Mapping and Predicting Patterns of Chinese Adolescents’ Food Preferences
Abstract
:1. Introduction
2. Methods
2.1. Data Description
2.2. Instruments
2.3. Data Analysis
3. Results
3.1. Latent Class Analysis
3.2. Characteristics of Latent Classes
3.3. Predictors of Latent Class Membership
3.4. Latent Class Membership, BMI and Sleeping Hours
4. Discussion
5. Significant Findings and Implications
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Skinner, J.; Carruth, B.R.; Moran, J., III; Houck, K.; Schmidhammer, J.; Reed, A.; Coletta, F.; Cotter, R.; Ott, D. Toddlers’ food preferences: Concordance with family members’ preferences. J. Nutr. Educ. 1998, 30, 17–22. [Google Scholar] [CrossRef]
- Manios, Y.; Moschonis, G.; Grammatikaki, E.; Mavrogianni, C.; van den Heuvel, E.; Bos, R.; Singh-Povel, C. Food group and micronutrient intake adequacy among children, adults and elderly women in Greece. Nutrients 2015, 7, 1841–1858. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Patte, K.; Levitan, R.; Reid, C.; Tweed, S.; Curtis, C. From motivation to behaviour: A model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite 2007, 48, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Lanier, S.A.; Hutchins, H.L.; Pescatello, L.S.; Johnson, M.K.; Bartoshuk, L.M. Food preference questionnaire as a screening tool for assessing dietary risk of cardiovascular disease within health risk appraisals. J. Am. Diet. Assoc. 2007, 107, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Umesawa, M.; Iso, H.; Fujino, Y.; Kikuchi, S.; Tamakoshi, A. Salty food preference and intake and risk of gastric cancer: The JACC study. J. Epidemiol. 2016, 26, 92–97. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Wang, Z.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Jia, X.; Huang, F.; Ouyang, Y. Prevalence and stabilizing trends in overweight and obesity among children and adolescents in China, 2011–2015. BMC Public Health 2018, 18, 571. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Shelley, M.; Liu, C.-T.; Chang, Y.-C. Assessing the association of food preferences and self-reported psychological well-being among middle-aged and older adults in contemporary China-results from the China Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2018, 15, 463. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y.; Willett, W. Preventing chronic diseases by promoting healthy diet and lifestyle: Public policy implications for China. Obes. Rev. 2011, 12, 552–559. [Google Scholar] [CrossRef]
- Zickgraf, H.F.; Schepps, K. Fruit and vegetable intake and dietary variety in adult picky eaters. Food Qual. Prefer. 2016, 54, 39–50. [Google Scholar] [CrossRef]
- Birch, L.L. Preschool children’s food preferences and consumption patterns. J. Nutr. Educ. 1979, 11, 189–192. [Google Scholar] [CrossRef]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef]
- Savage, J.S.; Fisher, J.O.; Birch, L.L. Parental influence on eating behavior: Conception to adolescence. J. Law Med. Ethics 2007, 35, 22–34. [Google Scholar] [CrossRef]
