Assessment of Malnutrition, Sarcopenia and Frailty in Patients with Cirrhosis: Which Tools Should We Use in Clinical Practice?
Abstract
:1. Malnutrition, Sarcopenia and Frailty: Who Is Who?
2. Should We Assess Nutritional State at the Patient’s Bed and How?
3. Is Determination of Body Composition in Cirrhosis Helpful to Predict Clinical Outcomes in Patients with CLD?
3.1. Which Tools Do Not Work in Chronic Liver Diseases?
3.2. How to Correctly Assess Muscle Function and Mass in Patients with Cirrhosis?
3.3. Is Cardio-Respiratory Sarcopenia Frequent in Patients with Cirrhosis and Do They Influence Their Prognosis?
3.3.1. Which Came First: Sarcopenia or Heart Failure?
3.3.2. Are Sarcopenic Patients Short of Breath?
3.4. Incorporation of Sarcopenia in MELD: A False Good Idea?
3.5. Is the Evaluation of Fat Mass Really Useful in Malnutrition Assessment?
4. Are Patients with Cirrhosis Frail?
5. How to Assess Food Intakes?
6. New and Forgotten Tools in Malnutrition
6.1. Is Serum Myostatin a Good Reflection of Skeletal Muscle Synthesis?
6.2. Branched Chain Aminoacids Normalized to Aromatic Amino Acids Ratio: A Well-Known Criteria but Relevant Way to Appraise Sarcopenia?
6.3. Is Muscular Ultrasound Scan Reliable in Cirrhosis?
6.4. Magnetic Resonance Imaging: A Non-Radiating Equivalent to CT Scan?
6.5. Resonance Magnetic Spectroscopy: An Ancient Non-Invasive Technique to Assess Energy Metabolism with New Perspectives?
7. How to Follow Nutritional Status in Patients with Cirrhosis?
8. Conclusions: Malnutrition in Liver Diseases, Towards a More Global and Early Care
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CLD | Chronic Liver Diseases |
GLIM | Global Leadership Initiative on Malnutrition |
ESPEN | European Society for Clinical Nutrition and Metabolism |
BMI | Body Mass Index |
LT | Liver Transplantation |
EWGSOP | European working group on sarcopenia in older people |
MELD | Model for End-stage Liver Disease |
RFHNPT | Royal Free Hospital Nutrition Prioritizing Tool |
RFHGA | Royal Free Hospital Global Assessment |
LDUST | Liver Disease Undernutrition Screening Test |
ASPEN | American Society for Parenteral and Enteral Nutrition |
MUST | Malnutrition Universal Screening Tool |
MAMC | Mid-arm muscular circumference |
TSF | Triceps skinfold thickness |
BIA | Bioelectrical Impedance Analyses |
BCM | Body Cell Mass |
CT | Computed Tomography |
DEXA | Dual-Energy X-ray Absorptiometry |
HGS | Hand Grip Strength |
CST | Chair Stand Test |
EASL | European Association for the Study of Liver |
AWGS | Asian Working Group for Sarcopenia |
SMA | Skeletal Muscle Area |
SMI | Skeletal Muscle Index |
L3 | third lumbar vertebra |
HCC | Hepatocellular Carcinoma |
PMI | Psoas Muscle Index |
MRA | Muscle Radiation Attenuation |
HU | Hounsfield Units |
IMAC | Intra Muscular Adipose Content |
SPPB | Short Physical Performance Battery |
TUG | timed-up-and-go test |
HF | Heart Failure |
TIPS | Transjugular Intrahepatic Portosystemic Shunt |
SAT | Subcutaneous Adipose Tissue |
VAT | Visceral Adipose Tissue |
NASH | Non-Alcoholic Steatohepatitis |
HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
FFI | Fried Frailty Index |
CFS | Clinical Frailty Scale |
MoCA | Montreal Cognitive Assessment |
LFI | Liver Frailty Index |
ADL | Activities of Daily Living |
REE | Resting Energy Expenditure |
BCAA | Branched Chain Amino Acids |
AAA | Aromatic Amino Acids |
BTR | BCAA to Tyrosine Ratio |
MRI | Magnetic Resonance Imaging |
ADC | Apparent Diffusion Coefficient |
FFMA | Fat Free Muscle Area |
Appendix A
Patient Questions | Column A | Column B | Column C |
---|---|---|---|
How have you been easting lately? | Normal or fine I’ve been trying to eat less than normal | I’ve been eating less than normal for a month or less I don’t know | I’ve been eating less than normal for more than one month |
Have you lost any weight in the last year? | No Yes, but I’ve been trying to lose weight | Yes, I’ve lost some weight I don’t know | I’ve lost a lot of weight |
Have you noticed any loss of body fat or thinning or your arms or ribs? | No | Yes, a little I don’t know | Yes, a lot |
Have you noticed any muscle loss in you temples, legs, clavicles or shoulders? | No | Yes, a little I don’t know | Yes, a lot |
Do you have any fluid or swelling in your abdomen or legs? | No | Yes, I have some fluid I don’t know | Yes, I have a lot of fluid |
Are you able to participate in your usual activities? | Yes, I can participate in all my usual activities | No, occasionally I am too tired, weak, or feel too bad I don’t know | No, often I am too tired, weak, or feel so bad that I cannot participate |
Ascites | Œdema | |
---|---|---|
Minimal | 2.2 kg | 1 kg |
Moderate | 6 kg | 5 kg |
Severe | 14 kg | 10 kg |
