Late Growth and Changes in Body Composition Influence Odds of Developing Retinopathy of Prematurity among Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Subjects
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Inpatient Growth and Measurements at Term
3.3. Severity of Retinopathy of Prematurity
3.4. Association of Body Composition and Growth with Retinopathy of Prematurity Severity
3.5. Association of Serum Growth Factors and Retinopathy of Prematurity Severity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chan-Ling, T.; Gole, G.A.; Quinn, G.E.; Adamson, S.J.; Darlow, B.A. Pathophysiology, screening and treatment of ROP: A multi-disciplinary perspective. Prog. Retin. Eye Res. 2018, 62, 77–119. [Google Scholar] [CrossRef] [Green Version]
- Löfqvist, C.; Andersson, E.; Sigurdsson, J.; Engström, E.; Hård, A.L.; Niklasson, A.; Smith, L.E.; Hellström, A. Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch. Ophthalmol. 2006, 124, 1711–1718. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Löfqvist, C.; Smith, L.E.; VanderVeen, D.K.; Hellström, A.; Consortium, W. Importance of early postnatal weight gain for normal retinal angiogenesis in very preterm infants: A multicenter study analyzing weight velocity deviations for the prediction of retinopathy of prematurity. Arch. Ophthalmol. 2012, 130, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Stoltz Sjöström, E.; Lundgren, P.; Öhlund, I.; Holmström, G.; Hellström, A.; Domellöf, M. Low energy intake during the first 4 weeks of life increases the risk for severe retinopathy of prematurity in extremely preterm infants. Arch. Dis. Child. Fetal. Neonatal. Ed. 2016, 101, F108–F113. [Google Scholar] [CrossRef] [Green Version]
- VanderVeen, D.K.; Martin, C.R.; Mehendale, R.; Allred, E.N.; Dammann, O.; Leviton, A. ELGAN Study Investigators. Early nutrition and weight gain in preterm newborns and the risk of retinopathy of prematurity. PLoS ONE 2013, 8, e64325. [Google Scholar] [CrossRef]
- Cekmez, F.; Pirgon, O.; Aydemir, G.; Dundar, B.; Cekmez, Y.; Karaoglu, A.; Fidanc, K.; Tunc, T.; Aydinoz, S.; Karademır, F. Correlation between cord blood apelin and IGF-1 levels in retinopathy of prematurity. Biomark. Med. 2012, 6, 821–825. [Google Scholar] [CrossRef]
- Can, E.; Bülbül, A.; Uslu, S.; Bolat, F.; Cömert, S.; Nuhoğlu, A. Early Aggressive Parenteral Nutrition Induced High Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3) Levels Can Prevent Risk of Retinopathy of Prematurity. Iran. J. Pediatr. 2013, 23, 403–410. [Google Scholar] [PubMed]
- