Essential Amino Acid Supplement Lowers Intrahepatic Lipid despite Excess Alcohol Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Exclusion Criteria
2.3. Study Participants
2.4. EAAS Formulation
2.5. Intrahepatic Lipid (IHL)
2.6. Body Weight and Composition
2.7. Blood Measurements
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Afshar, M.; Burnham, E.L.; Joyce, C.; Clark, B.J.; Yong, M.; Gaydos, J.; Cooper, R.S.; Smith, G.S.; Kovacs, E.J.; Lowery, E.M. Cut-point levels of phosphatidylethanol to identify alcohol misuse in a mixed cohort including critically Ill patients. Alcohol. Clin. Exp. Res. 2017, 41, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Alcohol Abuse and Alcoholism. Alcohol Facts and Statistics. NIH Publication: Bethesda, MD, USA. Available online: https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-facts-and-statistics (accessed on 5 December 2019).
- Alcoholism. Alcohol Use Disorder: A Comparison between DSM-IV and DSM-V; NIH Publication: Bethesda, MD, USA, 2013. Available online: https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-use-disorder-comparison-between-dsm (accessed on 10 December 2019).
- Baldwin, L.-M.; Hassell, L.; Laukes, C.; Doyle, M.; Reedy, A.; Mollis, B.; Albritton, S.; Ciemins, E.; Coker, R.; Brant, J.; et al. The Northwest Participant and Clinical Interactions Network: Increasing opportunities for patients to participate in research across the Northwestern United States. J. Clin. Transl. Sci. 2017, 1, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bays, H.E. “Sick fat,” metabolic disease, and atherosclerosis. Am. J. Med. 2009, 122, S26–S37. [Google Scholar] [CrossRef] [PubMed]
- Begriche, K.; Massart, J.; Robin, M.A.; Borgne-Sanchez, A.; Fromenty, B. Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. J. Hepatol. 2011, 54, 773–794. [Google Scholar] [CrossRef] [PubMed]
- Børsheim, E.; Bui, Q.-U.T.; Tissier, S.; Cree, M.G.; Rønsen, O.; Morio, B.; Ferrando, A.A.; Kobayashi, H.; Wolfe, R.R. Amino acid supplementation decreases plasma and liver triacylglycerols in elderly. Nutrition 2009, 25, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Børsheim, E.; Bui, Q.-U.T.; Tissier, S.; Kobayashi, H.; Ferrando, A.A.; Wolfe, R.R. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin. Nutr. 2008, 27, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Burgess, E.; Hassmén, P.; Welvaert, M.; Pumpa, K.L. Behavioural treatment strategies improve adherence to lifestyle intervention programmes in adults with obesity: A systematic review and meta-analysis. Clin. Obes. 2017, 7, 105–114. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, K.; Chen, Y.; Li, Y.; Li, Y.; Fu, K.; Feng, R. Associations between dietary nutrient intakes and hepatic lipid contents in NAFLD patients quantified by 1 H-MRS and dual-echo MRI. Nutrients 2016, 8, 527. [Google Scholar] [CrossRef]
- Coker, R.H.; Miller, S.; Schutzler, S.; Deutz, N.E.; Wolfe, R.R. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr. J. 2012, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Coker, R.H.; Coker, M.S.; Bartlett, L.; Murphy, C.J.; Priebe, K.; Shriver, T.C.; Schoeller, D.A.; Ruby, B.C. The energy requirements and metabolic benefits of wilderness hunting in Alaska. Physiol. Rep. 2018, 6, e13925. [Google Scholar] [CrossRef]
- Coker, R.H.; Shin, K.; Scholten, K.; Johannsen, M.; Tsigonis, J.; Kim, I.Y.; Schutzler, S.E.; Wolfe, R.R. Essential amino acid-enriched meal replacement promotes superior net protein balance in older, overweight adults. Clin. Nutr. 2019, 38, 2821–2826. [Google Scholar] [CrossRef]
- Coker, R.H.; Murphy, C.J.; Johannsen, M.; Galvin, G.; Ruby, B.C. Wildland firefighting: Adverse influence on indices of metabolic and cardiovascular health. J. Occup. Environ. Med. 2019, 61, e91–e94. [Google Scholar] [CrossRef] [PubMed]
- Day, C.P.; James, O.F.W. Hepatic steatosis: Innocent bystander or guilty party? Hepatology 1998, 27, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Diehl, A.M.E.; Mitchell, M.C.; Herlong, H.F.; Potter, J.J.; Wacker, L.; Mezey, E. Changes in plasma amino acids during sobriety in alcoholic patients with and without liver disease. Am. J. Clin. Nutr. 1986, 44, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Li, M.; Chen, X.; Ni, H.; Lin, C.; Gao, W.; Lu, B.; Stolz, D.B.; Clemens, D.L.; Yin, X. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 2010, 139, 1740–1752. [Google Scholar] [CrossRef] [Green Version]
- Foerster, M.; Marques-Vidal, P.; Gmel, G.; Daeppen, J.-B.; Cornuz, J.; Hayoz, D.; Pecoud, A.; Mooser, V.; Waeber, G.; Vollenweider, P.; et al. Alcohol drinking and cardiovascular risk in a population with high mean alcohol consumption. Am. J. Cardiol. 2009, 103, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Griffin, J.W.D.; Bradshaw, P.C. Effects of a high protein diet and liver disease in an in silico model of human ammonia metabolism. Theor. Biol. Med. Model. 2019, 16, 11–14. [Google Scholar] [CrossRef]
- Hamad, E.M.; Taha, S.H.; Abou Dawood, A.G.I.; Sitohy, M.Z.; Abdel-Hamid, M. Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids Health Dis. 2011, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, J.B.; Cahill, A.; Pastorino, J.G. Alcohol and mitochondria: A dysfunctional relationship. Gastroenterology 2002, 122, 2049–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holecek, M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition 2010, 26, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Jeznach-Steinhagen, A.; Ostrowska, J.; Czerwonogrodzka-Senczyna, A.; Boniecka, I.; Gronostajska, W. Dietetary recommendation for non-alcoholic fatty liver disease. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2017, 9, 18–23. [Google Scholar]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 2006, 191, E381–E387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranzler, H.R.; Soyka, M. Diagnosis and pharmacotherapy of alcohol use disorder a review. JAMA 2018, 320, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122, 3589–3594. [Google Scholar] [CrossRef] [Green Version]
- Larson-Meyer, D.E.; Heilbronn, L.K.; Redman, L.M.; Newcomer, B.R.; Frisard, M.I.; Anton, S.; Smith, S.R.; Alfonso, A.; Ravussin, E. Effect of calorie restriction with or without exercise on insulin sensitivity, β-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care 2006, 29, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.J. Alcohol and nutrient intake: Mechanisms of reinforcement and dependence. Physiol. Behav. 2011, 104, 138–142. [Google Scholar] [CrossRef]
- Liangpunsakul, S.; Qi, R.; Crabb, D.W.; Witzmann, F. Relationship between alcohol drinking and aspartate aminotransferase: Alanine aminotransferase (AST:ALT) ratio, mean corpuscular volume (MCV), gamma-glutamyl transpeptidase (GGT), and apolipoprotein A1 and B in the U.S. population. J. Stud. Alcohol Drugs. 2010, 71, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Lieber, C.S. Relationships between nutrition, alcohol use, and liver disease. Alcohol Res. Health 2003, 27, 220–231. [Google Scholar]
- Matsubara, F.; Nagai, Y.; Tsukiyama, H.; Shimizu, H.; Yamanouchi, E.; Iwamoto, T.; Sada, Y.; Kato, H.; Ohta, A.; Tanaka, Y. Proposed cut-off value of the intrahepatic lipid content for metabolically normal persons assessed by proton magnetic resonance spectroscopy in a Japanese population. Diabetes Res. Clin. Pract. 2016, 119, 75–82. [Google Scholar] [CrossRef] [Green Version]
- McCarty, M.F. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med. Hypotheses 2013, 80, 456–462. [Google Scholar] [CrossRef]
- Melser, S.; Lavie, J.; Bénard, G. Mitochondrial degradation and energy metabolism. Biochim. Biophys. Acta 2015, 1853, 2812–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendenhall, C.L.; Moritz, T.E.; Roselle, G.A.; Morgan, T.R.; Nemchausky, B.A.; Tamburro, C.H.; Schiff, E.R.; McClain, C.J.; Marsano, L.S.; Allen, J.I.; et al. A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: Results of a department of veterans affairs cooperative study. Hepatology 1993, 17, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, C.; Roselle, G.A.; Gartside, P.; Moritz, T. Relationship of protein calorie malnutrition to alcoholic liver disease: A reexamination of data from two veterans administration cooperative studies. Alcohol. Clin. Exp. Res. 1995, 19, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Ontko, J.A. Effects of ethanol on the metabolism of free fatty acids in isolated liver cells. J. Lipid Res. 1973, 14, 78–86. [Google Scholar] [PubMed]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, J.K.; Rao, M.S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G852–G858. [Google Scholar] [CrossRef] [Green Version]
- Rehm, J.; Gmel, G.E.; Gmel, G.; Hasan, O.S.M.; Imtiaz, S.; Popova, S.; Probst, C.; Roerecke, M.; Room, R.; Samokhvalov, A.V.; et al. The relationship between different dimensions of alcohol use and the burden of disease—An update. Addiction 2017, 112, 968–1001. [Google Scholar] [CrossRef] [Green Version]
- Rinella, M.E. Nonalcoholic fatty liver disease a systematic review. JAMA 2015, 313, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Ross-Inta, C.; Tsai, C.Y.; Giulivi, C. The mitochondrial pool of free amino acids reflects the composition of mitochondrial DNA-encoded proteins: Indication of a posttranslational quality control for protein synthesis. Biosci. Rep. 2008, 28, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solon-Biet, S.M.; Cogger, V.C.; Pulpitel, T.; Wahl, D.; Clark, X.; Bagley, E.E.; Gregoriou, G.C.; Senior, A.M.; Wang, Q.P.; Brandon, A.E.; et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 2019, 1, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, K.; Shimizu, Y. Branched-chain amino acids in liver diseases. World J. Gastroenterol. 2013, 19, 7620–7629. [Google Scholar] [CrossRef] [PubMed]
- Theytaz, F.; Noguchi, Y.; Egli, L.; Campos, V.; Buehler, T.; Hodson, L.; Patterson, B.W.; Nishikata, N.; Mittendorfer, B.; Fielding, B.; et al. Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans. Am. J. Clin. Nutr. 2012, 96, 1008–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoreen, C.C.; Chantranupong, L.; Keys, H.R.; Wang, T.; Gray, N.S.; Sabatini, D.M. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Torruellas, C.; French, S.W.; Medici, V. Diagnosis of alcoholic liver disease. World J. Gastroenterol. 2014, 20, 11684–11699. [Google Scholar] [CrossRef] [PubMed]
- Toshikuni, N.; Tsutsumi, M.; Arisawa, T. Clinical differences between alcoholic liver disease and nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 8393–8406. [Google Scholar] [CrossRef] [PubMed]
- Van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav. 2008, 94, 231–241. [Google Scholar] [CrossRef]
- Vancampfort, D.; Hallgren, M.; Mugisha, J.; De Hert, M.; Probst, M.; Monsieur, D.; Stubbs, B. The prevalence of metabolic syndrome in alcohol use disorders: A systematic review and meta-analysis. Alcohol Alcohol. 2016, 51, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Viel, G.; Boscolo-Berto, R.; Cecchetto, G.; Fais, P.; Nalesso, A.; Ferrara, S.D. Phosphatidylethanol in blood as a marker of chronic alcohol use: A systematic review and meta-analysis. Int. J. Mol. Sci. 2012, 13, 14788–14812. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Cifelli, A.M.; Kostas, G.; Kim, I.-Y. Optimizing protein intake in adults: Interpretation and application of the recommended dietary allowance compared with the acceptable macronutrient distribution range. Adv. Nutr. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- World Health Organization. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008; Available online: https://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/ (accessed on 5 December 2019). [CrossRef]
- Baraona, E.; Lieber, C.S. Effect of ethanol on lipid metabolism. J. Lipid. Res. 1979, 20, 289–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Shao, J.; Wu, C.-Y.; Shu, L.; Dong, W.; Liu, Y.; Chen, M.; Wynn, R.M.; Wang, J.; Wang, J.; et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 2019, 68, 1730–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Low Dose (8 g) | High Dose (13 g) | |
---|---|---|
Essential Amino Acids (mg) | ||
Leucine | 1483 | 2410 |
Isoleucine | 732 | 1190 |
Valine | 954 | 1550 |
Methionine | 345 | 560 |
Histidine | 363 | 590 |
Lysine | 1102 | 1790 |
Threonine | 548 | 890 |
Phenylalanine | 911 | 1480 |
Tryptophan | 148 | 240 |
Other Ingredients (mg) | ||
Glutamine | 123 | 200 |
Carnitine | 308 | 500 |
Niacinamide | 77 | 125 |
Ascorbic Acid | 308 | 500 |
Caffeine | 62 | 100 |
Sucralose | QS | QS |
Acesulfame Potassium | QS | QS |
Citric Acid | QS | QS |
Malic Acid | QS | QS |
Sodium Citrate | QS | QS |
Flavors | QS | QS |
Pre-EAAS LD | Post-EAAS LD | Pre-EAAS HD | Post-EAAS HD | NORMAL RANGE | |
---|---|---|---|---|---|
Sex (F/M) | 4/4 | 4/4 | 2/7 | 2/7 | - |
Weight (kg) | 81 ± 11 | 81 ± 10 | 74 ± 11 | 74 ± 12 | - |
Body Mass Index (kg/m2) | 26 ± 3 | 26 ± 1 | 25 ± 4 | 25 ± 4 | 18.5–25.9 |
Fat Mass (kg) | 20 ± 7 | 19 ± 7 | 19 ± 7 | 19 ± 7 | - |
Lean Tissue Mass (kg) | 57 ± 11 | 58 ± 11 | 51 ± 8 | 51 ± 8 | - |
Total Cholesterol (mg/dL) | 187 ± 26 | 176 ± 21 | 184 ± 32 | 186 ± 35 | 100–199 |
LDL-cholesterol (mg/dL) | 100 ± 22 | 87 ± 21 | 105 ± 17 | 103 ± 21 | 0–99 |
VLDL-cholesterol (mg/dL) | 23 ± 13 | 35 ± 24 | 22 ± 22 | 23 ± 20 | 5–40 |
HDL-cholesterol (mg/dL) | 57 ± 13 | 55 ± 14 | 58 ± 12 | 60 ± 12 | >39 |
Triglycerides (mg/dL) | 152 ± 113 | 175 ± 115 | 107 ± 13 | 117 ± 98 | 0–149 |
Albumin (g/dL) | 4.5 ± 0.4 | 4.4 ± 0.3 | 4.5 ± 0.2 | 4.6 ± 0.1 | 3.5–5.5 |
ALT (IU/L) | 25 ± 11 | 18 ± 7 | 20 ± 10 | 18 ± 9 | 0–44 |
AST (IU/L) | 23 ± 7 | 19 ± 5 | 22 ± 6 | 29 ± 21 | 0–40 |
Bilirubin-total (mg/dL) | 0.5 ± 0.3 | 0.5 ± 0.3 | 0.7 ± 0.6 | 0.6 ± 0.2 | 0.0–1.2 |
Bilirubin-direct (mg/dL) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.0–0.4 |
Protein-total (g/dL) | 7.1 ± 0.4 | 6.7 ± 0.4 | 7.0 ± 0.4 | 6.8 ± 0.4 | 6.0–8.5 |
BUN (mg/dL) | 14 ± 4 | 14 ± 4 | 16 ± 5 | 16 ± 4 | 6–24 |
Calcium (mg/dL) | 9.4 ± 0.2 | 9.5 ± 0.2 | 9.5 ± 0.3 | 9.4 ± 0.3 | 8.7–10.2 |
Carbon Dioxide (mmol/L) | 24 ± 1 | 24 ± 1 | 24 ± 2 | 25 ± 1 | 20–29 |
Chloride (mmol/L) | 102 ± 1 | 100 ± 1 | 101 ± 2 | 101 ± 2 | 96–106 |
Creatinine (mg/dL) | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.76–1.27 |
Glucose (mg/dL) | 90 ± 7 | 90 ± 5 | 85 ± 5 | 86 ± 7 | 65–99 |
Potassium (mmol/L) | 4.5 ± 0.4 | 4.3 ± 0.2 | 4.3 ± 0.2 | 4.4 ± 0.2 | 3.5–5.2 |
Sodium (mmol/L) | 141 ± 1 | 140 ± 2 | 141 ± 1 | 142 ± 1 | 134–144 |
Peth (ng/mL) | 407 ± 141 | 429 ± 196 | 429 ± 196 | 422 ± 224 | <20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coker, M.S.; Ladd, K.R.; Kim, J.; Murphy, C.J.; DeCort, R.; Newcomer, B.R.; Wolfe, R.R.; Coker, R.H. Essential Amino Acid Supplement Lowers Intrahepatic Lipid despite Excess Alcohol Consumption. Nutrients 2020, 12, 254. https://doi.org/10.3390/nu12010254
Coker MS, Ladd KR, Kim J, Murphy CJ, DeCort R, Newcomer BR, Wolfe RR, Coker RH. Essential Amino Acid Supplement Lowers Intrahepatic Lipid despite Excess Alcohol Consumption. Nutrients. 2020; 12(1):254. https://doi.org/10.3390/nu12010254
Chicago/Turabian StyleCoker, Melynda S., Kaylee R. Ladd, Jimin Kim, Carl J. Murphy, Ryan DeCort, Bradley R. Newcomer, Robert R. Wolfe, and Robert H. Coker. 2020. "Essential Amino Acid Supplement Lowers Intrahepatic Lipid despite Excess Alcohol Consumption" Nutrients 12, no. 1: 254. https://doi.org/10.3390/nu12010254
APA StyleCoker, M. S., Ladd, K. R., Kim, J., Murphy, C. J., DeCort, R., Newcomer, B. R., Wolfe, R. R., & Coker, R. H. (2020). Essential Amino Acid Supplement Lowers Intrahepatic Lipid despite Excess Alcohol Consumption. Nutrients, 12(1), 254. https://doi.org/10.3390/nu12010254