Association of Total Flavonoid Intake with Hypo-HDL-Cholesterolemia among Korean Adults: Effect Modification by Polyunsaturated Fatty Acid Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Subjects
3.2. Association between Flavonoid or PUFA Intakes with Hypo-HDL-Cholesterolemia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016. Available online: https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html (accessed on 15 November 2019).
- Statistics Korea. Statistics on the Cause of Death in 2017. Available online: http://kostat.go.kr (accessed on 15 November 2019).
- Farmer, J.A.; Liao, J. Evolving concepts of the role of high-density lipoprotein in protection from atherosclerosis. Curr. Atheroscler. Rep. 2011, 13, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr.; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florentin, M.; Liberopoulos, E.N.; Wierzbicki, A.S.; Mikhailidis, D.P. Multiple actions of high-density lipoprotein. Curr. Opin. Cardiol. 2008, 23, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharm. Rev. 2000, 52, 673–751. [Google Scholar]
- Kim, Y.; Je, Y. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. Clin. Nutr. ESPEN 2017, 20, 68–77. [Google Scholar] [CrossRef]
- Millar, C.L.; Duclos, Q.; Blesso, C.N. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv. Nutr. 2017, 8, 226–239. [Google Scholar] [CrossRef]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, Cd003177. [Google Scholar] [CrossRef]
- Yanai, H.; Masui, Y.; Katsuyama, H.; Adachi, H.; Kawaguchi, A.; Hakoshima, M.; Waragai, Y.; Harigae, T.; Sako, A. An improvement of cardiovascular risk factors by omega-3 polyunsaturated fatty acids. J. Clin. Med. Res. 2018, 10, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Toufektsian, M.C.; Salen, P.; Laporte, F.; Tonelli, C.; De Lorgeril, M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J. Nutr. 2011, 141, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vauzour, D.; Rodriguez-Ramiro, I.; Rushbrook, S.; Ipharraguerre, I.R.; Bevan, D.; Davies, S.; Tejera, N.; Mena, P.; De Pascual-Teresa, S.; Del Rio, D.; et al. n-3 Fatty acids combined with flavan-3-ols prevent steatosis and liver injury in a murine model of NAFLD. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Giunta, B.; Hou, H.; Zhu, Y.; Salemi, J.; Ruscin, A.; Shytle, R.D.; Tan, J. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci. Lett. 2010, 471, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalin, M.F.; Zumoff, B. Sex hormones and coronary disease: A review of the clinical studies. Steroids 1990, 55, 330–352. [Google Scholar] [CrossRef]
- Sekikawa, A.; Kuller, L.H.; Ueshima, H.; Park, J.E.; Suh, I.; Jee, S.H.; Lee, H.K.; Pan, W.H. Coronary heart disease mortality trends in men in the post World War II birth cohorts aged 35–44 in Japan, South Korea and Taiwan compared with the United States. Int. J. Epidemiol. 1999, 28, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Castelli, W.P. Epidemiology of coronary heart disease: The Framingham study. Am. J. Med. 1984, 76, 4–12. [Google Scholar] [CrossRef]
- Maas, A.H.; Appelman, Y.E. Gender differences in coronary heart disease. Neth. Heart J. 2010, 18, 598–602. [Google Scholar] [CrossRef]
- Davis, C.E.; Williams, D.H.; Oganov, R.G.; Tao, S.C.; Rywik, S.L.; Stein, Y.; Little, J.A. Sex difference in high density lipoprotein cholesterol in six countries. Am. J. Epidemiol. 1996, 143, 1100–1106. [Google Scholar] [CrossRef]
- McNamara, J.R.; Campos, H.; Ordovas, J.M.; Peterson, J.; Wilson, P.W.; Schaefer, E.J. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study. Arteriosclerosis 1987, 7, 483–490. [Google Scholar] [CrossRef] [Green Version]
- The Korean Society of Lipid and Atherosclerosis. Dyslipidemia Fact Sheets in Korea. 2018. Available online: http://www.lipid.or.kr/file/Dyslipidemia%20Fact%20Sheets%20in%20Korea%202018.pdf (accessed on 15 November 2019).
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Korea Centers for Diseases Control and Prevention. Guidelines for Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_02_02.do?classType=4 (accessed on 15 November 2019).
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J. Nutr. 2015, 145, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Huang, X.; Zhang, Y.; Wang, Y.; Liu, Y.; Sun, R.; Xia, M. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J. Clin. Endocrinol. Metab. 2014, 99, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassellund, S.S.; Flaa, A.; Kjeldsen, S.E.; Seljeflot, I.; Karlsen, A.; Erlund, I.; Rostrup, M. Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: A double-blind randomized placebo-controlled crossover study. J. Hum. Hypertens. 2013, 27, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. Nmcd. 2013, 23, 843–849. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, M.; Yang, Y.; Liu, F.; Li, Z.; Hao, Y.; Mi, M.; Jin, T.; Ling, W. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin. Chem. 2011, 57, 1524–1533. [Google Scholar] [CrossRef] [Green Version]
- Penczynski, K.J.; Remer, T.; Herder, C.; Kalhoff, H.; Rienks, J.; Markgraf, D.F.; Roden, M.; Buyken, A.E. Habitual flavonoid intake from fruit and vegetables during adolescence and serum lipid levels in early adulthood: A prospective analysis. Nutrients 2018, 10, 488. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Vance, T.M.; Chun, O.K. Greater flavonoid intake is associated with improved CVD risk factors in US adults. Br. J. Nutr. 2016, 115, 1481–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrab, G.; Hosseinpour-Niazi, S.; Hejazi, J.; Yuzbashian, E.; Mirmiran, P.; Azizi, F. Dietary polyphenols and metabolic syndrome among Iranian adults. Int. J. Food Sci. Nutr. 2013, 64, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Vaccaro, O.; Masulli, M.; Bonora, E.; Del Prato, S.; Giorda, C.B.; Nicolucci, A.; Squatrito, S.; Auciello, S.; Babini, A.C.; et al. Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin. Nutr. 2017, 36, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, Y.; Zhang, Y.; Lang, J.; Chen, Y.; Ling, W. Estimated daily flavonoid and stilbene intake from fruits, vegetables, and nuts and associations with lipid profiles in Chinese adults. J. Acad. Nutr. Diet. 2013, 113, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Micek, A.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur. J. Nutr. 2017, 56, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Thiruchenduran, M.; Vijayan, N.A.; Sawaminathan, J.K.; Devaraj, S.N. Protective effect of grape seed proanthocyanidins against cholesterol cholic acid diet-induced hypercholesterolemia in rats. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2011, 20, 361–368. [Google Scholar] [CrossRef]
- Osada, K.; Suzuki, T.; Kawakami, Y.; Senda, M.; Kasai, A.; Sami, M.; Ohta, Y.; Kanda, T.; Ikeda, M. Dose-dependent hypocholesterolemic actions of dietary apple polyphenol in rats fed cholesterol. Lipids 2006, 41, 133–139. [Google Scholar] [CrossRef]
- Vinson, J.A.; Proch, J.; Bose, P. MegaNatural((R)) gold grapeseed extract: In vitro antioxidant and in vivo human supplementation studies. J. Med. Food 2001, 4, 17–26. [Google Scholar] [CrossRef]
- Wan, Y.; Vinson, J.A.; Etherton, T.D.; Proch, J.; Lazarus, S.A.; Kris-Etherton, P.M. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am. J. Clin. Nutr. 2001, 74, 596–602. [Google Scholar] [CrossRef]
- Vigna, G.B.; Costantini, F.; Aldini, G.; Carini, M.; Catapano, A.; Schena, F.; Tangerini, A.; Zanca, R.; Bombardelli, E.; Morazzoni, P.; et al. Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metab. Clin. Exp. 2003, 52, 1250–1257. [Google Scholar] [CrossRef]
- Kar, P.; Laight, D.; Rooprai, H.K.; Shaw, K.M.; Cummings, M. Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: A double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet. Med. J. Br. Diabet. Assoc. 2009, 26, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Al-Khudairy, L.; Abdelhamid, A.S.; Rees, K.; Brainard, J.S.; Brown, T.J.; Ajabnoor, S.M.; O’Brien, A.T.; Winstanley, L.E.; Donaldson, D.H.; et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, Cd011094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhamid, A.S.; Martin, N.; Bridges, C.; Brainard, J.S.; Wang, X.; Brown, T.J.; Hanson, S.; Jimoh, O.F.; Ajabnoor, S.M.; Deane, K.H.; et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, Cd012345. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef]
- Bibus, D.; Lands, B. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot. Essent. Fat. Acids 2015, 99, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Annuzzi, G.; Bozzetto, L.; Costabile, G.; Giacco, R.; Mangione, A.; Anniballi, G.; Vitale, M.; Vetrani, C.; Cipriano, P.; Della Corte, G.; et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Bub, A.; Malpuech-Brugere, C.; Orfila, C.; Amat, J.; Arianna, A.; Blot, A.; Di Nunzio, M.; Holmes, M.; Kertesz, Z.; Marshall, L.; et al. A Dietary intervention of bioactive enriched foods aimed at adults at risk of metabolic syndrome: Protocol and results from PATHWAY-27 pilot study. Nutrients 2019, 11, 1814. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Perez-Lopez, F.R.; Larrad-Mur, L.; Kallen, A.; Chedraui, P.; Taylor, H.S. Gender differences in cardiovascular disease: Hormonal and biochemical influences. Reprod. Sci. 2010, 17, 511–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.A.; De Silva, T.M.; Jackman, K.A.; Sobey, C.G. Effect of gender and sex hormones on vascular oxidative stress. Clin. Exp. Pharm. Physiol. 2007, 34, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Total Flavonoid Intake | p-Value 1 | Total Flavonoid Intake | p-Value | |||||
T1 (n = 1353) | T2 (n = 1354) | T3 (n = 1354) | T1 (n = 2088) | T2 (n = 2089) | T3 (n = 2088) | |||
Age, years, mean ± SE | 36.1 ± 0.4 | 38.7 ± 0.3 | 41.3 ± 0.4 | <0.0001 | 36.4 ± 0.3 | 39.7 ± 0.3 | 42.7 ± 0.3 | <0.0001 |
BMI, kg/m2, n (%) | ||||||||
<18.5 | 39 (2.9) | 29 (2.3) | 42 (3.3) | 0.1157 | 168 (9.1) | 148 (7.9) | 121 (6.4) | 0.0084 |
18.5 to <25 | 781 (57.3) | 794 (58.3) | 841 (61.7) | 1427 (68.3) | 1489 (72.0) | 1530 (73.2) | ||
≥25 | 533 (39.9) | 531 (39.3) | 471 (35.0) | 493 (22.6) | 452 (20.1) | 437 (20.4) | ||
Household income, n (%) | ||||||||
Low | 128 (9.9) | 90 (6.7) | 89 (6.8) | <0.0001 | 180 (8.9) | 158 (7.8) | 158 (7.7) | <0.0001 |
Middle-low | 352 (26.0) | 329 (24.4) | 275 (20.4) | 575 (27.9) | 505 (23.5) | 431 (19.5) | ||
Middle-high | 460 (34.0) | 446 (32.7) | 428 (32.0) | 695 (32.8) | 669 (31.9) | 658 (32.5) | ||
High | 408 (30.1) | 484 (36.3) | 559 (40.8) | 628 (30.4) | 753 (36.8) | 832 (40.3) | ||
Education level, n (%) | ||||||||
≤Middle school | 149 (9.4) | 140 (9.1) | 148 (9.2) | <0.0001 | 274 (11.5) | 295 (13.3) | 346 (14.8) | 0.0838 |
High school | 576 (48.9) | 509 (42.5) | 447 (37.4) | 811 (43.0) | 797 (41.2) | 800 (40.6) | ||
≥College | 527 (41.7) | 602 (48.4) | 672 (53.4) | 909 (45.5) | 882 (45.5) | 844 (44.5) | ||
Alcohol consumption 2, n (%) | ||||||||
None or low | 271 (20.2) | 307 (23.5) | 356 (27.2) | <0.0001 | 922 (43.7) | 965 (45.8) | 1169 (54.9) | <0.0001 |
Moderate | 298 (24.0) | 319 (24.8) | 374 (29.1) | 509 (24.6) | 577 (28.6) | 512 (25.4) | ||
High | 412 (32.7) | 403 (30.7) | 367 (28.2) | 415 (22.4) | 366 (19.1) | 303 (16.7) | ||
Very high | 316 (23.2) | 273 (21.0) | 208 (15.5) | 191 (9.3) | 126 (6.5) | 56 (3.0) | ||
Smoking status 3, n (%) | ||||||||
Never | 362 (30.4) | 383 (30.5) | 428 (35.7) | <0.0001 | 1771 (86.1) | 1844 (90.0) | 1919 (93.4) | <0.0001 |
Former | 264 (18.6) | 358 (25.8) | 444 (30.8) | 113 (5.9) | 80 (4.0) | 69 (3.7) | ||
Current | 671 (51.0) | 561 (43.7) | 433 (33.5) | 153 (8.0) | 110 (6.1) | 52 (2.9) | ||
Physical activity 4, n (%) | ||||||||
No | 573 (43.4) | 564 (42.3) | 554 (42.0) | 0.7571 | 1107 (53.2) | 1038 (50.1) | 1023 (49.9) | 0.1245 |
Yes | 676 (56.6) | 687 (57.7) | 712 (58.0) | 886 (46.8) | 937 (49.9) | 964 (50.1) | ||
Fasting blood cholesterol and triglyceride levels, mean ± SE | ||||||||
Total cholesterol, mg/dL | 189.6 ± 1.0 | 188.6 ± 1.0 | 192.4 ± 1.1 | 0.0293 | 184.9 ± 0.8 | 186.6 ± 0.8 | 190.6 ± 0.9 | <0.0001 |
Triglycerides, mg/dL | 157.8 ± 3.9 | 160.6 ± 4.1 | 150.3 ± 3.6 | 0.1211 | 99.5 ± 1.7 | 98.2 ± 1.6 | 99.0 ± 1.6 | 0.8469 |
HDL-cholesterol, mg/dL | 47.8 ± 0.3 | 48.1 ± 0.3 | 48.2 ± 0.3 | 0.6661 | 56.4 ± 0.3 | 56.3 ± 0.3 | 56.0 ± 0.3 | 0.6651 |
LDL-cholesterol 5, mg/dL | 112.3 ± 0.9 | 111.4 ± 0.9 | 116.1 ± 0.9 | 0.0006 | 109.0 ± 0.7 | 110.8 ± 0.7 | 114.9 ± 0.7 | <0.0001 |
Nutrient intakes 6, mean ± SE | ||||||||
Energy, Kcal/d | 2503.6 ± 25.7 | 2560.7 ± 25.9 | 2378.8 ± 24.7 | <0.0001 | 1828.3 ± 17.7 | 1858.9 ± 16.3 | 1736.0 ± 15.5 | <0.0001 |
Carbohydrate, g/d | 319.7 ± 2.3 | 328.3 ± 2.2 | 353.6 ± 2.1 | <0.0001 | 250.3 ± 1.3 | 259.4 ± 1.3 | 276.0 ± 1.3 | <0.0001 |
Protein, g/d | 80.6 ± 0.7 | 84.3 ± 0.7 | 82.5 ± 0.7 | 0.0021 | 59.3 ± 0.5 | 60.3 ± 0.4 | 58.3 ± 0.4 | 0.0049 |
Fat, g/d | 55.4 ± 0.7 | 55.0 ± 0.7 | 52.3 ± 0.7 | 0.0024 | 41.7 ± 0.4 | 40.3 ± 0.4 | 37.4 ± 0.5 | <0.0001 |
Total flavonoids, mg/d | 41.1 ± 0.6 | 117.3 ± 0.9 | 453.6 ± 14.2 | <0.0001 | 38.7 ± 0.5 | 129.1 ± 0.9 | 463.1 ± 10.2 | <0.0001 |
Flavonols, mg/d | 15.3 ± 0.3 | 28.2 ± 0.6 | 42.9 ± 2.1 | <0.0001 | 12.3 ± 0.2 | 21.0 ± 0.5 | 33.9 ± 1.4 | <0.0001 |
Flavones, mg/d | 0.9 ± 0.0 | 1.2 ± 0.0 | 2.3 ± 0.6 | <0.0001 | 0.8 ± 0.0 | 1.0 ± 0.0 | 1.6 ± 0.2 | <0.0001 |
Flavanones, mg/d | 0.9 ± 0.1 | 6.4 ± 0.6 | 17.0 ± 1.5 | <0.0001 | 1.7 ± 0.2 | 11.5 ± 0.8 | 20.6 ± 1.9 | <0.0001 |
Flavan-3-ols, mg/d | 1.6 ± 0.1 | 5.4 ± 0.3 | 62.9 ± 6.9 | <0.0001 | 1.9 ± 0.1 | 8.7 ± 0.4 | 68.9 ± 6.5 | <0.0001 |
Isoflavones, mg/d | 9.1 ± 0.3 | 20.0 ± 0.7 | 29.1 ± 1.4 | <0.0001 | 7.4 ± 0.2 | 15.1 ± 0.5 | 19.4 ± 1.0 | <0.0001 |
Anthocyanidins, mg/d | 9.9 ± 0.5 | 36.3 ± 1.6 | 113.9 ± 6.5 | <0.0001 | 9.7 ± 0.3 | 35.5 ± 1.1 | 115.1 ± 5.8 | <0.0001 |
Proanthocyanidins, mg/d | 4.6 ± 0.3 | 25.5 ± 1.6 | 282.1 ± 17.7 | <0.0001 | 6.2 ± 0.3 | 40.8 ± 1.3 | 286.1 ± 10.5 | <0.0001 |
Total PUFA, g/d | 11.8 ± 0.2 | 13.7 ± 0.2 | 13.4 ± 0.2 | <0.0001 | 9.3 ± 0.1 | 10.1 ± 0.1 | 9.7 ± 0.2 | <0.0001 |
n-6 PUFA, g/d | 10.4 ± 0.2 | 11.9 ± 0.2 | 11.5 ± 0.2 | <0.0001 | 8.1 ± 0.1 | 8.7 ± 0.1 | 8.2 ± 0.1 | 0.0003 |
n-3 PUFA, g/d | 1.5 ± 0.0 | 1.9 ± 0.0 | 1.9 ± 0.0 | <0.0001 | 1.2 ± 0.0 | 1.4 ± 0.0 | 1.5 ± 0.0 | <0.0001 |
n-6/n-3 PUFA | 9.6 ± 0.2 | 8.0 ± 0.1.0 | 7.7 ± 0.1 | <0.0001 | 8.9 ± 0.1 | 8.1 ± 0.1 | 7.4 ± 0.1 | <0.0001 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | p for Trend | T1 | T2 | T3 | p for Trend | |
Total flavonoid | 1.00 (ref) | 1.07 (0.86–1.33) | 0.85 (0.68–1.07) | 0.0788 | 1.00 (ref) | 1.11 (0.94–1.30) | 1.04 (0.89–1.22) | 0.8835 |
Flavonols | 1.00 (ref) | 1.15 (0.93–1.43) | 1.02 (0.82–1.26) | 0.9565 | 1.00 (ref) | 1.06 (0.91–1.25) | 1.05 (0.90–1.22) | 0.6386 |
Flavones | 1.00 (ref) | 1.07 (0.86–1.31) | 0.97 (0.78–1.20) | 0.6407 | 1.00 (ref) | 1.05 (0.90–1.24) | 1.14 (0.97–1.34) | 0.1036 |
Flavanones | 1.00 (ref) | 0.93 (0.75–1.15) | 0.88 (0.71–1.09) | 0.3346 | 1.00 (ref) | 1.03 (0.87–1.22) | 0.99 (0.84–1.16) | 0.7083 |
Flavan-3-ols | 1.00 (ref) | 0.99 (0.79–1.23) | 0.91 (0.72–1.16) | 0.4161 | 1.00 (ref) | 0.81 (0.68–0.96) | 1.03 (0.87–1.22) | 0.1413 |
Isoflavones | 1.00 (ref) | 0.88 (0.71–1.10) | 0.98 (0.80–1.21) | 0.8766 | 1.00 (ref) | 1.05 (0.90–1.23) | 0.95 (0.81–1.12) | 0.3849 |
Anthocyanidins | 1.00 (ref) | 0.99 (0.79–1.23) | 1.07 (0.85–1.34) | 0.5027 | 1.00 (ref) | 0.89 (0.76–1.05) | 1.05 (0.90–1.23) | 0.2299 |
Proanthocyanidins | 1.00 (ref) | 0.81 (0.64–1.02) | 0.74 (0.59–0.92) | 0.0330 | 1.00 (ref) | 0.99 (0.84–1.17) | 0.95 (0.81–1.12) | 0.5240 |
Total PUFA | 1.00 (ref) | 0.86 (0.69–1.08) | 0.93 (0.75–1.16) | 0.6621 | 1.00 (ref) | 0.99 (0.84–1.16) | 0.90 (0.76–1.06) | 0.1715 |
