Sexually Dimorphic Response of Increasing Dietary Intake of High Amylose Wheat on Metabolic and Reproductive Outcomes in Male and Female Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Materials
2.2. Animals and Dietary Interventions
2.3. Body Weight and Food Intake
2.4. Metabolic Measurement
2.5. Oestrus Cycle Assessment
2.6. Blood and Tissue Collection
2.7. Biochemical Analyses
2.8. Statistical Analysis
3. Results
3.1. Food Intake and Energy Intake
3.2. Energy Expenditure, RQ, Water Intake and Ambulatory Activity
3.3. Body Weight, Abdominal Circumference, Nose–Anus Length, Relative Fat Mass and Relative Organ Weights
3.4. Plasma Hormone and Metabolite Concentrations
3.5. Markers of Reproductive Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Sharma, S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3051–3071. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, M.P. Health benefits of dietary whole grains: An umbrella review of meta-analyses. J. Chiropr. Med. 2017, 16, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskins, A.J.; Chiu, Y.H.; Williams, P.L.; Keller, M.G.; Toth, T.L.; Hauser, R.; Chavarro, J.E. Maternal whole grain intake and outcomes of in vitro fertilization. Fertil. Steril. 2016, 105, 1503–1510.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Andrews, K.G.; Engell, R.E.; Mozaffarian, D. Global, regional and national consumption of major food groups in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015, 5, e008705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galea, L.M.; Beck, E.J.; Probst, Y.C.; Cashman, C.J. Whole grain intake of Australians estimated from a cross-sectional analysis of dietary intake data from the 2011–13 Australian health survey. Public Health Nutr. 2017, 20, 2166–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pingali, P. Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef]
- Bird, A.R.; Regina, A. High amylose wheat: A platform for delivering human health benefits. J. Cereal Sci. 2018, 82, 99–105. [Google Scholar] [CrossRef]
- Hallstrom, E.; Sestili, F.; Lafiandra, D.; Bjorck, I.; Ostman, E. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food Nutr. Res. 2011, 55, 7074. [Google Scholar] [CrossRef]
- Regina, A.; Berbezy, P.; Kosar-Hashemi, B.; Li, S.; Cmiel, M.; Larroque, O.; Bird, A.R.; Swain, S.M.; Cavanagh, C.; Jobling, S.A.; et al. A genetic strategy generating wheat with very high amylose content. Plant Biotechnol. J. 2015, 13, 1276–1286. [Google Scholar] [CrossRef]
- Van Hung, P.; Maeda, T.; Morita, N. Waxy and high-amylose wheat starches and flours—Characteristics, functionality and application. Trends Food Sci. Technol. 2006, 17, 448–456. [Google Scholar] [CrossRef]
