The Role of Health Information in Consumers’ Willingness to Pay for Canned Crushed Tomatoes Enriched with Lycopene
Abstract
:1. Introduction
- To determine whether information on the benefit of lycopene affects the consumers’ WTP both on canned tomatoes enriched with lycopene and conventional canned tomatoes (not enriched).
- To analyze whether and how several selected variables, namely socio-demographics, attitudinal constructs and control variables, affect WTP. More in detail, the impact of these variables on WTP will be investigated also in the tails of the bid distribution;
- To explore whether the selected variables affect the possible change in prices, after the informative shock; that is, assessing the moderator role of the variables on the WTP.
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Experimental Design and Procedure
- Z-tree [47], for the collection of bids in auctions;
- Google Drive, to administer the questionnaires;
- Millisecond Inquisit, for the administration of SC-IAT.
3. Statistical Analysis
3.1. Quantile Regression
3.2. Decomposition Analysis
E[(β1 − β0) x1 + β0 (x1 − x0)] = E(y1/1 − y0/1 + y0/1 − y0/0)
3.3. Censoring
4. Results
4.1. The Model
4.2. Results of the Decomposition Analysis
4.3. Censoring
5. Discussion
5.1. Premium Price for Lycopene-enriched Canned Tomato
5.2. Effect of Attitudinal and Socio-demographic Variables
5.3. The Role of Information and Knowledge on WTP for Lycopene-Enriched Canned Tomato
5.4. Limitation of the Study and Further Research
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Informative Shock
References
- Regmi, A.; Gehlhar, M.J. New Directions in Global Food Markets; US Department of Agriculture: Washington, DC, USA, 2005.
- Sadler, J. Innovation in Functional Food and Drinks; Business Insights Ltd.: London, UK, 2005. [Google Scholar]
- Szakály, Z.; Szente, V.; Kövér, G.; Polereczki, Z.; Szigeti, O. The influence of lifestyle on health behavior and preference for functional foods. Appetite 2012, 58, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Peake, H.; Stockely, M.; Frost, G. What nutritional support literature do hospital nursing staff require? J. Hum. Nutr. Diet. 2001, 14, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Alzamora, S.M.; Salvatori, D.; Tapia, M.S.; López-Malo, A.; Welti-Chanes, J.; Fito, P. Novel functional foods from vegetable matrices impregnated with biologically active compounds. J. Food Eng. 2005, 67, 205–214. [Google Scholar] [CrossRef]
- Frewer, L.; Scholderer, J.; Lambert, N. Consumer acceptance of functional foods: Issues for the future. Br. Food J. 2003, 105, 714–731. [Google Scholar] [CrossRef]
- Heasman, M.; Mellentin, J. The Functional Foods Revolution: Healthy People. Healthy Profits; Routledge: London, UK, 2001. [Google Scholar]
- Grunert, K.G. European consumers’ acceptance of functional foods. Ann. NY Acad. Sci. 2010, 1190, 166–173. [Google Scholar] [CrossRef]