- Pearson, N.; Griffiths, P.; Biddle, S.J.; Johnston, J.P.; Haycraft, E. Individual, behavioural and home environmental factors associated with eating behaviours in young adolescents. Appetite 2017, 112, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Story, M.; Resnick, M.D. Adolescents’ views on food and nutrition. J. Nutr. Educ. 1986, 18, 188–192. [Google Scholar] [CrossRef]
- Verstraeten, R.; Leroy, J.L.; Pieniak, Z.; Ochoa-Avilès, A.; Holdsworth, M.; Verbeke, W.; Maes, L.; Kolsteren, P. Individual and environmental factors influencing adolescents’ dietary behavior in low-and middle-income settings. PLoS ONE 2016, 11, e0157744. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Ainsworth, B.E. Associations of food consumption, serum vitamins and metabolic syndrome risk with physical activity level in middle-aged adults: The National Health and Nutrition Examination Survey (NHANES) 2005–2006. Public Health Nutr. 2016, 19, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Fussner, L.M.; Luebbe, A.M.; Smith, A.R. Social reward and social punishment sensitivity in relation to dietary restraint and binge/purge symptoms. Appetite 2018, 127, 386–392. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.; Kroese, F.; Evers, C.; Adriaanse, M.; Gillebaart, M. Healthy diet: Health impact, prevalence, correlates, and interventions. Psychol. Health 2017, 32, 907–941. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.C. The Nature of Adolescence; Routledge: London, UK, 2011. [Google Scholar]
- Das, J.K.; Salam, R.A.; Thornburg, K.L.; Prentice, A.M.; Campisi, S.; Lassi, Z.S.; Koletzko, B.; Bhutta, Z.A. Nutrition in adolescents: Physiology, metabolism, and nutritional needs. Ann. N. Y. Acad. Sci. 2017, 1393, 21–33. [Google Scholar] [CrossRef]
- Movassagh, E.Z.; Baxter-Jones, A.D.; Kontulainen, S.; Whiting, S.; Szafron, M.; Vatanparast, H. Vegetarian-style dietary pattern during adolescence has long-term positive impact on bone from adolescence to young adulthood: A longitudinal study. Nutr. J. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Murray, D.M.; Lytle, L.A.; Harnack, L.J. Longitudinal associations between key dietary behaviors and weight gain over time: Transitions through the adolescent years. Obesity 2012, 20, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Diet promotes sleep duration and quality. Nutr. Res. 2012, 32, 309–319. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Gonzalez, K.; Lee-Ang, L.; Young, M.C.; Tamez, M.; Mattei, J. Diet and sleep physiology: Public health and clinical implications. Front. Neurol. 2017, 8, 393. [Google Scholar] [CrossRef] [PubMed]
- Ma, G. Food, eating behavior, and culture in Chinese society. J. Ethn. Foods 2015, 2, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Deng, S. Adolescents’ food preferences in china: Do household living arrangements matter? Soc. Work Health Care 2011, 50, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Lien, N.; Kumar, B.N.; Holmboe-Ottesen, G. Socio-demographic differences in food habits and preferences of school adolescents in Jiangsu Province, China. Eur. J. Clin. Nutr. 2005, 59, 1439. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 718. [Google Scholar]
- Hardigan, P.C.; Sangasubana, N. A latent class analysis of job satisfaction and turnover among practicing pharmacists. Res. Soc. Adm. Pharm. 2010, 6, 32–38. [Google Scholar] [CrossRef]