- Slade, A.J.; McGuire, C.; Loeffler, D.; Mullenberg, J.; Skinner, W.; Fazio, G.; Holm, A.; Brandt, K.M.; Steine, M.N.; Goodstal, J.F.; et al. Development of high amylose wheat through tilling. BMC Plant Biol. 2012, 12, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Brand-Miller, J.; McMillan-Price, J.; Steinbeck, K.; Caterson, I. Dietary glycemic index: Health implications. J. Am. Coll. Nutr. 2009, 28, 446S–449S. [Google Scholar] [CrossRef] [PubMed]
- Radulian, G.; Rusu, E.; Dragomir, A.; Posea, M. Metabolic effects of low glycaemic index diets. Nutr. J. 2009, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 2015, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.; Torre, S.D. The deep correlation between energy metabolism and reproduction: A view on the effects of nutrition for women fertility. Nutrients 2016, 8, 87. [Google Scholar] [CrossRef]
- Mekada, K.; Abe, K.; Murakami, A.; Nakamura, S.; Nakata, H.; Moriwaki, K.; Obata, Y.; Yoshiki, A. Genetic differences among C57BL/6 substrains. Exp. Anim. 2009, 58, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.T.; Malinowska, E.; Jura, M.; Kozak, L.P. C57BL/6J mice as a polygenic developmental model of diet-induced obesity. Physiol. Rep. 2017, 5, e13093. [Google Scholar] [CrossRef]
- Gonzalez, G. Determining the stage of the estrous cycle in female mice by vaginal smear. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Shafie, S.R.B. Saturated Fatty Acids, Linseed Components and High Amylose Wheat in Attenuation of Diet-Induced Metabolic Syndrome. Ph.D. Thesis, University of Southern Queensland, Darling Heights, Australia, 2017. [Google Scholar]
- Goossens, G.H. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obes. Facts 2017, 10, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Lainez, N.M.; Jonak, C.R.; Nair, M.G.; Ethell, I.M.; Wilson, E.H.; Carson, M.J.; Coss, D. Diet-induced obesity elicits macrophage infiltration and reduction in spine density in the hypothalami of male but not female mice. Front. Immunol. 2018, 9, 1992. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.; Hutch, C.R.; Abrishami, S.; Stelmak, D.; Eter, L.; Li, Z.; Chang, E.; Agarwal, D.; Zamarron, B.; Varghese, M.; et al. Inflammatory responses to dietary and surgical weight loss in male and female mice. Biol. Sex Differ. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Larson, K.R.; Russo, K.A.; Fang, Y.; Mohajerani, N.; Goodson, M.L.; Ryan, K.K. Sex differences in the hormonal and metabolic response to dietary protein dilution. Endocrinology 2017, 158, 3477–3487. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V. Sex and gender differences in health. Science & society series on sex and science. EMBO Rep. 2012, 13, 596–603. [Google Scholar]
- Asarian, L.; Geary, N. Sex differences in the physiology of eating. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1215–R1267. [Google Scholar] [CrossRef] [Green Version]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef]