Dry weight (kg) = real weight adjusting for ascites and peripheral œdema |
Gait speed [117] | Measure of walking speed (meter/second) |
---|---|
Short performance battery [118] | Balance test (seconds) Chair stand test (seconds) Walking speed on a four-meter distance (meter/second) |
Timed-up-and-go test [119] | Time taken by an individual to stand up from an armchair, walk a distance of three meters, turn, walk back to the chair, sit down (seconds) |
400-m walk test [120] | Time and ability to complete a 400-m walk (seconds) |
Criterion | Frailty Status |
---|---|
Shrinking | Frailty cut point: Baseline: Self-reported unintentional weight loss ≥10% in previous year Follow-up: Unintentional weight loss ≥5% of previous year’s body weight or BMI < 18.5kg/m2 |
Physical endurance/energy | Geriatric Depression Scale: 1. Do you feel full of energy? 2. During the last 4 weeks how often you rested in bed during day? Response options: Every day, every week, once, not at all. Frailty cut point: No to 1 and every day or every week to 2. |
Low physical activity | Frequency of mildly energetic, moderately energetic and very energetic physical activity. Response options: ≥3 times per week, 1–2 times per week, 1–3 times per month, hardly ever/never Frailty cut point: Hardly ever/never for very energetic physical activity and for moderately energetic physical activity. |
Weakness | Hand grip strength (kg): dominant hand, average of 3 measures. Frailty cut point: Grip strength: lowest 20% (by gender, body mass index) Men BMI ≤24 ≤29 BMI 24.1–26 ≤30 BMI 26.1–28 ≤30 BMI >28 ≤32 Women BMI ≤23 ≤17 BMI 23.1–26 ≤17.3 BMI 26.1–29 ≤18 BMI >29 ≤21 |
Slow walking speed | Walking time in seconds over 15 feet Frailty cut point: Slowest 20%, stratified by gender and median standing height. Men Height ≤173 cm ≥7 s Height >173 cm ≥6 s Women Height ≤159 cm ≥7 s Height >159 cm ≥6 s OR Time to complete “timed up and go test” (TUG) Frailty cut point: TUG time ≥19 s |
Clinical Parameters | Coefficients |
---|---|
Sex-adjusted grip strength (three attempts with the dominant arm) | Multiplied by −0.33 |
Chair stand test (seconds to do 5 chair stands) | Multiplied by −2.529 |
Balance test (seconds holding three positions) | Multiplied by −0.04 |
+6 | |
Total score | Frailty if ≥4.5 |
References
- Merli, M.; Riggio, O.; Dally, L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology 1996, 23, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Piquet, M.-A.; Ollivier, I.; Gloro, R.; Castel, H.; Tiengou, L.-E.; Dao, T. Nutritional indices in cirrhotic patients. Nutrition 2006, 22, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Stephan, C.B. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Classification of Diseases. 11th Revision, World Health Organization. Available online: www.who.int/classifications/icd/ (accessed on 25 September 2019).
- Tandon, P.; Ney, M.; Irwin, I.; Ma, M.M.; Gramlich, L.; Bain, V.G.; Esfandiari, N.; Baracos, V.; Montano-Loza, A.J.; Myers, R.P. Severe muscle depletion in patients on the liver transplantation wait list: Its prevalence and independent prognosis value. Liver Transplant. 2012, 18, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Bhanji, R.A.; Mazurak, V.C.; Montano-Loza, A.J. Sarcopenia in cirrhosis: From pathogenesis to interventions. J. Gastroenterol. 2019, 54, 845–859. [Google Scholar] [CrossRef] [Green Version]
- Carey, E.J.; Lai, J.C.; Wang, C.W.; Dasarathy, S.; Lobach, I.; Montano-Loza, A.J.; Dunn, M.A. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transplant. 2017, 23, 625–633. [Google Scholar] [CrossRef]
- Bhanji, R.A.; Takahashi, N.; Moynagh, M.R.; Narayanan, P.; Angirekula, M.; Mara, K.C.; Dierkhising, R.A.; Watt, K.D. The evolution and impact of sarcopenia pre- and post-liver transplantation. Aliment. Pharmacol. Ther. 2019, 49, 807–813. [Google Scholar] [CrossRef]
- Carey, E.J.; Lai, J.C.; Sonnenday, C.; Tapper, E.B.; Tandon, P.; Duarte-Rojo, A.; Dunn, M.A.; Tsien, C.; Kallwitz, E.R.; Ng, V.; et al. A North American expert opinion statement on sarcopenia in liver transplantation. Hepatology 2019, 70, 1816–1829. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2018, 36, 49–64. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition: A consensus report from the global clinical nutrition community. Clin. Nutr. 2018, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharshi, S.; Sharma, B.C.; Srivastava, S. Malnutrition in cirrhosis increases morbidity and mortality. J. Gastroenterol. Hepatol. 2015, 30, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- 2017 Database of the French Biomedicine Agency. Available online: www.agence-biomedecine.fr/annexes/bilan2017/donnees/organes/05-foie/ (accessed on 2 September 2019).