- He, J.; Cai, Z.; Fan, X. Accuracy of using self-reported data to screen children and adolescents for overweight and obesity status: A diagnostic meta-analysis. Obes. Res. Clin. Pract. 2017, 11, 257–267. [Google Scholar] [CrossRef]
- Cole, T.J.; Faith, M.S.; Pietrobelli, A.; Heo, M. What is the best measure of adiposity change in growing children: BMI, BMI%, BMI z-score or BMI centile? Eur. J. Clin. Nutr. 2005, 59, 419. [Google Scholar] [CrossRef]
- Vogel, M. Childsds: Data and Methods Around Reference Values in Pediatrics; R Package Version 0.6; Springer: New York, NY, USA, 2017. [Google Scholar]
- Lanza, S.T.; Collins, L.M.; Lemmon, D.R.; Schafer, J.L. PROC LCA: A SAS procedure for latent class analysis. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 671–694. [Google Scholar] [CrossRef]
- Séménou, M.; Courcoux, P.; Cardinal, M.; Nicod, H.; Ouisse, A. Preference study using a latent class approach. Analysis of European preferences for smoked salmon. Food Qual. Prefer. 2007, 18, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Lanza, S.T.; Rhoades, B.L. Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prev. Sci. 2013, 14, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998. [Google Scholar]
- Geiser, C. Data Analysis with Mplus; Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- He, J.; Fan, X. Latent Class Analysis. Encycl. Personal. Individ. Differ. 2018, 1, 1–4. [Google Scholar]
- Marsh, H.W.; Lüdtke, O.; Trautwein, U.; Morin, A.J. Classical latent profile analysis of academic self-concept dimensions: Synergy of person-and variable-centered approaches to theoretical models of self-concept. Struct. Equ. Model. A Multidiscip. J. 2009, 16, 191–225. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Auxiliary variables in mixture modeling: Three-step approaches using M plus. Struct. Equ. Model. A Multidiscip. J. 2014, 21, 329–341. [Google Scholar] [CrossRef]
- Schafer, J.L. Multiple imputation: A primer. Stat. Methods Med Res. 1999, 8, 3–15. [Google Scholar] [CrossRef]
- Caine-Bish, N.L.; Scheule, B. Gender differences in food preferences of school-aged children and adolescents. J. Sch. Health 2009, 79, 532–540. [Google Scholar] [CrossRef]
- Birch, L.L. Development of food preferences. Annu. Rev. Nutr. 1999, 19, 41–62. [Google Scholar] [CrossRef]
- Wardle, J.; Parmenter, K.; Waller, J. Nutrition knowledge and food intake. Appetite 2000, 34, 269–275. [Google Scholar] [CrossRef]
- Boyland, E.J.; Harrold, J.A.; Kirkham, T.C.; Corker, C.; Cuddy, J.; Evans, D.; Dovey, T.M.; Lawton, C.L.; Blundell, J.E.; Halford, J.C. Food commercials increase preference for energy-dense foods, particularly in children who watch more television. Pediatrics 2011, 128, e93–e100. [Google Scholar] [CrossRef] [PubMed]