- Jousse, F. Modeling to improve the efficiency of product and process development. Compr. Rev. Food Sci. Food Saf. 2008, 7, 175–181. [Google Scholar] [CrossRef]
- Siro, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- OCDA. Estudio de Mercado. In Informe Histórico Observatorio del Consumo y la Distribución Alimentaria; Spanish Ministry of Agriculture, Food and Environment: Madrid, Spain, 2001. [Google Scholar]
- Bäckström, A.; Pirttilä-Backman, A.M.; Tuorila, H. Dimensions of novelty: A social representation approach to new foods. Appetite 2003, 40, 299–307. [Google Scholar] [CrossRef]
- Furno, M.; Verneau, F.; Sannino, G. Assessing hypothetical bias: An analysis beyond the mean of functional food. Food Qual. Prefer. 2016, 50, 15–26. [Google Scholar] [CrossRef]
- IFIC. Functional Foods: Attitudinal Research (1996–1999); International Food Information Council Foundation: Washington, DC, USA, 1999. [Google Scholar]
- de-Magistris, T.; López-Galán, B.; Caputo, V. The impact of body image on the WTP values for reduced-fat and low-salt content potato chips among obese and non-obese consumers. Nutrients 2016, 8, 830. [Google Scholar] [CrossRef]
- Verbeke, W. Consumer acceptance of functional foods: Socio-demographic, cognitive and attitudinal determinants. Food Qual. Prefer. 2005, 16, 45–57. [Google Scholar] [CrossRef]
- Verbeke, W. Functional foods: Consumer willingness to compromise on taste for health? Food Qual. Prefer. 2006, 17, 126–131. [Google Scholar] [CrossRef]
- La Barbera, F.; Amato, M.; Sannino, G. Understanding consumers’ intention and behaviour towards functionalised food: The role of knowledge and food technology neophobia. Br. Food J. 2016, 118, 885–895. [Google Scholar] [CrossRef]
- Temesi, Á.; Bacsó, Á.; Grunert, K.G.; Lakner, Z. Perceived Correspondence of Health Effects as a New Determinant Influencing Purchase Intention for Functional Food. Nutrients 2019, 11, 740. [Google Scholar] [CrossRef] [PubMed]
- de-Magistris, T.; Del Giudice, T.; Verneau, F. The effect of information on willingness to pay for canned tuna fish with different corporate social responsibility (CSR) certification: A pilot study. J. Consum. Aff. 2015, 49, 457–471. [Google Scholar] [CrossRef]
- Dillaway, R.; Messer, K.D.; Bernard, J.C.; Kaiser, H.M. Do consumer responses to media food safety information last? Appl. Econ. Perspect. Policy 2011, 33, 363–383. [Google Scholar] [CrossRef]
- De Steur, H.; Buysse, J.; Feng, S.; Gellynck, X. Role of Information on Consumers’ Willingness-to-pay for Genetically-modified Rice with Health Benefits: An Application to China. Asian Econ. J. 2013, 27, 391–408. [Google Scholar] [CrossRef]
- Lusk, J.L.; House, L.O.; Valli, C.; Jaeger, S.R.; Moore, M.; Morrow, J.L.; Traill, W.B. Effect of information about benefits of biotechnology on consumer acceptance of genetically modified food: Evidence from experimental auctions in the United States, England, and France. Eur. Rev. Agric. Econ. 2004, 31, 179–204. [Google Scholar] [CrossRef]
- ISMEA. I Numeri della Filiera del Pomodoro da Industria; Istituto di Servizi per il Mercato Agricolo Nazionale: Rome, Italy, 2017. [Google Scholar]
- Poojary, M.M.; Passamonti, P. Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chem. 2015, 173, 943–950. [Google Scholar] [CrossRef]
- Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014, 105, 252–257. [Google Scholar] [CrossRef]
- Kaur, G.; Verma, N. Nature curing cancer–review on structural modification studies with natural active compounds having anti-tumor efficiency. Biotechnol. Rep. 2015, 6, 64–78. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to lycopene and protection of DNA, proteins and lipids from oxidative damage (ID1608, 1609, 1611, 1662, 1663, 1664, 1899, 1942, 2081, 2082, 2142, 2374), protection of the skin from UV-induced (including photo-oxidative) damage (ID1259, 1607, 1665, 2143, 2262, 2373), contribution to normal cardiac function (ID1610, 2372), and maintenance of normal vision (ID1827) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 1–28. [Google Scholar]
- Lusk, J.L.; Shogren, J. Experimental Auctions: Methods and Applications in Economic and Marketing Research; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ballco, P.; de-Magistris, T.; Caputo, V. Consumer preferences for nutritional claims: An exploration of attention and choice based on an eye-tracking choice experiment. Food Res. Int. 2019, 116, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, J.R.; Rousu, M.C. Testing whether field auction experiments are demand revealing in practice. J. Agric. Res. Econ. 2008, 290–301. [Google Scholar] [CrossRef]
- Chang, J.B.; Lusk, L.J.; Norwood, B.F. How Closely Do Hypothetical Surveys and Laboratory Experiments Predict Field Behaviour? Am. J. Agric. Econ. 2009, 91, 518–534. [Google Scholar] [CrossRef]
- Depositario, D.P.; Nayga, R.; Wu, X.; Laude, T.P. Should students be used as subjects in experimental auctions? Econ. Lett. 2009, 102, 122–124. [Google Scholar] [CrossRef]
- Greenwald, A.G.; Banaji, M.R. Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychol. Rev. 1995, 102, 4. [Google Scholar] [CrossRef]
- Greenwald, A.G.; Poehlman, T.A.; Uhlmann, E.L.; Banaji, M.R. Understanding and using the Implicit Association Test: III. Meta-analysis of predictive validity. J. Personal. Soc. Psychol. 2009, 97, 17. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Amato, M.; Grunert, K.G. Understanding Westerners’ disgust for the eating of insects: The role of food neophobia and implicit associations. Food Qual. Prefer. 2018, 64, 120–125. [Google Scholar] [CrossRef]
- Verneau, F.; La Barbera, F.; Kolle, S.; Amato, M.; Del Giudice, T.; Grunert, K.G. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy. Appetite 2016, 106, 30–36. [Google Scholar] [CrossRef]
- Verneau, F.; La Barbera, F.; Del Giudice, T. The role of implicit associations in the hypothetical bias. J. Consum. Aff. 2017, 51, 312–328. [Google Scholar] [CrossRef]