- Kurkcu, M.; Meijer, R.I.; Lonterman, S.; Muller, M.; Schueren, M. The association between nutritional status and frailty characteristics among geriatric outpatients. Clin. Nutr. 2018, 23, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Carey, E.J.; Steidley, D.E.; Aqel, B.A.; Byrne, T.J.; Mekeel, K.L.; Rakela, J.; Vargas, H.E.; Douglas, D.D.; et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transplant. 2010, 16, 1373–1378. [Google Scholar] [CrossRef]
- Arora, S.; Mattina, C.; McAnenny, C.; Sullivan, N.O.; McGeeney, L.; Calder, N. The developpement and validation of a nutritional prioritizing tool for use in patients with chronic liver disease. J. Hepatol. 2012, 56, S241. [Google Scholar] [CrossRef]
- Borhofen, S.M.; Gerner, C.; Lehmann, J.; Fimmers, R.; Görtzen, J.; Hey, B.; Geiser, F.; Strassburg, C.P.; Trebicka, J. The Royal Free Hospital-Nutritional Prioritizing Tool is an independent predictor of deterioration of liver function and survival in cirrhosis. Dig. Dis. Sci. 2016, 61, 1735–1743. [Google Scholar] [CrossRef]
- Kalafateli, M.; Mantzoukis, K.; Choi, Y.Y.; Mohammad, A.O.; Arora, S.; Rodrigues, S.; Marie de Vos, M.; Papadimitriou, K.; Thorburn, D.; Beirne, J.O.; et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J. Cachexia Sarcopenia Muscle 2017, 8, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Booi, A.N.; Menendez, J.; Norton, H.J.; Anderson, W.E.; Ellis, A.C. Validation of a Screening Tool to Identify Undernutrition in Ambulatory Patients with Liver Cirrhosis. Nutr. Clin. Pract. 2015, 30, 683–689. [Google Scholar] [CrossRef]
- McFarlane, M.; Hammond, C.; Roper, T.; Mukarati, J.; Ford, R.; Burrell, J.; Gordon, V.; Burch, N. Comparing assessment tools for detecting undernutrition in patients with liver cirrhosis. Clin. Nutr. 2018, 23, 156–161. [Google Scholar] [CrossRef]
- Merli, M.; Berzigotti, A.; Zelber-Sagi, S.; Dasarathy, S.; Montagnese, S.; Genton, L. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 171–193. [Google Scholar] [CrossRef] [Green Version]
- Tandon, P.; Raman, M.; Mourtzakis, M.; Merli, M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology 2017, 65, 1044–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, B.; Dao, T.; Joubert, C.; Dupont-Lucas, C.; Gloro, R.; Nguyen-Khac, E.; Beaujard, E.; Mathurin, P.; Vastel, E.; Musikas, M.; et al. Randomised clinical trial: Enteral nutrition does not improve the long-term outcome of alcoholic cirrhotic patients with jaundice. Aliment. Pharmacol. Ther. 2012, 35, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Caregaro, L.; Alberino, F.; Amodio, P.; Merkel, C.; Bolognesi, M.; Angeli, P. Malnutrition in alcoholic and virus-related cirrhosis. Am. J. Clin. Nutr. 1996, 63, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Alberino, F.; Gatta, A.; Amodio, P.; Merkel, C.; Pascoli, L.D.; Boffo, G.; Caregaro, M.D. Nutrition and survival in patients with liver cirrhosis. Nutrition 2001, 17, 445–450. [Google Scholar] [CrossRef]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.J.; Lal, S.; Strauss, B.J.; Todd, C.; Pilling, M.; Burden, S.T. Measurement of Muscle Mass and Sarcopenia Using Anthropometry, Bioelectrical Impedance, and Computed Tomography in Surgical Patients with Colorectal Malignancy: Comparison of Agreement Between Methods. Nutr. Cancer 2019, 4, 1–10. [Google Scholar] [CrossRef]
- Miola, T.M.; Conceição, E.L.; Souza, J.d.O.; Barbosa, P.N.V.; Coimbra, F.J.F.; Bitencourt, A.G.V. CT assessment of nutritional status and lean body mass in gastric and esophageal cancer. Appl. Cancer Res. 2018, 38, 12. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Zhou, X.; Yuan, L.; Niu, L.Y.; Zhang, A.; Shi, H.; Duan, Z.P.; Xu, J. Prognostic value of the third lumbar skeletal muscle mass index in patients with liver cirrhosis and ascites. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Pirlich, M.; Schütz, T.; Spachos, T.; Ertl, S.; Weiss, M.L.; Lochs, H.; Plauth, M. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology 2000, 32, 1208–1215. [Google Scholar] [CrossRef]
- Ruiz-Margáin, A.; Macías-Rodríguez, R.U.; Duarte-Rojo, A.; Ríos-Torres, S.L.; Espinosa-Cuevas, Á.; Torre, A. Malnutrition assessed through phase angle and its relation to prognosis in patients with compensated liver cirrhosis: A prospective cohort study. Dig. Liver Dis. 2015, 47, 309–314. [Google Scholar] [CrossRef]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip Strength adds more prognostic value to the Model for End-Stage Liver Disease score than imaging-based measures of muscle mass in men with cirrhosis. Liver Transplant. 2019, 25, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Daphnee, D.K.; John, S.; Vaidya, A.; Khakhar, A.; Bhuvaneshwari, S.; Ramamurthy, A. Hand grip strength: A reliable, reproducible, cost-effective tool to assess the nutritional status and outcomes of cirrhotics awaiting liver transplant. Clin. Nutr. 2017, 19, 49–53. [Google Scholar] [CrossRef]
