The Effect of a Low GI Diet on Truncal Fat Mass and Glycated Hemoglobin in South Indians with Type 2 Diabetes—A Single Centre Randomized Prospective Study
Abstract
:1. Introduction
2. Methods
2.1. Anthropometric Measurements
2.2. Statistical Analysis
3. Results
3.1. Biochemical Profile of Study Subjects
3.2. Body Composition Variables Using DXA
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Makkar BM “Diabetes and Obesity” Time to Act—jointly published by International Diabetes Federation &International Association for the Study of Obesity; Medicine Update 2005. Available online: http://www.apiindia.org/pdf/medicine_update_2005/chapter_61.pdf (accessed on 9 December 2019).
- Misra, A.; Khurana, L. Obesity and the metabolic syndrome in developing countries. J. Clin. Endocrinol. Metab. 2008, 93, 9–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racette, S.B.; Evans, E.M.; Weiss, E.P.; Hagberg, J.M.; Holloszy, J.O. Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 yearolds. Diabetes Care 2006, 29, 673–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelgikar, K.M.; Hockaday, T.D.; Yajnik, C.S. Central rather than generalized obesity is related to hyperglycaemia in Asian Indian subjects. Diabet. Med. 1991, 8, 712–717. [Google Scholar] [CrossRef]
- Wang, Y.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005, 81, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Gopal, S.D.; Raj, S. Prevalence of obesity in diabetic subjects in South Kerala. Int. J. Contemp. Med. Res. 2017, 4, 63–64. [Google Scholar]
- Menon, V.U.; Kumar, K.V.; Gilchrist, A.; Sugathan, T.N.; Sundaram, K.R.; Nair, V.; Kumar, H. Prevalence of known and undetected diabetes and associated risk factors in central Kerala—ADEPS. Diabetes Res. Clin.Pract. 2006, 74, 289–294. [Google Scholar] [CrossRef]
- Bisschop, P.H.; De Sain-van der Velden, M.G.; Stellaard, F.; Kuipers, F.; Meijer, A.J.; Sauerwein, H.P.; Romijn, J.A. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole bodyprotein metabolism in healthy men. J. Clin. Endocrinol. Metab. 2003, 88, 3801–3805. [Google Scholar] [CrossRef] [Green Version]
- Green, R.; Milner, J.; Joy, E.J.; Agrawal, S.; Dangour, A.D. Dangour. Dietary patterns in India: A systematic review. Br. J. Nutr. 2016, 116, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Spiegelman, D.; van Dam, R.M.; Holmes, M.D.; Malik, V.S.; Willett, W.C.; Hu, F.B. White rice, brown rice and risk of type 2 diabetes in US men and women. Arch. Intern. Med. 2010, 170, 961–969. [Google Scholar] [CrossRef]
- Clar, C.; Al-Khudairy, L.; Loveman, E.; Kelly, S.A.; Hartley, L.; Flowers, N.; Germano, R.; Frost, G.; Rees, K. Low glycaemic index diets for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017, 7, CD004467. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Van Der, A.D.L.; Feskens, E.J. Dietary glycaemicindex: A review of the physiological mechanisms and observed health impacts. Acta Cardiol. 2006, 61, 393–397. [Google Scholar]
- Dyson, P.A.; Kelly, T.; Deakin, T.; Duncan, A.; Frost, G.; Harrison, Z.; Khatri, D.; Kunka, D.; McArdle, P.; Mellor, D.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 2011, 28, 1282–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvarajan, S.; Annie Jasmine Swapna, J.J.; Gayathri Devi, V.; Arya, A.B.; Aswathy, S.; Thampan Athira, C.; Raju Geethu, K.B.; Harsha, R.; Hitha Shyam, M.S.; Jyothi, S.D. Influence of rice varieties in diabetics among Indian population—A review. Eur. J. Pharm. Med. Res. 2016, 3, 184–188. [Google Scholar]
