jodra, Pedro L. Valenzuela, Javier Rueda, Pablo Veiga-Herreros, Alberto Pérez-López, and Raúl Domínguez. 2019. "Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers" Nutrients 11, no. 9: 2120. https://doi.org/10.3390/nu11092120
APA StyleSan Juan, A. F., López-Samanes, Á., Jodra, P., Valenzuela, P. L., Rueda, J., Veiga-Herreros, P., Pérez-López, A., & Domínguez, R. (2019). Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients, 11(9), 2120. https://doi.org/10.3390/nu11092120