- Greenwald, A.G.; McGhee, D.E.; Schwartz, J.L. Measuring individual differences in implicit cognition: The implicit association test. J. Personal. Soc. Psychol. 1998, 74, 1464. [Google Scholar] [CrossRef]
- Karpinski, A.; Steinman, R.B. The single category implicit association test as a measure of implicit social cognition. J. Personal. Soc. Psychol. 2006, 91, 16. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, A.G.; Nosek, B.A.; Banaji, M.R. Understanding and using the Implicit Association Test: I. An improved scoring algorithm: Correction to Greenwald et al. (2003). J. Personal. Soc. Psychol. 2003, 85, 481. [Google Scholar] [CrossRef]
- Cox, D.N.; Evans, G. Construction and validation of a psychometric scale to measure consumers’ fears of novel food technologies: The food technology neophobia scale. Food Qual. Prefer. 2008, 19, 704–710. [Google Scholar] [CrossRef]
- Coppola, A.; Verneau, F.; Caracciolo, F. Neophobia in food consumption: An empirical application of the FTNS scale in southern Italy. Ital. J. Food Sci. 2014, 26, 81–90. [Google Scholar]
- Verneau, F.; Caracciolo, F.; Coppola, A.; Lombardi, P. Consumer fears and familiarity of processed food. The value of information provided by the FTNS. Appetite 2014, 73, 140–146. [Google Scholar] [CrossRef]
- Bak, H.J. Education and public attitudes toward science: Implications for the “deficit model” of education and support for science and technology. Soc. Sci. Q. 2001, 82, 779–795. [Google Scholar] [CrossRef]
- Reynolds, W.M. Development of reliable and valid short forms of the Marlowe-Crowne Social Desirability Scale. J. Clin. Psychol. 1982, 38, 119–125. [Google Scholar] [CrossRef]
- Fischbacher, U. z-Tree: Zurich toolbox for ready-made economic experiments. Exp. Econ. 2007, 10, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Hellyer, N.E.; Fraser, I.; Haddock-Fraser, J. Food Choice, Health Information and Functional Ingredients: An Experimental Auction Employing Bread. Food Policy 2012, 37, 232–245. [Google Scholar] [CrossRef]
- Drichoutis, A.C.; Lazaridis, P.; Nayga, R.M. The role of reference prices in experimental auctions. Econ. Lett. 2008, 99, 446–448. [Google Scholar] [CrossRef]
- Bernard, J.C.; He, N. Confounded by the field: Bidding in food auctions when field prices are increasing. Agric. Resour. Econ. Rev. 2010, 39, 275–287. [Google Scholar] [CrossRef]
- Corrigan, J.R.; Drichoutis, A.; Lusk, J.; Nayga, R.; Rousu, M.C. Repeated Rounds with Price Feedback in Experimental Auction Valuation: An Adversarial Collaboration. Am. J. Agric. Econ. 2012, 94, 97–115. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Oaxaca, R. Male-female wage differentials in urban labor markets. Int. Econ. Rev. 1973, 14, 693–709. [Google Scholar]
- Blinder, A.S. Wage discrimination: Reduced form and structural estimates. J. Hum. Resour. 1973, 8, 436–455. [Google Scholar] [CrossRef]
- Powell, J.L. Least absolute deviations estimation for the censored regression model. J. Econom. 1984, 25, 303–325. [Google Scholar] [CrossRef]