n-6 PUFA | 1.00 (ref) | 0.81 (0.65–1.00) | 0.92 (0.74–1.14) | 0.5850 | 1.00 (ref) | 0.97 (0.82–1.14) | 0.88 (0.74–1.04) | 0.1153 |
n-3 PUFA | 1.00 (ref) | 0.90 (0.73–1.12) | 1.08 (0.86–1.34) | 0.3713 | 1.00 (ref) | 1.02 (0.87–1.21) | 1.00 (0.86–1.17) | 0.9890 |
n-6/n-3 PUFA intake ratio | 1.00 (ref) | 0.98 (0.79–1.23) | 0.87 (0.69–1.09) | 0.2199 | 1.00 (ref) | 0.93 (0.79–1.09) | 0.88 (0.75–1.02) | 0.0843 |
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Flavonoid Intake | p for Trend | p for Interaction 4 | Total Flavonoid Intake | p for Trend | p for Interaction | |||||
T1 | T2 | T3 | T1 | T2 | T3 | |||||
Total PUFA intake | ||||||||||
Low (<median) | 1.00 (ref) | 1.09 (0.80–1.47) | 0.94 (0.68–1.28) | 0.5505 | 0.5494 | 1.00 (ref) | 1.07 (0.86–1.34) | 0.88 (0.70–1.10) | 0.1482 | 0.1785 |
High (≥median) | 1.00 (ref) | 1.07 (0.79–1.46) | 0.79 (0.56–1.11) | 0.0822 | 1.00 (ref) | 1.16 (0.91–1.47) | 1.25 (0.98–1.59) | 0.0987 | ||
n-6 PUFA intake | ||||||||||
Low (<median) | 1.00 (ref) | 1.07 (0.79–1.44) | 0.88 (0.65–1.20) | 0.3144 | 0.8782 | 1.00 (ref) | 1.12 (0.89–1.41) | 0.92 (0.74–1.15) | 0.2835 | 0.3247 |
High (≥median) | 1.00 (ref) | 1.09 (0.80–1.50) | 0.86 (0.60–1.21) | 0.2270 | 1.00 (ref) | 1.10 (0.87–1.40) | 1.18 (0.92–1.50) | 0.2103 | ||
n-3 PUFA intake | ||||||||||
Low (<median) | 1.00 (ref) | 1.16 (0.86–1.59) | 1.19 (0.87–1.63) | 0.3258 | 0.0038 | 1.00 (ref) | 1.19 (0.96–1.48) | 0.98 (0.78–1.24) | 0.6220 | 0.3757 |
High (≥median) | 1.00 (ref) | 0.93 (0.68–1.26) | 0.59 (0.42–0.82) | 0.0004 | 1.00 (ref) | 1.05 (0.83–1.33) | 1.10 (0.87–1.39) | 0.4645 | ||
n-6/n-3 PUFA intake ratio | ||||||||||
Low (<median) | 1.00 (ref) | 0.97 (0.71–1.33) | 0.67 (0.48–0.93) | 0.0053 | 0.1772 | 1.00 (ref) | 1.06 (0.85–1.34) | 1.00 (0.80–1.25) | 0.8256 | 0.9475 |
High (≥median) | 1.00 (ref) | 1.12 (0.83–1.51) | 1.06 (0.77–1.44) | 0.8344 | 1.00 (ref) | 1.14 (0.92–1.42) | 1.06 (0.84–1.34) | 0.7935 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.; Jun, S.; Joung, H. Association of Total Flavonoid Intake with Hypo-HDL-Cholesterolemia among Korean Adults: Effect Modification by Polyunsaturated Fatty Acid Intake. Nutrients 2020, 12, 195. https://doi.org/10.3390/nu12010195
Ahn S, Jun S, Joung H. Association of Total Flavonoid Intake with Hypo-HDL-Cholesterolemia among Korean Adults: Effect Modification by Polyunsaturated Fatty Acid Intake. Nutrients. 2020; 12(1):195. https://doi.org/10.3390/nu12010195
Chicago/Turabian StyleAhn, Seoeun, Shinyoung Jun, and Hyojee Joung. 2020. "Association of Total Flavonoid Intake with Hypo-HDL-Cholesterolemia among Korean Adults: Effect Modification by Polyunsaturated Fatty Acid Intake" Nutrients 12, no. 1: 195. https://doi.org/10.3390/nu12010195
APA StyleAhn, S., Jun, S., & Joung, H. (2020). Association of Total Flavonoid Intake with Hypo-HDL-Cholesterolemia among Korean Adults: Effect Modification by Polyunsaturated Fatty Acid Intake. Nutrients, 12(1), 195. https://doi.org/10.3390/nu12010195