- Wang, C.W.; Feng, S.; Covinsky, K.E.; Hayssen, H.; Zhou, L.Q.; Yeh, B.M. A Comparison of Muscle Function, Mass, and Quality in Liver Transplant Candidates. Transplantation 2016, 100, 1692–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Dasarathy, J.; McCullough, A.J.; Dasarathy, S. Sarcopenia in alcoholic liver disease: Clinical and molecular advances. Alcohol. Clin. Exp. Res. 2017, 41, 1419–1431. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Vugt, J.L.A.; Levolger, S.; Gharbharan, A.; Koek, M.; Niessen, W.J.; Burger, J.W.A. A comparative study of software programs for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J. Cachexia Sarcopenia Muscle 2017, 8, 285–297. [Google Scholar] [CrossRef]
- Vugt, J.L.A.; Coebergh, B.R.R.J.; Schippers, H.J.W.; Veen, K.M.; Levolger, S.; Bruin, R.W.F.; Koek, M.; Niessen, W.J.; IJzermans, J.N.M.; Willemsenb, F.E.J.A. Contrast-enhancement influences skeletal muscle density, but not skeletal muscle mass, measurements on computed tomography. Clin. Nutr. 2018, 37, 1707–1714. [Google Scholar] [CrossRef]
- Bhanji, R.A.; Moctezuma, V.C.; Duarte-Rojo, A.; Ebadi, M.; Ghosh, S.; Rose, C. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol. Int. 2018, 12, 377–386. [Google Scholar] [CrossRef]
- Werf, A.; Langius, J.A.E.; Schueren, M.A.E.; Nurmohame, S.A.; Pant, K.A.M.I.; Blauwhoff-Buskermolen, S. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur. J. Clin. Nutr. 2018, 72, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Montano-Loza, A.J.; Meza-Junco, J.; Baracos, V.E.; Prado, C.M.M.; Meeberg, G.; Beaumont, C.; Tandon, P.; Esfandiari, N.; Sawyer, M.B.; et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transplant. 2014, 20, 640–648. [Google Scholar] [CrossRef] [PubMed]
- DiMartini, A.; Cruz, R.J.; Dew, M.A.; Myaskovsky, L.; Goodpaster, B.; Fox, K.; Kim, K.; Fontes, P. Muscle mass predicts outcomes following liver transplantation. Liver Transplant. 2013, 19, 1172–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, N.; Nakagawa, H.; Kudo, Y.; Tateishi, R.; Taguri, M.; Watadani, T.; Nakagomi, R.; Kondo, M.; Nakatsuka, T.; Minami, T.; et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 2015, 63, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebadi, M.; Tandon, P.; Moctezuma-Velazquez, C.; Ghosh, S.; Baracos, V.E.; Mazurak, V.C.; Montano-Loza, A.J. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J. Hepatol. 2018, 69, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Golse, N.; Bucur, P.O.; Ciacio, O.; Pittau, G.; Cunha, A.; Adam, R. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transplant. 2017, 23, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Buyse, S.; Francoz, C.; Laouénan, C.; Bruno, O.; Belghiti, J.; Moreau, R.; Vilgrain, V.; Valla, D. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J. Hepatol. 2014, 60, 1151–1157. [Google Scholar] [CrossRef]
- Baracos, V.A. Psoas as a sentinel muscle for sarcopenia: A flawed premise. J. Cachexia Sarcopenia Muscle 2017, 8, 527–528. [Google Scholar] [CrossRef]
- Ebadi, M.; Wang, C.W.; Lai, J.C.; Dasarathy, S.; Kappus, M.R.; Dunn, M.A.; Carey, E.J.; Loza, A.J.M. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J. Cachexia Sarcopenia Muscle 2018, 9, 1053–1062. [Google Scholar] [CrossRef]
- Tachi, Y.; Kozuka, A.; Hirai, T.; Ishizu, Y.; Honda, T.; Kuzuya, T.; Hayashi, K.; Ishigami, M.; Goto, H. Impact of myosteatosis on skeletal muscle volume loss in patients with chronic liver disease. J. Gastroenterol. Hepatol. 2018, 33, 1659–1666. [Google Scholar] [CrossRef]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Shirai, H.; Yao, S. Proposal for new selection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation. J. Cachexia Sarcopenia Muscle 2018, 9, 246–254. [Google Scholar] [CrossRef]
- Lai, J.C.; Feng, S.; Terrault, N.A.; Lizaola, B.; Hayssen, H.; Covinsky, K. Frailty predicts waitlist mortality in liver transplant candidates. Am. J. Transplant. 2014, 14, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Frigo, A.C.; Tonon, M.; Angeli, P. Cardiovascular predictors of death in patients with cirrhosis. Hepatology 2017, 68, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therapondos, G.; Flapan, A.D.; Plevris, J.N.; Hayes, P.C. Cardiac Morbidity and Mortality Related to Orthotopic Liver Transplantation. Liver Transplant. 2004, 10, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.; Halegoua-De, M.D.; Reddy, S.; Wong, S.Y.; Cheung, M.; Mosca, H. Pre-liver transplant muscle loss is a risk factor for post-liver transplantation left ventricular systolic dysfunction. Ann. Transplant. 2017, 22, 759–764. [Google Scholar] [CrossRef]