- Boyland, E.J.; Halford, J.C. Television advertising and branding. Effects on eating behaviour and food preferences in children. Appetite 2013, 62, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Borgogna, N.; Lockhart, G.; Grenard, J.L.; Barrett, T.; Shiffman, S.; Reynolds, K.D. Ecological momentary assessment of urban adolescents’ technology use and cravings for unhealthy snacks and drinks: Differences by ethnicity and sex. J. Acad. Nutr. Diet. 2015, 115, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.-P.; Visby, T.; Nyby, S.; Klingenberg, L.; Gregersen, N.T.; Tremblay, A.; Astrup, A.; Sjödin, A. Video game playing increases food intake in adolescents: A randomized crossover study. Am. J. Clin. Nutr. 2011, 93, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Tremblay, M.S.; Chaput, J.-P. Modern sedentary behaviors favor energy consumption in children and adolescents. Curr. Obes. Rep. 2013, 2, 50–57. [Google Scholar] [CrossRef]
- Jones, A.; Pearce, M.; Adamson, A.; Gateshead Millennium Study Core Team. Food knowledge, attitudes and preferences and BMI in children: The Gateshead Millennium Study. Proc. Nutr. Soc. 2010, 69, e496. [Google Scholar] [CrossRef]
- Maitre, I.; Van Wymelbeke, V.; Amand, M.; Vigneau, E.; Issanchou, S.; Sulmont-Rossé, C. Food pickiness in the elderly: Relationship with dependency and malnutrition. Food Qual. Prefer. 2014, 32, 145–151. [Google Scholar] [CrossRef]
- Lundahl, A.; Nelson, T.D. Sleep and food intake: A multisystem review of mechanisms in children and adults. J. Health Psychol. 2015, 20, 794–805. [Google Scholar] [CrossRef]
- Franckle, R.L.; Falbe, J.; Gortmaker, S.; Ganter, C.; Taveras, E.M.; Land, T.; Davison, K.K. Insufficient sleep among elementary and middle school students is linked with elevated soda consumption and other unhealthy dietary behaviors. Prev. Med. 2015, 74, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Parmenter, K.; Wardle, J. Development of a general nutrition knowledge questionnaire for adults. Eur. J. Clin. Nutr. 1999, 53, 298. [Google Scholar] [CrossRef]
- Hunot, C.; Fildes, A.; Croker, H.; Llewellyn, C.H.; Wardle, J.; Beeken, R.J. Appetitive traits and relationships with BMI in adults: Development of the Adult Eating Behaviour Questionnaire. Appetite 2016, 105, 356–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Sun, S.; Zickgraf, H.F.; Ellis, J.M.; Fan, X. Assessing Appetitive Traits Among Chinese Young Adults Using the Adult Eating Behavior Questionnaire: Factor Structure, Gender Invariance and Latent Mean Differences, and Associations With BMI. Assessment 2019, 1073191119864642. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD/% (n) | Min-Max | Skewness | Kurtosis | |
---|---|---|---|---|
Gender (male = 1) | 51.5% (359) | 1–2 | 0.06 | −2.01 |
Education (primary school = 1) | 35.6% (248) | 1–5 | 0.64 | 0.73 |
Residence (urban = 1) | 48.5% (338) | 1–2 | −0.06 | −2.00 |
Age | 14.25 ± 1.65 | 12–17 | 0.18 | −1.12 |
BMI | 19.61 ± 3.44 | 13.24–37.99 | 1.05 | 1.79 |
Sleeping hours | 8.37 ± 1.04 | 5–12 | 0.23 | 0.59 |
Dietary knowledge | ||||
Choose fruits/vegetables | 3.72 ± 0.83 | 1–5 | −1.14 | 1.21 |
Eating sugar | 2.15 ± 0.62 | 1–5 | 1.23 | 2.81 |
Eating a variety of food | 3.73 ± 0.74 | 1–5 | −1.38 | 2.15 |
Diet high in fat | 2.11 ± 0.69 | 1–5 | 1.18 | 2.39 |
Diet of staple food | 3.15 ± 0.96 | 1–5 | −0.29 | −0.95 |
Diet of animal products | 2.64 ± 0.93 | 1–5 | 0.51 | −0.82 |
Reducing fatty meat | 3.69 ± 0.82 | 1–5 | −1.26 | 1.33 |
Milk and dairy products | 4.00 ± 0.54 | 1–5 | −1.87 | 9.95 |
Beans and bean products | 3.99 ± 0.53 | 1–5 | −1.77 | 9.92 |
Preference for activities | ||||