- Chen, M.H.; McClung, A.M.; Bergman, C.J. Concentrations of ligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chem. 2016, 208, 279–287. [Google Scholar] [CrossRef]
- Belobrajdic, D.P.; Bird, A.R. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr. J. 2013, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Wilson, P.W.; Jacques, P.F. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 2002, 76, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Jacobs DRJr Pins, J.J.; Raatz, S.K.; Gross, M.D.; Slavin, J.L.; Seaquist, E.R. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am. J. Clin. Nutr. 2002, 75, 848–855. [Google Scholar] [CrossRef] [Green Version]
- Murtaugh, M.A.; Jacobs DRJr Jacob, B.; Steffen, L.M.; Marquart, L. Epidemiological support for the protection of whole grains against diabetes. Proc. Nutr. Soc. 2003, 62, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Priebe, M.; van Binsbergen, J.; de Vos, R.; Vonk, R.J. Whole grain foods for the prevention of type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008, 23, CD006061. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.M.G.; Fabrini, S.P.; Alfenas, R.C.G. Low glycemic index diet reduces body fat and attenuates inflammatory and metabolic responses in patients with type 2 diabetes. Arch. Endocrinol. Metab. 2017, 61, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Aston, L.; Jebb, C.S. No effect a diet with a reduced glycaemic index on satiety, energy intake and body weight in overweight and obese women. Int. J.Obes. 2008, 32, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romaguera, D.; Ängquist, L.; Du, H.; Jakobsen, M.U.; Forouhi, N.G.; Halkjær, J.; Feskens, E.J.; Masala, G.; Steffen, A.; Palli, D.; et al. Dietary Determinants of Changes in Waist Circumference Adjusted for Body Mass Index-a Proxy Measure of Visceral Adiposity. PLoS ONE 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barclay, A.W.; Petocz, P.; McMillan-Price, J.; Flood, V.M.; Prvan, T.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, glycemic load, and chronic disease risk—A meta-analysisof observational studies. Am. J. Clin. Nutr. 2008, 87, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Bouché, C.; Rizkalla, S.W.; Luo, J.; Vidal, H.; Veronese, A.; Pacher, N.; Fouquet, C.; Lang, V.; Slama, G. Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care 2002, 25, 822–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.A.; Alfenas, R.C.G. The consumption of low glycemic meals reduces abdominal obesity in `subjects with excess body weight. Nutr. Hosp. 2012, 27, 1178–1183. [Google Scholar]
- Fabricatore, A.N.; Ebbeling, C.B.; Wadden, T.A.; Ludwig, D.S. Continuous glucose monitoring to assess the ecologic validity of dietary glycemic index and glycemic load. Am. J. Clin. Nutr. 2011, 94, 1519–1524. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.E.; Elliott, E.J. The use of low-glycaemic index diets in diabetes control. Br. J. Nutr. 2010, 104, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Visek, J.; Lacigova, S.; Cechurova, D.; Rusavy, Z. Comparison of a Low-Glycemic Index vs. Standard Diabetic Diet. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2014, 158, 112–116. [Google Scholar] [CrossRef]
- Yusof, B.M.; Talib, R.A.; Kamaruddin, N.A.; Karim, N.A.; Chinna, K.; Gilbertson, H. A low-GI diet is associated with a short-term improvement of glycaemic control in Asian patients with type 2 diabetes. Diabetes Obes. Metab. 2009, 11, 387–396. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; McKeown-Eyssen, G.; Josse, R.G.; Silverberg, J.; Booth, G.L.; Vidgen, E.; Josse, A.R.; Nguyen, T.H.; Corrigan, S.; et al. Effect of a Low–Glycemic Index or a High–Cereal Fiber Diet on Type 2 DiabetesA Randomized Trial. JAMA 2008, 300, 2742–2753. [Google Scholar] [CrossRef] [Green Version]