- Kazemi-Bajestani, S.M.R.; Becher, H.; Fassbender, K.; Chu, Q.; Baracos, V.E. Concurrent evolution of cancer cachexia and heart failure: Bilateral effects exist. J. Cachexia Sarcopenia Muscle 2014, 5, 95–104. [Google Scholar] [CrossRef]
- Lin, J.; Lopez, E.F.; Jin, Y.; Remmen, H.V.; Bauch, T.; Han, H.C.; Lindse, M.L. Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanism. Exp. Gerontol. 2008, 43, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Kazemi-Bajestani, S.M.R.; Becher, H.; Ghosh, S.; Montano-Loza, A.J.; Baracos, V.E. Concurrent depletion of skeletal muscle, fat, and left ventricular mass in patients with cirrhosis of the liver. J. Cachexia Sarcopenia Muscle 2016, 7, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Bhanji, R.A.; Montano-Loza, A.J.; Watt, K.D. Sarcopenia in cirrhosis: Looking beyond the skeletal muscle loss to see the systemic disease. Hepatology 2019, 70, 2193–2203. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef]
- Von Haehling, S. Muscle wasting and sarcopenia in heart failure: A brief overview of the current literature. ESC Heart Fail. 2018, 5, 1074–1082. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, E.; Konishi, M.; Matsuzawa, Y.; Endo, M.; Suzuki, H.; Nakayama, N.; Maejima, N.; Iwahashi, N.; Tsukahara, K.; Tahara, Y.; et al. Sarcopenia is Associated with the Severity of Heart Failure in Patients with Acute Decompensated Heart Failure. J. Am. Coll. Cardiol. 2019, 63, A545. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Ponikowski, P.; Varney, S.; Chua, T.P.; Clark, A.L.; Webb-Peploe, K.M. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997, 349, 1050–1053. [Google Scholar] [CrossRef]
- Moller, S. Cirrhotic cardiomyopathy. J. Hepatol. 2010, 53, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalaitzakis, E.; Rosengren, A.; Skommevik, T.; Björnsson, E. Coronary artery disease in patients with liver cirrhosis. Dig. Dis. Sci. 2010, 55, 467–475. [Google Scholar] [CrossRef]
- Patel, S.S.; Lin, F.P.; Rodriguez, V.A.; Bhati, C.; John, B.V.; Pence, T.; Siddiqui, M.B.; Sima, A.P.; Abbate, A.; Reichman, T.; et al. The relationship between coronary artery disease and cardiovascular events early after liver transplantation. Liver Int. 2019, 39, 1363–1371. [Google Scholar] [CrossRef]
- Elliott, J.E.; Greising, S.M.; Mantilla, C.B.; Sieck, G.C. Functional impact of sarcopenia in respiratory muscles. Respir. Physiol. Neurobiol. 2016, 226, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Syabbalo, N. Assessment of respiratory muscle function and strength. Postgrad. Med. J. 1998, 74, 208–215. [Google Scholar] [CrossRef]
- Ohara, D.G.; Pegorari, M.S.; Oliveira, D.S.N.L.; Fátima, R.S.C.; Monteiro, R.L.; Matos, A.P.; Jamami, M. Respiratory muscle strength as a discriminator of sarcopenia in community-dwelling elderly: A cross-sectional study. J. Nutr. Health Aging 2018, 22, 952–958. [Google Scholar] [CrossRef]
- Bahat, G.; Tufan, A.; Ozkaya, H.; Tufan, F.; Akpinar, T.S.; Akin, S. Relation between hand grip strength, respiratory muscle strength, and spirometric measures in male nursing home residents. Aging Male 2014, 17, 136–140. [Google Scholar] [CrossRef]
- Malinchoc, M.; Kamath, P.S.; Gordon, F.D.; Peine, C.J.; Rank, J.; Borg, P.C. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000, 31, 864–871. [Google Scholar] [CrossRef]
- Nagai, S.; Chau, L.C.; Schilke, R.E.; Safwan, M.; Rizzari, M.; Collins, K.; Yoshida, A.; Abouljoud, M.S.; Moonka, D. Effects of allocating livers for transplantation based on Model for End-Stage Liver Disease–Sodium scores on patient outcomes. Gastroenterology 2018, 155, 1451–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montano-Loza, A.J.; Duarte-Rojo, A.; Meza-Junco, J.; Baracos, V.E.; Sawyer, M.B.; Pang, J.X.Q. Inclusion of sarcopenia within MELD (MELD-Sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin. Transl. Gastroenterol. 2015, 6, e102. [Google Scholar] [CrossRef] [PubMed]
- Kuk, J.L.; Katzmarzyk, P.T.; Nichaman, M.Z.; Church, T.S.; Blair, S.N.; Ross, R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity 2006, 14, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Durand, F. Muscle mass vs. adipose tissue to predict outcome in cirrhosis: Which matters and in which patients. J. Hepatol. 2018, 69, 567–569. [Google Scholar] [CrossRef] [Green Version]