- Vecchio, R.; Van Loo, E.J.; Annunziata, A. Consumers’ willingness to pay for conventional, organic and functional yogurt: Evidence from experimental auctions. Int. J. Consum. Stud. 2016, 40, 368–378. [Google Scholar] [CrossRef]
- Coppola, A.; La Barbera, F.; Verneau, F. Fair trade products’ consumption: A market segmentation by personal values. Qual. Access Success 2015, 16 (Suppl. S1), 23. [Google Scholar]
- Wortmann, L.; Enneking, U.; Daum, D. German consumers’ attitude towards selenium-biofortified apples and acceptance of related nutrition and health claims. Nutrients 2018, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, J.; Hamm, U. Consumer and product-specific characteristics influencing the effect of nutrition, health and risk reduction claims on preferences and purchase behavior–A systematic review. Appetite 2018, 127, 303–323. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Fasanelli, R.; Riverso, R. Emotional profiling for segmenting consumers: The case of household food waste. Qual. Access Success 2019, 20 (Suppl. S2), 27–32. [Google Scholar]
- La Barbera, F.; Riverso, R.; Verneau, F. Understanding beliefs underpinning food waste in the framework of the theory of planned behaviour. Qual. Access Success 2016, 17 (Suppl. S1), 130. [Google Scholar]
Socio-Demographic | Mean | Std. Dev. | q25 | q50 | q75 |
---|---|---|---|---|---|
Age | 23.88 | 4.00 | 21.0 | 24.0 | 25.5 |
Gender | 0.560 | 0.49 | 0.00 | 1.00 | 1.00 |
Income | 2.300 | 0.87 | 2.00 | 2.00 | 3.00 |
Control Variables | Mean | Std. Dev. | q25 | q50 | q75 |
Consumption Frequency (FREQ) | 2.880 | 0.58 | 3.00 | 3.00 | 3.00 |
Lycopene Knowledge (KNOW) | 2.810 | 2.87 | 0.00 | 2.50 | 6.00 |
Measures | Mean | Std. Dev. | q25 | q50 | q75 |
SC_IAT | −0.068 | 0.41 | −0.40 | −0.09 | 0.25 |
Social Desirability (SD) | 3.975 | 0.65 | 3.61 | 4.00 | 4.33 |
FTNS Unnecessary (FTNS1) | 3.445 | 1.12 | 2.50 | 3.33 | 4.33 |
FTNS Risks (FTNS2) | 4.040 | 1.19 | 3.37 | 4.00 | 4.75 |
FTNS Benefits (FTNS3) | 3.185 | 1.28 | 2.50 | 3.00 | 4.00 |
Trust in Science (TISS) | 2.31 | 0.49 | 1.80 | 2.20 | 2.40 |
Treatment Variable | Mean | Std. Dev. | q25 | q50 | q75 |
SHOCK | 0.500 | 0.50 | 0.00 | 0.50 | 1.00 |
Dependent Variable | Mean | Std. Dev. | q25 | q50 | q75 |
---|---|---|---|---|---|
BIDL50 (n = 1000) | 2.161 | 1.58 | 1.20 | 1.90 | 2.80 |
BIDCONV (n = 1000) | 1.378 | 0.87 | 0.80 | 1.20 | 1.80 |
BIDL50, SHOCK = 0 (n = 500) | 1.977 | 1.39 | 1.05 | 1.80 | 2.70 |
BIDCONV, SHOCK = 0 (n = 500) | 1.367 | 0.88 | 0.80 | 1.20 | 2.70 |
BIDL50, SHOCK = 1 (n = 500) | 2.346 | 1.74 | 1.31 | 2.10 | 3.00 |
BIDCONV, SHOCK = 1 (n = 500) | 1.390 | 0.87 | 0.80 | 1.20 | 1.80 |
Pre-Shock | Post Shock | |||
---|---|---|---|---|
Conventional | Enriched | Conventional | Enriched | |
1st Round, n = 100 | 1.36 (1.20) | 2.00 (1.75) | 1.31 (1.20) | 2.31 (2.05) |
2nd Round, n = 100 | 1.37 (1.22) | 1.97 (1.80) | 1.41 (1.20) | 2.35 (2.10) |
3rd Round, n = 100 | 1.38 (1.20) | 1.92 (1.79) | 1.37 (1.20) | 2.38 (2.05) |