Walking | 2.54 ± 0.89 | 1–5 | 0.61 | 0.05 |
Sports | 3.69 ± 1.07 | 1–5 | −0.44 | −0.78 |
Body building | 2.86 ± 0.98 | 1–5 | 0.49 | −0.40 |
Watching TV | 4.05 ± 0.86 | 1–5 | −0.87 | 0.82 |
Playing games | 3.78 ± 1.09 | 1–5 | −0.52 | −0.79 |
Reading | 3.52 ± 0.94 | 1–5 | −0.27 | −0.61 |
Life attitudes | ||||
Praise from parents | 2.32 ± 0.77 | 1–4 | 0.35 | −0.14 |
Being liked by friends | 2.34 ± 0.85 | 1–4 | 1.68 | 10.47 |
Look fashionable | 2.35 ± 0.82 | 1–4 | 1.13 | 6.47 |
Achieve high scores in school | 2.34 ± 0.86 | 1–4 | 1.67 | 10.38 |
Classes | LL | AIC | BIC | SABIC | LMRT p-Value | BLRT p-Value | Entropy | Mixing Ratio |
---|---|---|---|---|---|---|---|---|
1 | −1987.80 | 3985.60 | 4008.04 | 3992.17 | - | - | - | - |
2 | −1853.49 | 3728.98 | 3778.35 | 3743.42 | <0.001 | <0.001 | 0.67 | 0.45/0.55 |
3 | −1793.25 | 3620.50 | 3696.79 | 3642.82 | <0.001 | <0.001 | 0.74 | 0.46/0.16/0.38 |
4 | −1765.63 | 3577.25 | 3680.47 | 3607.44 | <0.001 | <0.001 | 0.84 | 0.37/0.08/0.20/0.35 |
5 | −1761.94 | 3581.89 | 3712.03 | 3619.96 | <0.05 | >0.05 | 0.86 | 0.34/0.38/0.03/0.07/0.18 |
Four Latent Classes of Food Preferences | ||||
---|---|---|---|---|
Types of Food | Avoiding Vegetables | Varied Diet | Low Appetite | Healthy Diet |
19.69% (n = 131) | 37.09% (n = 254) | 7.56% (n = 50) | 35.66% (n = 222) | |
Mean ± S.E. | Mean ± S.E. | Mean ± S.E. | Mean ± S.E. | |
Fast food | 0.88 ± 0.05 | 0.82 ± 0.04 | 0.13 ± 0.07 | 0.07 ± 0.04 |
Salty snack food | 0.85 ± 0.04 | 0.88 ± 0.04 | 0.10 ± 0.08 | 0.19 ± 0.05 |
Fruits | 0.62 ± 0.05 | 0.97 ± 0.01 | 0.01 ± 0.39 | 1.00 ± 0.00 |
Vegetables | 0.00 ± 0.00 | 1.00 ± 0.00 | 0.15 ± 0.06 | 0.82 ± 0.07 |
Soft/sugared fruit drinks | 0.82 ± 0.04 | 0.88 ± 0.03 | 0.22 ± 0.08 | 0.48 ± 0.05 |
Low Appetite versus Varied Diet | Avoiding Vegetables versus Varied Diet | Healthy Diet versus Varied Diet | Avoiding Vegetables versus Low Appetite | Healthy Diet versus Low Appetite | Healthy Diet versus Avoiding Vegetables | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | OR | B | SE | OR | B | SE | OR | B | SE | OR | B | SE | OR | B | SE | OR | |
Gender | −0.64 * | 0.35 | 0.52 | −0.39 | 0.24 | 0.68 | 0.08 | 0.22 | 1.09 | 0.26 | 0.39 | 1.29 | 0.72 | 0.35 | 2.06 | 0.47 | 0.25 | 1.59 |
Residence | −0.01 | 0.34 | 0.99 | −0.29 | 0.24 | 0.75 | 0.19 | 0.22 | 1.21 | −0.28 | 0.37 | 0.76 | 0.20 | 0.34 | 1.22 | 0.48 * | 0.25 | 1.62 |
Education | 0.49 | 0.22 | 1.64 | −0.02 | 0.16 | 0.98 | 0.28 * | 0.14 | 1.32 | −0.51 * | 0.24 | 0.59 | −0.22 | 0.22 | 0.80 | 0.29 | 0.16 | 1.34 |
Age | 0.21 * | 0.10 | 1.24 | −0.05 | 0.08 | 0.95 | 0.09 | 0.07 | 1.09 | −0.27 * | 0.11 | 0.77 | −0.13 | 0.10 | 0.88 | 0.14 | 0.08 | 1.15 |
Nutrition knowledge | ||||||||||||||||||
Fruits/vegetables | −0.33 * | 0.19 | 0.72 | −0.08 | 0.14 | 0.92 | 0.01 | 0.14 | 1.00 | 0.24 | 0.21 | 1.28 | 0.33 | 0.20 | 1.39 | 0.08 | 0.15 | 1.09 |
Eating sugar | 0.52 * | 0.27 | 1.69 | 0.38 * | 0.19 | 1.47 | −0.21 | 0.19 | 0.82 | −0.14 | 0.29 | 0.87 | −0.73 ** | 0.27 | 0.48 | −0.59 ** | 0.21 | 0.56 |
Eating variety | −0.47 * | 0.22 | 0.63 | −0.23 | 0.16 | 0.80 | −0.06 | 0.16 | 0.94 | 0.24 | 0.23 | 1.27 | 0.41 * | 0.21 | 1.51 | 0.17 | 0.16 | 1.18 |
Diet high in fat | 0.30 | 0.24 | 1.36 | −0.12 | 0.17 | 0.89 | −0.28 | 0.16 | 0.76 | −0.43 | 0.26 | 0.65 | −0.58 * | 0.24 | 0.56 | −0.16 | 0.18 | 0.86 |