- Fleming, P.; Godwin, M. Low-glycaemic index diets in the management of blood lipids: A systematic review and meta-analysis. Fam. Pract. 2013, 30, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L.; et al. Benefits of Modest Weight Loss in Improving Cardiovascular Risk Factors in Overweight and Obese Individuals with Type 2 Diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnier, L.; Grimaldi, A.; Charbonnel, B.; Iannascoli, F.; Lery, T.; Garofano, A.; Childs, M. Management of French patients with type 2 diabetes mellitus in medical general practice: Report of the Mediab observatory. Diabetes Metab. 2004, 30, 35–42. [Google Scholar] [CrossRef]
- Barclay, A.W.; Brand-Miller, J.C.; Mitchell, P. Macronutrient intake, glycaemic index and glycaemic load of older Australian subjects with and without diabetes: Baseline data from the Blue Mountains eye study. Br. J. Nutr. 2006, 96, 117–123. [Google Scholar] [CrossRef]
- Vijan, S.; Stuart, N.S.; Fitzgerald, J.T.; Ronis, D.L.; Hayward, R.A.; Slater, S.; Hofer, T.P. Barriers to following dietary recommendations in type 2 diabetes. Diabet. Med. 2005, 22, 32–38. [Google Scholar] [CrossRef]
- Lawton, J.; Ahmad, N.; Hanna, L.; Douglas, M.; Bains, H.; Hallowell, N. ‘We should change ourselves, but we can’t’: Accounts of food and eating practices among British Pakistanis and Indians with type 2 diabetes. Ethn. Health 2008, 13, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Ahlgren, S.S.; Shultz, J.A.; Massey, L.K.; Hicks, B.C.; Wysham, C. Development of a preliminary diabetes dietary satisfaction and outcomes measure for patients with type 2 diabetes. Qual. Life Res. 2004, 13, 819–832. [Google Scholar] [CrossRef]
Breakfast | Lunch | Dinner |
---|---|---|
Red rice puttu (GI = 38) Whole wheat flour (GI = 45) puttu Barley (GI = 25) puttu Rolled oats/Steel cut oats puttu (GI = 51/52) | Rose Matta rice (GI = 38) | Broken wheat (GI = 41) upma Broken wheat + green gram+ fenugreek seeds kanji (porridge) Whole wheat flour (GI = 45) roti |
Parameters | LGI Group (n = 18) | Control Group (n = 18) | p Value |
---|---|---|---|
Weight(kg) | 67.91 ± 12.56 | 73.12 ± 8.76 | 0.156 |
BMI | 26.81 ± 5.04 | 27.25 ± 2.72 | 0.266 |
Waist circumference | 93.17 ± 11.18 | 96.77 ± 10.72 | 0.213 |
TSF | 26.72 ± 4.45 | 23.31 ± 5.50 | 0.104 |
Total fat % | 37.01 ± 7.10 | 34.8 ± 7.13 | 0.295 |
Total fat mass (g) | 25,499.61 ± 8442.76 | 25,768.94 ± 7389.81 | 0.896 |
Truncal fat (g) | 14,941.94 ± 4644.29 | 15,204.61 ± 4755.44 | 0.809 |
Lean mass (g) | 40,207.89 ± 6747.26 | 44,924.61 ± 4972.96 | 0.021 |
Fat free mass(g) | 42,430.94 ± 7105.78 | 47,339.00 ± 5222.62 | 0.179 |
Android(%fat) | 47.11 ± 6.83 | 45.05 ± 7.39 | 0.432 |
Gynoid(% fat) | 37.81 ± 9.49 | 35.23 ± 8.53 | 0.359 |
A/G ratio | 1.29 ± 0.22 | 1.31 ± 0.20 | 0.395 |
Variable | Group | Baseline (Mean ± S.D) | 24 Week (Mean ± S.D) | Mean Change | p Value |
---|---|---|---|---|---|
Weight | Control | 73.12 ± 8.76 | 73.40 ± 9.03 | 0.28 ± 1.48 | 0.007 * |
LGI | 67.91 ± 12.56 | 66.02 ± 11.05 | −1.88 ± 2.85 | ||
BMI | Control | 27.25 ± 2.72 | 27.32 ± 2.78 | 0.07 ± 0.56 | 0.014 * |
LGI | 26.81 ± 5.04 | 26.06 ± 4.23 | −0.75 ± 1.23 | ||
Waist circumference | Control | 96.77 ± 10.72 | 94.39 ± 13.41 | −2.38 ± 6.38 | 0.584 |
LGI | 93.17 ± 11.18 | 89.81 ± 10.67 | −3.37 ± 4.02 | ||
Triceps skinfold | Control | 23.31 ± 5.50 | 22.56 ± 7.17 | −0.75 ± 4.93 | 0.001 * |