- Serra, M.C.; Ryan, A.S.; Goldberg, A.P. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity. Obes. Sci. Pract. 2017, 3, 106–114. [Google Scholar] [CrossRef]
- Mattiasson, I.; Rendell, M.; Törnquist, C.; Jeppsson, S.; Hulthén, U.L. Effects of estrogen replacement therapy on abdominal fat compartments as related to glucose and lipid metabolism in early postmenopausal women. Horm. Metab. Res. 2002, 34, 583–588. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 146–156. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A Global Clinical Measure of Fitness and Frailty in Elderly People. CMAJ 2005, 173, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Tandon, P.; Tangri, N.; Thomas, L.; Zenith, L.; Shaikh, T.; Carbonneau, M. A rapid bedside screen to predict unplanned hospitalization and death in outpatients with cirrhosis: A prospective evaluation of the clinical frailty scale. Am. J. Gastroenterol. 2016, 111, 1759–1767. [Google Scholar] [CrossRef]
- Tapper, E.B.; Baki, J.; Parikh, N.D.; Lok, A.S. Frailty, psychoactive medications, and cognitive dysfunction are associated with poor patient-reported outcomes in cirrhosis. Hepatology 2019, 69, 1676–1685. [Google Scholar] [CrossRef]
- Ney, M.; Tangri, N.; Dobbs, B.; Bajaj, J.; Rolfson, D.; Ma, M. Predicting hepatic encephalopathy-related hospitalizations using a composite assessment of cognitive impairment and frailty in 355 patients with cirrhosis. Am. J. Gastroenterol. 2018, 113, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Covinsky, K.E.; Dodge, J.L.; Boscardin, W.J.; Segev, D.L.; Roberts, J.P.; Feng, S. Development of a Novel Frailty Index to Predict Mortality in Patients with End-Stage Liver Disease. Hepatology 2017, 66, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Rahimi, R.S.; Verna, E.C.; Kappus, M.R.; Dunn, M.A.; McAdams-DeMarco, M.; Haugen, C.E.; Volk, M.L.; Duarte-Rojo, A.; Ganger, D.R.; et al. Frailty Associated With Waitlist Mortality Independent of Ascites and Hepatic Encephalopathy in a Multicenter Study. Gastroenterology 2019, 156, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Dodge, J.L.; Sen, S.; Covinsky, K.; Feng, S. Functional decline in patients with cirrhosis awaiting liver transplantation: Results from the functional assessment in liver transplantation (FrAILT) study. Hepatology 2015, 63, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Dunn, M.; Josbeno, D.; Tevar, A.; Rachakonda, V.; Ganesh, S.; Schmotzer, A. Frailty as Tested by Gait Speed is an Independent Risk Factor for Cirrhosis Complications that Require Hospitalization. Am. J. Gastroenterol. 2016, 111, 1768–1775. [Google Scholar] [CrossRef]
- Lai, J.C.; Sonnenday, C.J.; Tapper, E.B.; Duarte-Rojo, A.; Dunn, M.A.; Bernal, W.; Carey, E.J.; Dasarathy, S.; Kamath, B.M.; Kappus, M.R.; et al. Frailty in liver transplantation: An expert opinion statement from the American Society of Transplantation Liver and Intestinal Community of Practice. Am. J. Transplant. 2019, 19, 1896–1906. [Google Scholar] [CrossRef]
- Bhanji, R.A.; Narayanan, P.; Moynagh, M.R.; Takahashi, N.; Angirekula, M.; Kennedy, C.C.; Mara, K.C.; Dierkhising, R.A.; Watt, K.D. Differing impact of sarcopenia and frailty in non-alcoholic steatohepatitis and alcoholic liver disease. Liver Transplant. 2019, 25, 14–24. [Google Scholar] [CrossRef]
- Eldridge, A.L.; Piernas, C.; Illner, A.K.; Gibney, M.J.; Gurinović, M.A.; Vries, J.H.M.; Cade, J.E. Evaluation of New Technology-Based Tools for Dietary Intake Assessment—An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients 2018, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, R.J.; Hughes, D.A.; Johnstone, A.M.; Rowley, E.; Reid, C.; Elia, M.; Stratton, R.; Delargy, H.; King, N.; Blundell, J.E. The use of visual analogue scales to assess motivation to eat in human subjects: A review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings. Br. J. Nutr. 2000, 84, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Eslamparast, T.; Vandermeer, B.; Raman, M.; Gramlich, L.; Den, H.V.; Belland, D.; Ma, M.; Tandon, P. Are predictive expenditure equations accurate in cirrhosis. Nutrients 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Dasarathy, S. Myostatin and beyond in cirrhosis: All roads lead to sarcopenia. J. Cachexia Sarcopenia Muscle 2017, 8, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S.; McCullough, A.J.; Muc, S.; Schneyer, A.; Bennett, C.D.; Dodig, M.; Kalhan, S.C. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J. Hepatol. 2011, 54, 915–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikawa, H.; Enomoto, H.; Ishii, A.; Iwata, Y.; Miyamoto, Y.; Ishii, N.; Yuri, Y.; Hasegawa, K.; Nakano, C.; Nishimura, T.; et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J. Cachexia Sarcopenia Muscle 2017, 8, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Campollo, O.; Sprengers, D.; McIntyre, N. The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev. Investig. Clin. 1992, 44, 513–518. [Google Scholar]