- Velazquez-Lopez, L.; Munoz-Torres, A.V.; Garcia-Pena, C.; Lopez-Alarcon, M.; Islas-Andrade, S.; Escobedo-de la Pena, J. Fiber in diet is associated with improvement of glycated hemoglobin and lipid profile in Mexican patients with type 2 diabetes. J. Diabetes Res. 2016, 2016, 2980406. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Prabhakar, M.; Ju, J.; Long, H.; Zhou, H.W. Effect of inulin-type fructans on blood lipid profile and glucose level: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2016, 71, 9–20. [Google Scholar] [CrossRef]
- Tong, L.T.; Zhong, K.; Liu, L.; Qiu, J.; Guo, L.; Zhou, X.; Cao, L.; Zhou, S. Effects of dietary wheat bran arabinoxylans on cholesterol metabolism of hypercholesterolemic hamsters. Carbohydr. Polym. 2014, 112, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vendramini, V.; Cedenho, A.P.; Miraglia, S.M.; Spaine, D.M. Reproductive function of the male obese zucker rats: Alteration in sperm production and sperm DNA damage. Reprod. Sci. 2014, 21, 221–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breed, W.G.; Taylor, J. Body mass, testes mass, and sperm size in murine rodents. J. Mammal. 2000, 81, 758–768. [Google Scholar] [CrossRef] [Green Version]
- Arai, T.; Kitahara, S.; Horiuchi, S.; Sumi, S.; Yoshida, K. Relationship of testicular volume to semen profiles and serum hormone concentrations in infertile Japanese males. Int. J. Fertil. Womens Med. 1998, 43, 40–47. [Google Scholar]
- Bujan, L.; Mieusset, R.; Mansat, A.; Moatti, J.P.; Mondinat, C.; Pontonnier, F. Testicular size in infertile men: Relationship to semen characteristics and hormonal blood levels. Br. J. Urol. 1989, 64, 632–637. [Google Scholar] [CrossRef]
- Li, J.; Kim, J.S.; Abejuela, V.A.; Lamano, J.B.; Klein, N.J.; Christian, C.A. Disrupted female estrous cyclicity in the intrahippocampal kainic acid mouse model of temporal lobe epilepsy. Epilepsia Open 2017, 2, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.Y.; Yong, J.; Chakraborty, T.R. Estrous cycle in ob/ob and ovariectomized female mice and its relation with estrogen and leptin. Physiol. Behav. 2010, 99, 125–130. [Google Scholar] [CrossRef]
- Berbic, M.; Fraser, I.S. Immunology of normal and abnormal menstruation. Womens Health 2013, 9, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Diener, K.R.; Robertson, S.A.; Hayball, J.D.; Lousberg, E.L. Multi-parameter flow cytometric analysis of uterine immune cell fluctuations over the murine estrous cycle. J. Reprod. Immunol. 2016, 113, 61–67. [Google Scholar] [CrossRef]
- Kaushic, C.; Frauendorf, E.; Rossoll, R.M.; Richardson, J.M.; Wira, C.R. Influence of the estrous cycle on the presence and distribution of immune cells in the rat reproductive tract. Am. J. Reprod. Immunol. 1998, 39, 209–216. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g) | SAW65 | HAW35 | HAW50 | HAW65 |
---|---|---|---|---|
Standard amylose wheat | 650.00 | 300.00 | 150.00 | 0.00 |
High amylose wheat | 0.00 | 350.00 | 500.00 | 650.00 |
Maltodextrin | 42.97 | 42.97 | 42.97 | 42.97 |