Staple food | −0.08 | 0.18 | 0.93 | −0.04 | 0.13 | 0.96 | 0.04 | 0.12 | 1.04 | 0.03 | 0.20 | 1.03 | 0.19 | 0.18 | 1.13 | 0.09 | 0.14 | 1.09 |
Animal products | 0.21 | 0.17 | 1.23 | 0.05 | 0.13 | 1.05 | −0.28 * | 0.13 | 0.75 | −0.15 | 0.18 | 0.85 | −0.49 ** | 0.17 | 0.61 | −0.34 * | 0.14 | 0.71 |
Reducing fatty meat | −0.35 * | 0.19 | 0.70 | −0.04 | 0.16 | 0.96 | −0.06 | 0.14 | 0.94 | 0.32 | 0.22 | 1.37 | 0.29 | 0.18 | 1.34 | −0.02 | 0.16 | 0.98 |
Milk and dairy products | −0.71 * | 0.28 | 0.49 | −0.15 | 0.22 | 0.86 | −0.19 | 0.24 | 0.82 | 0.56 * | 0.26 | 1.74 | 0.51 * | 0.27 | 1.67 | −0.04 | 0.22 | 0.96 |
Beans and bean products | −0.67 * | 0.29 | 0.51 | −0.40* | 0.23 | 0.67 | −0.18 | 0.24 | 0.84 | 0.27 | 0.28 | 1.31 | 0.49 | 0.30 | 1.64 | 0.22 | 0.23 | 1.25 |
Physical activities | ||||||||||||||||||
Walking | −0.28 | 0.20 | 0.76 | −0.34 * | 0.14 | 0.71 | −0.11 | 0.13 | 0.90 | −0.06 | 0.22 | 0.94 | 0.17 | 0.20 | 1.19 | 0.24 | 0.15 | 1.27 |
Sports | −0.35 * | 0.16 | 0.71 | −0.05 | 0.11 | 0.95 | −0.01 | 0.10 | 0.99 | 0.29 | 0.18 | 1.34 | 0.34 * | 0.16 | 1.41 | 0.05 | 0.12 | 1.05 |
Body building | −0.39 | 0.21 | 0.68 | −0.09 | 0.12 | 0.92 | −0.10 | 0.12 | 0.90 | 0.30 | 0.23 | 1.35 | 0.28 | 0.21 | 1.33 | −0.02 | 0.13 | 0.98 |
Watching TV | −0.90 *** | 0.19 | 0.41 | −0.09 | 0.16 | 0.91 | −0.67 *** | 0.16 | 0.51 | 0.80 *** | 0.20 | 2.24 | 0.23 | 0.17 | 1.25 | −0.56 *** | 0.16 | 0.56 |
Playing games | −0.39 * | 0.17 | 0.68 | 0.38 ** | 0.14 | 1.46 | −0.26 * | 0.10 | 0.77 | 0.77 *** | 0.21 | 2.16 | 0.13 | 0.17 | 1.14 | −0.64 *** | 0.14 | 0.53 |
Reading | −0.56 ** | 0.18 | 0.57 | −0.16 | 0.13 | 0.86 | 0.17 | 0.13 | 1.19 | 0.41 * | 0.18 | 1.51 | 0.74 *** | 0.17 | 2.09 | 0.33 * | 0.13 | 1.39 |
Social attitudes | ||||||||||||||||||
Praise from parents | −0.97 ** | 0.30 | 0.38 | −0.30 * | 0.15 | 0.74 | −0.47 ** | 0.16 | 0.63 | 0.67 * | 0.31 | 1.96 | 0.50 | 0.29 | 1.65 | −0.17 | 0.16 | 0.84 |
Being liked by friends | −0.95 ** | 0.30 | 0.39 | −0.29 * | 0.14 | 0.74 | −0.42 * | 0.19 | 0.66 | 0.66 * | 0.31 | 1.93 | 0.53 | 0.29 | 1.70 | −0.13 | 0.17 | 0.88 |
Look fashionable | −0.89 ** | 0.29 | 0.41 | −0.33 * | 0.15 | 0.72 | −0.55 ** | 0.16 | 0.58 | 0.56 | 0.30 | 1.74 | 0.34 | 0.29 | 1.40 | −0.22 | 0.16 | 0.80 |
Achieve high scores in school | −0.96 ** | 0.32 | 0.38 | −0.30 * | 0.14 | 0.74 | −0.42 * | 0.19 | 0.66 | 0.66 * | 0.33 | 1.93 | 0.54 | 0.31 | 1.72 | −0.12 | 0.17 | 0.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; He, J.; Fan, X. Mapping and Predicting Patterns of Chinese Adolescents’ Food Preferences. Nutrients 2019, 11, 2124. https://doi.org/10.3390/nu11092124
Sun S, He J, Fan X. Mapping and Predicting Patterns of Chinese Adolescents’ Food Preferences. Nutrients. 2019; 11(9):2124. https://doi.org/10.3390/nu11092124
Chicago/Turabian StyleSun, Shaojing, Jinbo He, and Xitao Fan. 2019. "Mapping and Predicting Patterns of Chinese Adolescents’ Food Preferences" Nutrients 11, no. 9: 2124. https://doi.org/10.3390/nu11092124
APA StyleSun, S., He, J., & Fan, X. (2019). Mapping and Predicting Patterns of Chinese Adolescents’ Food Preferences. Nutrients, 11(9), 2124. https://doi.org/10.3390/nu11092124