- Steigmann, F.; Szanto, P.B.; Poulos, A.; Lim, P.E.; Dubin, A. Significance of serum aminograms in diagnosis and prognosis of liver diseases. J. Clin. Gastroenterol. 1984, 6, 453–460. [Google Scholar] [PubMed]
- Kinny-Köster, B.; Bartels, M.; Becker, S.; Scholz, M.; Thiery, J.; Ceglarek, U. Plasma amino acid concentrations predict mortality in patients with end-stage liver disease. PLoS ONE 2016, 11, e0159205. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, K.; Koizumi, K.; Ichimura, H.; Oka, S.; Takada, H.; Kuwayama, H. Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease. Hepatol. Res. 2008, 38, 267–272. [Google Scholar] [CrossRef]
- Tandon, P.; Low, G.; Mourtzakis, M.; Zenith, L.; Myers, R.P.; Abraldes, J.G.; Shaheen, A.A.M.; Qamar, H.; Mansoor, N.; Carbonneau, M.; et al. A Model to Identify Sarcopenia in Patients With Cirrhosis.A model to identify sarcopenia in cirrhosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1473–1480. [Google Scholar] [CrossRef]
- Schweitzer, L.; Geisler, C.; Pourhassan, M.; Braun, W.; Glüer, C.C.; Bosy-Westphal, A.; Müller, M.J. What is the best reference site for a single MRI slice to assess wholebody skeletal muscle and adipose tissue volumes in healthy adults? Am. J. Clin. Nutr. 2015, 102, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Tandon, P.; Mourtzakis, M.; Low, G.; Zenith, L.; Ney, M.; Carbonneau, M.; Alaboudy, A.; Mann, S.; Esfandiari, N.; Ma, M. Comparing the variability between measurements for sarcopenia using magnetic resonance imaging and computed tomography imaging. Am. J. Transplant. 2016, 16, 2766–2777. [Google Scholar] [CrossRef] [Green Version]
- Praktiknjo, M.; Book, M.; Luetkens, J.; Pohlmann, A.; Meyer, C.; Thomas, D.; Jansen, C.; Feist, A.; Chang, J.; Jochen Grimm, J.; et al. Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology 2018, 67, 1014–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surov, A.; Paul, L.; Meyer, H.J.; Schob, S.; Engelmann, C.; Wienke, A. Apparent diffusion coefficient is a novel imaging biomarker of myopathic changes in liver cirrhosis. J. Clin. Med. 2018, 7, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagnelie, P.C.; Leij-Halfwerk, S. Magnetic resonance spectroscopy to study hepatic metabolism in diffuse liver diseases, diabetes and cancer. World J. Gastroenterol. 2010, 16, 1577–1586. [Google Scholar] [CrossRef]
- Corbin, I.R.; Ryner, L.N.; Singh, H.; Minuk, G.Y. Quantitative hepatic phosphorus-31 magnetic resonance spectroscopy in compensated and decompensated cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, 379–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, E.B.; Hamberg, O.; Quistorff, B.; Ott, P. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Hepatology 2001, 34, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Román, E.; García-Galcerán, C.; Torrades, T.; Herrera, S.; Marín, A.; Doñate, M.; Alvarado-Tapias, E.; Malouf, J.; Nácher, L.; Serra-Grima, R.; et al. Effects of an exercise program on functional capacity, body composition and risk of falls in patients with cirrhosis: A randomized clinical trial. PLoS ONE 2016, 11, e0151652. [Google Scholar] [CrossRef]
- Nishida, Y.; Ide, Y.; Okada, M.; Otsuka, T.; Eguchi, Y.; Ozaki, I. Effects of home-based exercise and branched chain amino acid supplementation on aerobic capacity and glycemic control in patients with cirrhosis. Hepatol. Res. 2017, 47, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Debette-Gratien, M.; Tabouret, T.; Antonini, M.T.; Dalmay, F.; Carrier, P.; Legros, R. Personalized adapted physical activity before liver transplantation: Acceptability and results. Transplantation 2015, 99, 145–150. [Google Scholar] [CrossRef]
- Yurci, A.; Yucesoy, M.; Unluhizarci, K.; Torun, E.; Gursoy, S.; Baskol, M.; Guven, K.; Ozbakir, O. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin. Res. Hepatol. Gastroenterol. 2011, 35, 845–854. [Google Scholar] [CrossRef]
- Tsien, C.; Shah, S.N.; McCullough, A.J.; Dasarathy, S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur. J. Gastroenterol. Hepatol. 2013, 25, 85–93. [Google Scholar] [CrossRef]