Sucrose | 27.72 | 27.72 | 27.72 | 27.72 |
Casein | 140.00 | 140.00 | 140.00 | 140.00 |
L-cystine | 1.80 | 1.80 | 1.80 | 1.80 |
Soybean oil | 40.00 | 40.00 | 40.00 | 40.00 |
Cellulose | 50.00 | 50.00 | 50.00 | 50.00 |
Mineral mix, AIN-93M-MX | 35.00 | 35.00 | 35.00 | 35.00 |
Vitamin mix, AIN-93-VX | 10.00 | 10.00 | 10.00 | 10.00 |
Choline bitartrate | 2.50 | 2.50 | 2.50 | 2.50 |
TBHQ, antioxidant | 0.008 | 0.008 | 0.008 | 0.008 |
Total | 1000 | 1000 | 1000 | 1000 |
SAW65 | HAW35 | HAW50 | HAW65 | |
---|---|---|---|---|
Energy (kcal/g) | 3.76 | 3.86 | 3.90 | 4.05 |
Moisture (g/100 g) | 10.4 | 8.2 | 8.1 | 5.9 |
Fat (Mojonnier extraction; g/100 g) | 5.5 | 6.4 | 6.9 | 7.6 |
Protein (N × 6.26; g/100 g) | 20.9 | 21.7 | 21.7 | 22.5 |
Ash (g/100 g) | 3.1 | 3.3 | 3.8 | 3.5 |
Carbohydrates (by difference; g/100 g) | 60 | 60 | 60 | 61 |
Calcium (mg/kg) | 5000 | 5000 | 5300 | 5300 |
Iron (mg/kg) | 80 | 72 | 82 | 83 |
Total dietary fibre (%) | 13.5 | 16.2 | 17.3 | 18.5 |
Insoluble dietary fibre (%) | 10.4 | 12.1 | 12.9 | 13.6 |
Soluble dietary fibre (by difference; %) | 3.0 | 4.0 | 4.5 | 4.9 |
Amylopectin (%) | 36.2 | 31.5 | 29.5 | 27.5 |
Amylose (%) | 4.5 | 4.2 | 3.4 | <4.0 |
Total Starch (%) | 40.7 | 33.6 | 30.5 | 27.5 |
Resistant Starch (%) | 1.2 | 1.6 | 1.7 | 1.9 |
Rapid Digestibility (%) | 12.7 | 11.9 | 11.6 | 11.3 |
Slow Digestibility (%) | 32.8 | 27.5 | 25.3 | 23.0 |
SAW65 | HAW35 | HAW50 | HAW65 | |
---|---|---|---|---|
Male | ||||
End point BW 1 (g) | 22.64 ± 0.41 a | 25.96 ± 0.26 b | 25.01 ± 0.34 b | 24.56 ± 0.43 b |
Weight gain 2 (g) | 1.89 ± 0.21 a | 3.71 ± 0.30 b | 3.71 ± 0.29 b | 3.48 ± 0.33 b |
Abdominal circumference (cm) | 7.04 ± 0.10 ab | 7.28 ± 0.11 a | 6.79 ± 0.14 ab | 6.76 ± 0.16 b |
Nose–anus length (cm) | 9.16 ± 0.06 | 9.24 ± 0.10 | 9.10 ± 0.04 | 9.08 ± 0.06 |
Total fat mass (mg/g BW) | 28.58 ± 4.95 ab | 40.78 ± 3.00 a | 32.72 ± 2.84 ab | 24.48 ± 2.50 b |
Gonadal (mg/g BW) | 11.10 ± 2.00 a | 18.51 ± 1.59 b | 14.42 ± 1.55 ab | 9.93 ± 1.35 a |
Retroperitoneal (mg/g BW) | 4.15 ± 0.74 | 6.55 ± 1.19 | 4.59 ± 0.94 | 3.25 ± 0.57 |
Mesentery (mg/g BW) | 8.75 ± 1.64 | 10.29 ± 0.55 | 8.02 ± 0.55 | 7.42 ± 0.58 |
Interscapular (mg/g BW) | 4.58 ± 0.79 | 5.43 ± 0.46 | 5.69 ± 0.43 | 3.89 ± 0.47 |
Kidneys (mg/g BW) | 11.98 ± 0.22 | 12.81 ± 0.47 | 12.49 ± 0.22 | 13.09 ± 0.44 |
Liver (mg/g BW) | 40.40 ± 0.54 | 38.74 ± 1.80 | 43.39 ± 0.92 | 42.42 ± 2.06 |
Pancreas (mg/g BW) | 4.41 ± 0.29 | 4.53 ± 0.16 | 3.92 ± 0.45 | 3.92 ± 0.17 |
Spleen (mg/g BW) | 2.36 ± 0.11 | 2.60 ± 0.13 | 2.40 ± 0.10 | 2.44 ± 0.14 |
Female | ||||
End point BW 1 (g) | 17.04 ± 0.20 | 18.21 ± 0.38 | 18.05 ± 0.40 | 18.01 ± 0.23 |
Weight gain 2 (g) | 1.37 ± 0.43 a | 3.23 ± 0.31 b | 3.00 ± 0.59 ab | 2.56 ± 0.30 ab |
Abdominal circumference (cm) | 6.56 ± 0.06 | 6.59 ± 0.10 | 6.63 ± 0.06 | 6.45 ± 0.08 |
Nose–anus length (cm) | 8.55 ± 0.06 | 8.80 ± 0.06 | 8.70 ± 0.08 | 8.60 ± 0.09 |