LGI | 26.72 ± 4.45 | 20.17 ± 5.22 | −6.55 ± 5.10 |
Variable | Diet | Baseline (Mean ± SD) | Follow-Up (Mean ± SD) | p Value |
---|---|---|---|---|
HbA1c (%) | Control | 8.18 ± 0.98 | 8.42 ± 1.16 | 0.001 ** |
LGI | 8.28 ± 0.91 | 7.41 ± 0.89 | ||
Total cholesterol (mg/dL) | Control | 154.08 ± 34.11 | 155.08 ± 38.89 | 0.116 |
LGI | 176.43 ± 38.75 | 158.98 ± 31.91 | ||
Triglycerides (mg/dL) | Control | 132.61 ± 70.12 | 129.50 ± 51.02 | 0.24 |
LGI | 127.95 ± 41.35 | 115.04 ± 33.14 | ||
HDL (mg/dL) | Control | 39.49 ± 11.85 | 39.93 ± 10.96 | 0.80 |
LGI | 47.53 ± 13.97 | 47.48 ± 12.05 | ||
LDL (mg/dL) | Control | 102.17 ± 31.45 | 103.81 ± 35.79 | 0.233 |
LGI | 119.12 ± 33.81 | 108.03 ± 25.41 | ||
VLDL (mg/dL) | Control | 26.51 ± 14.04 | 25.89 ± 10.20 | 0.346 |
LGI | 25.31 ± 8.1 | 22.06 ± 6.20 |
Variable | Group | Baseline (Mean ± S.D) | 24 Week (Mean ± S.D) | Mean Difference | p Value |
---|---|---|---|---|---|
Region (% fat) | Control | 34.8 ± 7.13 | 35.57 ± 6.80 | 0.77 ± 1.23 | 0.001 ** |
LGI | 37.01 ± 7.10 | 36.07 ± 7.68 | −0.93 ± 1.42 | ||
Truncal fat (g) | Control | 25,768.94 ± 7389.81 | 26,413.06 ± 7292.36 | 644.12 ± 1.32 | 0.001 ** |
LGI | 25,499.61 ± 8442.76 | 24,116.72 ± 7668.37 | −1382.9 ± 1.85 | ||
Lean mass (g) | Control | 44,924.61 ± 4972.96 | 44,553.28 ± 5029.57 | −371.3 ± 0.92 | 0.815 |
LGI | 40,207.89 ± 6747.26 | 39,748.39 ± 6658.78 | −459.5 ± 1.28 | ||
Fat free mass (g) | Control | 47,339.00 ± 5222.62 | 46,960.78 ± 5324.87 | −378.2 ± 0.90 | 0.808 |
LGI | 42,430.94 ± 7105.78 | 41,963.17 ± 7065.33 | −467.8 ± 1.26 | ||
Android (% fat) | Control | 45.05 ± 7.39 | 45.78 ± 7.16 | 0.72 ± 2.47 | 0.010 ** |
LGI | 47.11 ± 6.83 | 45.33 ± 7.93 | −1.78 ± 2.99 | ||
Gynoid (%fat) | Control | 35.23 ± 8.53 | 36.44 ± 8.49 | 1.21 ± 1.71 | 0.009 ** |
LGI | 37.81 ± 9.49 | 37.31 ± 9.53 | −0.50 ± 2.01 | ||
A/G ratio | Control | 1.31 ± 0.20 | 1.28 ± 0.19 | −0.02 ± 0.11 | 0.672 |
LGI | 1.29 ± 0.22 | 1.25 ± 0.20 | −0.03 ± 0.07 |
Variables | Waist Circumference | p Value |
---|---|---|
Pearson Correlation Coefficient (r) | ||
Android (% fat) | 0.54 ** | <0.01 |
Total mass | 0.705 ** | <0.01 |
Total fat mass | 0.344 * | <0.05 |
Total lean mass | 0.635 ** | <0.01 |
Total truncal mass | 0.779 ** | <0.01 |
Truncal fat | 0.710 ** | <0.01 |
Truncal lean | 0.511 ** | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavithran, N.; Kumar, H.; Menon, A.S.; Pillai, G.K.; Sundaram, K.R.; Ojo, O. The Effect of a Low GI Diet on Truncal Fat Mass and Glycated Hemoglobin in South Indians with Type 2 Diabetes—A Single Centre Randomized Prospective Study. Nutrients 2020, 12, 179. https://doi.org/10.3390/nu12010179
Pavithran N, Kumar H, Menon AS, Pillai GK, Sundaram KR, Ojo O. The Effect of a Low GI Diet on Truncal Fat Mass and Glycated Hemoglobin in South Indians with Type 2 Diabetes—A Single Centre Randomized Prospective Study. Nutrients. 2020; 12(1):179. https://doi.org/10.3390/nu12010179
Chicago/Turabian StylePavithran, Nivedita, Harish Kumar, Arun Somasekharan Menon, Gopala Krishna Pillai, Karimassery Ramaiyer Sundaram, and Omorogieva Ojo. 2020. "The Effect of a Low GI Diet on Truncal Fat Mass and Glycated Hemoglobin in South Indians with Type 2 Diabetes—A Single Centre Randomized Prospective Study" Nutrients 12, no. 1: 179. https://doi.org/10.3390/nu12010179
APA StylePavithran, N., Kumar, H., Menon, A. S., Pillai, G. K., Sundaram, K. R., & Ojo, O. (2020). The Effect of a Low GI Diet on Truncal Fat Mass and Glycated Hemoglobin in South Indians with Type 2 Diabetes—A Single Centre Randomized Prospective Study. Nutrients, 12(1), 179. https://doi.org/10.3390/nu12010179