4th Round, n = 100 | 1.35 (1.20) | 1.99 (1.90) | 1.48 (1.30) | 2.39 (2.10) |
5th Round, n = 100 | 1.38 (1.20) | 2.01(1.85) | 1.38 (1.20) | 2.30 (2.00) |
q25 | q50 | q75 | OLS | |||||
---|---|---|---|---|---|---|---|---|
Variables | B | SE | B | SE | B | SE | B | SE |
AGE | −0.018 | 0.013 | 0.036 ** | 0.012 | 0.021 | 0.021 | 0.099 ** | 0.011 |
GENDER | 0.457 ** | 0.116 | 0.398 ** | 0.105 | 0.432 * | 0.188 | 0.722 ** | 0.102 |
INCOME | −0.014 | 0.066 | −0.020 | 0.060 | 0.025 | 0.108 | −0.004 | 0.059 |
FREQ | 0.143 | 0.092 | 0.285 ** | 0.084 | 0.586 ** | 0.150 | 0.498 ** | 0.082 |
FTNS1 | −0.041 | 0.057 | 0.024 | 0.051 | −0.149 | 0.092 | −0.064 | 0.050 |
FTNS2 | −0.145 ** | 0.056 | −0.247 ** | 0.051 | −0.234 * | 0.092 | −0.187 ** | 0.050 |
FTNS3 | −0.003 | 0.044 | 0.146 ** | 0.040 | 0.326 ** | 0.072 | 0.241 ** | 0.039 |
SD | 0.041 | 0.085 | 0.065 | 0.077 | 0.243 | 0.138 | 0.182 * | 0.075 |
TISS | 0.172 | 0.114 | 0.234 * | 0.104 | 0.627 ** | 0.186 | 0.362 ** | 0.101 |
SC-IAT | 0.223 | 0.131 | 0.583 ** | 0.119 | 0.381 | 0.214 | 0.418 ** | 0.116 |
SHOCK | 0.301 ** | 0.101 | 0.2 * | 0.092 | 0.403 * | 0.164 | 0.369 ** | 0.089 |
KNOW | −0.004 | 0.018 | 0.017 | 0.016 | −0.002 | 0.030 | −0.038 * | 0.016 |
constant | 1.02 | 0.618 | −0.298 | 0.561 | −1.78 | 1.00 | −3.37 ** | 0.549 |
q25 | q50 | q75 | OLS | |||||
---|---|---|---|---|---|---|---|---|
Variables | B | SE | B | SE | B | SE | B | SE |
AGE | 0.004 | 0.008 | 0.006 | 0.007 | −0.011 | 0.014 | −0.004 | 0.007 |
GENDER | 0.421 ** | 0.074 | 0.245 ** | 0.065 | 0.498 ** | 0.124 | 0.377 ** | 0.060 |
INCOME | −0.070 | 0.043 | −0.120 ** | 0.037 | 0.101 | 0.071 | −0.000 | 0.035 |
FREQ | 0.040 | 0.059 | 0.007 | 0.052 | 0.185 | 0.099 | 0.124 ** | 0.048 |
FTNS1 | 0.015 | 0.036 | 0.002 | 0.032 | 0.052 | 0.061 | −0.018 | 0.029 |
FTNS2 | −0.028 | 0.036 | −0.048 | 0.032 | −0.157 * | 0.060 | −0.083 ** | 0.029 |
FTNS3 | 0.067 ** | 0.028 | 0.134 ** | 0.025 | 0.216 ** | 0.047 | 0.093 ** | 0.023 |
SD | −0.002 | 0.054 | 0.085 | 0.048 | 0.081 | 0.091 | 0.030 | 0.044 |
TISS | −0.182 * | 0.073 | −0.182 ** | 0.065 | 0.182 | 0.123 | 0.072 | 0.060 |
SC-IAT | 0.147 | 0.084 | 0.119 | 0.075 | 0.269 | 0.141 | 0.214 ** | 0.069 |
SHOCK | −0.016 | 0.065 | −0.004 | 0.057 | 0.030 | 0.108 | 0.023 | 0.053 |
KNOW | 0.024 * | 0.011 | 0.055 ** | 0.010 | 0.038 * | 0.019 | 0.025 ** | 0.009 |
constant | 0.702 | 0.398 | 0.908 * | 0.351 | −0.046 | 0.662 | 0.661 * | 0.324 |
Functional | Conventional | ||||
mean group_0 | 1.98 | 0.062 | mean group_0 | 1.37 | 0.040 |
mean group_1 | 2.35 | 0.078 | mean group_1 | 1.39 | 0.039 |
mean difference | 0.369 ** | 0.100 | mean difference | 0.023 | 0.056 |
in endowments | 0 | 0.054 | in endowments | 0 | 0.044 |
in coefficients | 0.369 ** | 0.091 | in coefficients | 0.023 | 0.035 |
Variable | B | SE | Variable | B | SE |
AGE | 1.74 ** | 0.56 | AGE | 0.007 | 0.34 |
GENDER | 0.094 | 0.11 | GENDER | −0.065 | 0.06 |
INCOME | −0.018 | 0.26 | INCOME | −0.040 | 0.16 |
FREQ | 0.114 | 0.46 | FREQ | −0.226 | 0.28 |
KNOW | −0.241 ** | 0.09 | KNOW | −0.004 | 0.05 |
FTNS1 | 0.350 | 0.34 | FTNS1 | 0.056 | 0.20 |
FTNS2 | −0.226 | 0.40 | FTNS2 | −0.148 | 0.24 |
FTNS3 | 0.290 | 0.25 | FTNS3 | −0.068 | 0.15 |
SD | 0.559 | 0.59 | SD | 0.315 | 0.35 |
TISS | −0.182 | 0.42 | TISS | −0.105 | 0.25 |
SC_IAT | 0.005 | 0.01 | SC_IAT | 0.001 | 0.01 |
Constant | −2.112 | 1.08 | Constant | 0.299 | 0.64 |
Model 1 | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | LAD | SE | CLAD | SE | OLS | SE | LAD | SE | CLAD | SE | OLS | SE |
SHOCK | 0.262 | 0.555 | 0.262 | 0.518 | −1.079 | 1.266 | 0.200 * | 0.092 | 0.200 * | 0.080 | 0.369 ** | 0.089 |
INCOME | −0.006 | 0.060 | −0.006 | 0.125 | −0.004 | 0.052 | −0.020 | 0.060 | −0.020 | 0.124 | −0.004 | 0.051 |
AGE | 0.035 * | 0.017 | 0.035 * | 0.015 | 0.063 * | 0.031 | 0.036 ** | 0.012 | 0.036 ** | 0.013 | 0.099 ** | 0.029 |
GENDER | 0.392 ** | 0.105 | 0.392 ** | 0.015 | 0.722 ** | 0.109 | 0.398 ** | 0.105 | 0.398 * | 0.157 | 0.722 ** | 0.110 |
FREQ | 0.299 ** | 0.084 | 0.300 ** | 0.071 | 0.498 ** | 0.085 | 0.285 ** | 0.084 | 0.285 ** | 0.081 | 0.498 ** | 0.086 |
FTNS1 | 0.005 | 0.051 | 0.005 | 0.073 | −0.064 | 0.043 | 0.024 | 0.051 | 0.024 | 0.075 | −0.064 | 0.043 |
FTNS2 | −0.252 ** | 0.051 | −0.252 ** | 0.049 | −0.186 ** | 0.043 | −0.247 ** | 0.051 | −0.247 ** | 0.049 | −0.186 ** | 0.043 |
FTNS3 | 0.175 ** | 0.040 | 0.175 ** | 0.052 | 0.241 ** | 0.053 | 0.146 ** | 0.040 | 0.146 ** | 0.044 | 0.241 ** | 0.054 |
TISS | 0.329 ** | 0.104 | 0.330 | 0.226 | 0.362 ** | 0.096 | 0.234 * | 0.104 | 0.234 | 0.210 | 0.362 ** | 0.095 |
SD | 0.169* | 0.077 | 0.170 | 0.148 | 0.181 * | 0.073 | 0.065 | 0.077 | 0.065 | 0.152 | 0.181 * | 0.074 |
SC-IAT | 0.661 ** | 0.119 | 0.661 ** | 0.193 | 0.417 ** | 0.112 | 0.583 ** | 0.119 | 0.583 ** | 0.175 | 0.417 ** | 0.112 |
KNOW | 0.062 ** | 0.023 | 0.062 * | 0.029 | 0.009 | 0.022 | 0.017 | 0.017 | 0.017 | 0.024 | −0.038 * | 0.016 |
Shock*Know | −0.089 ** | 0.032 | −0.089 ** | 0.023 | −0.094 * | 0.036 | ||||||
Shock*Age | 0.008 | 0.023 | 0.008 | 0.023 | 0.072 | 0.057 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verneau, F.; La Barbera, F.; Furno, M. The Role of Health Information in Consumers’ Willingness to Pay for Canned Crushed Tomatoes Enriched with Lycopene. Nutrients 2019, 11, 2173. https://doi.org/10.3390/nu11092173
Verneau F, La Barbera F, Furno M. The Role of Health Information in Consumers’ Willingness to Pay for Canned Crushed Tomatoes Enriched with Lycopene. Nutrients. 2019; 11(9):2173. https://doi.org/10.3390/nu11092173
Chicago/Turabian StyleVerneau, Fabio, Francesco La Barbera, and Marilena Furno. 2019. "The Role of Health Information in Consumers’ Willingness to Pay for Canned Crushed Tomatoes Enriched with Lycopene" Nutrients 11, no. 9: 2173. https://doi.org/10.3390/nu11092173
APA StyleVerneau, F., La Barbera, F., & Furno, M. (2019). The Role of Health Information in Consumers’ Willingness to Pay for Canned Crushed Tomatoes Enriched with Lycopene. Nutrients, 11(9), 2173. https://doi.org/10.3390/nu11092173