Total fat mass (mg/g BW) | 27.58 ± 0.99 | 23.89 ± 2.64 | 23.39 ± 1.84 | 23.33 ± 1.04 |
Gonadal (mg/g BW) | 10.82 ± 0.74 | 8.43 ± 1.22 | 9.02 ± 1.05 | 8.52 ± 0.64 |
Retroperitoneal (mg/g BW) | 2.43 ± 0.24 | 2.40 ± 0.38 | 2.85 ± 0.32 | 2.15 ± 0.16 |
Mesentery (mg/g BW) | 8.43 ± 1.28 | 7.38 ± 0.82 | 6.89 ± 0.44 | 8.40 ± 0.52 |
Interscapular (mg/g BW) | 5.89 ± 0.43 | 5.68 ± 0.63 | 4.63 ± 0.52 | 4.26 ± 0.32 |
Kidneys (mg/g BW) | 13.23 ± 0.30 | 14.26 ± 0.38 | 13.40 ± 0.48 | 13.15 ± 0.96 |
Liver (mg/g BW) | 42.61 ± 0.49 | 40.64 ± 2.04 | 43.70 ± 1.02 | 45.08 ± 0.93 |
Pancreas (mg/g BW) | 4.62 ± 0.30 | 4.31 ± 0.34 | 4.22 ± 0.42 | 4.53 ± 0.28 |
Spleen (mg/g BW) | 3.09 ± 0.16 | 3.93 ± 0.58 | 3.22 ± 0.39 | 3.06 ± 0.15 |
Parameter | SAW65 | HAW35 | HAW50 | HAW65 |
---|---|---|---|---|
Male | ||||
Fasting blood glucose (mmol/L) | 7.59 ± 0.48 | 8.15 ± 0.66 | 8.14 ± 0.69 | 8.20 ± 0.63 |
Total cholesterol (mmol/L) | 2.54 ± 0.07 | 2.66 ± 0.23 | 2.50 ± 0.06 | 2.35 ± 0.21 |
Triglycerides (mmol/L) | 0.76 ± 0.04 | 0.85 ± 0.06 | 0.94 ± 0.06 | 0.87 ± 0.06 |
Non-esterified fatty acids (mmol/L) | 0.94 ± 0.08 | 0.84 ± 0.04 | 0.91 ± 0.08 | 1.00 ± 0.07 |
Leptin (ng/mL) | 0.16 ± 0.06 a | 0.48 ± 0.12 b | 0.21 ± 0.04 ab | 0.09 ± 0.03 a |
Female | ||||
Fasting blood glucose | 6.58 ± 0.45 | 7.43 ± 0.47 | 7.30 ± 0.28 | 7.11 ± 0.18 |
Total cholesterol (mmol/L) | 1.70 ± 0.03 | 1.71 ± 0.11 | 1.61 ± 0.10 | 1.72 ± 0.05 |
Triglycerides (mmol/L) | 0.74 ± 0.03 | 0.70 ± 0.03 | 0.70 ± 0.03 | 0.71 ± 0.04 |
Non-esterified fatty acids (mmol/L) | 0.81 ± 0.03 | 0.82 ± 0.06 | 0.88 ± 0.02 | 0.80 ± 0.05 |
Leptin (ng/mL) | 0.15 ± 0.03 | 0.10 ± 0.02 | 0.14 ± 0.04 | 0.18 ± 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.M.; Page, A.J.; Li, H.; Carragher, J.; Searle, I.; Robertson, S.; Muhlhausler, B. Sexually Dimorphic Response of Increasing Dietary Intake of High Amylose Wheat on Metabolic and Reproductive Outcomes in Male and Female Mice. Nutrients 2020, 12, 61. https://doi.org/10.3390/nu12010061
Lim SM, Page AJ, Li H, Carragher J, Searle I, Robertson S, Muhlhausler B. Sexually Dimorphic Response of Increasing Dietary Intake of High Amylose Wheat on Metabolic and Reproductive Outcomes in Male and Female Mice. Nutrients. 2020; 12(1):61. https://doi.org/10.3390/nu12010061
Chicago/Turabian StyleLim, See Meng, Amanda J. Page, Hui Li, John Carragher, Iain Searle, Sarah Robertson, and Beverly Muhlhausler. 2020. "Sexually Dimorphic Response of Increasing Dietary Intake of High Amylose Wheat on Metabolic and Reproductive Outcomes in Male and Female Mice" Nutrients 12, no. 1: 61. https://doi.org/10.3390/nu12010061
APA StyleLim, S. M., Page, A. J., Li, H., Carragher, J., Searle, I., Robertson, S., & Muhlhausler, B. (2020). Sexually Dimorphic Response of Increasing Dietary Intake of High Amylose Wheat on Metabolic and Reproductive Outcomes in Male and Female Mice. Nutrients, 12(1), 61. https://doi.org/10.3390/nu12010061