- Aamann, L.; Dam, G.; Borre, M.; Drljevic-Nielsen, A.; Overgaard, K.; Andersen, H. Resistance training improves muscle size and muscle strength in liver cirrhosis, a randomized controlled trial. J. Hepatol. 2018, 68, S79. [Google Scholar] [CrossRef]
- Zenith, L.; Meena, N.; Ramadi, A.; Yavari, M.; Harvey, A.; Carbonneau, M.; Ma, M.; Abraldes, J.G.; Paterson, I.; Haykowsky, M.J.; et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2014, 12, 1920–1926. [Google Scholar] [CrossRef]
- Wiesner, R.; Edwards, E.; Freeman, R.; Harper, A.; Kim, R.; Kamath, P. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003, 124, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Mendenhall, C.L. Protein-Calorie Malnutrition in Alcoholic Liver Disease. In Nutrition and Alcohol; CRC Press: Boca Raton, FL, USA, 1992; pp. 363–384. [Google Scholar]
- Woo, J.; Ho, S.C.; Yu, A.L. Walking speed and stride length predicts 36 months dependency, mortality, and institutionalization in Chinese aged 70 and older. J. Am. Geriatr. Soc. 1999, 47, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The “Get-upand Go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–399. [Google Scholar] [PubMed]
- Newman, A.B.; Simonsick, E.M.; Naydeck, B.L.; Boudreau, R.M.; Kritchevsky, S.B.; Nevitt, M.C.; Pahor, M.; Satterfield, S.; Brach, J.S.; Studenski, S.A.; et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA 2006, 295, 2018–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Probable sarcopenia is identified by Criterion 1 |
---|
Diagnosis is confirmed by additional documentation of Criterion 2. |
If Criteria 1, 2 and 3 are all met, sarcopenia is considered severe |
Criteria 1: low muscle strength |
Criteria 2: low muscle quality and/or quantity |
Criteria 3: low physical performance |
Body Mass Component | Tool | Parameter Evaluated | Clinical Relevance |
---|---|---|---|
Lean mass | Handgrip strength (kg): mean value of three consecutive measurements of the dominant arm gripping a dynamometer | Muscle function | Predictive of mortality in the LT waiting list [33,34] Decrease of the HGS value with the severity of cirrhosis [34] |
Skeletal muscle index on CT scan (cm2/m2): semi-automatic measure of skeletal muscles at L3 using HU thresholds of −29 to +150 normalized to the square of height | Muscle quantity | Predictive of mortality in the LT waiting list, especially in men [6,8] and in patients with HCC [45] Predictive of post-LT complications: longer ICU stay, longer hospital stay, higher days of intubation, increased risk of infections [19,44] | |
Myosteatosis on CT scan (HU): attenuation of skeletal muscle radiation at L3 | Muscle quality | Significant association with skeletal muscle depletion [51] Predictive of mortality in the LT waiting list [52] | |
Fat mass | Visceral adipose tissue on CT scan (cm2): semi-automatic measure at L3 using HU thresholds of −150 to −50 | Visceral fat | Association with mortality in patients with HCC [45] |
Subcutaneous adipose tissue on CT scan (cm2): semi-automatic measure at L3 using HU thresholds of −190 to −30 | Subcutaneous fat | Predictive of mortality in women waiting for LT [46] |
Phenotypic Criteria | Etiologic Criteria | |
---|---|---|
Reduced skeletal muscle index on CT scan at L3 level 50 cm2/m2 for men 39 cm2/m2 for women AND Altered muscle strength Handgrip strength < 18 kg for women and < 26 kg for men | Reduced food intake assessed by expert dietician or physician 50% of energy requirements > 1 week OR Any reduction for >2 weeks * | Evolving chronic Liver Disease |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchard, B.; Boirie, Y.; Cassagnes, L.; Lamblin, G.; Coilly, A.; Abergel, A. Assessment of Malnutrition, Sarcopenia and Frailty in Patients with Cirrhosis: Which Tools Should We Use in Clinical Practice? Nutrients 2020, 12, 186. https://doi.org/10.3390/nu12010186
Buchard B, Boirie Y, Cassagnes L, Lamblin G, Coilly A, Abergel A. Assessment of Malnutrition, Sarcopenia and Frailty in Patients with Cirrhosis: Which Tools Should We Use in Clinical Practice? Nutrients. 2020; 12(1):186. https://doi.org/10.3390/nu12010186
Chicago/Turabian StyleBuchard, Benjamin, Yves Boirie, Lucie Cassagnes, Géraldine Lamblin, A. Coilly, and Armando Abergel. 2020. "Assessment of Malnutrition, Sarcopenia and Frailty in Patients with Cirrhosis: Which Tools Should We Use in Clinical Practice?" Nutrients 12, no. 1: 186. https://doi.org/10.3390/nu12010186
APA StyleBuchard, B., Boirie, Y., Cassagnes, L., Lamblin, G., Coilly, A., & Abergel, A. (2020). Assessment of Malnutrition, Sarcopenia and Frailty in Patients with Cirrhosis: Which Tools Should We Use in Clinical Practice? Nutrients, 12(1), 186. https://doi.org/10.3390/nu12010186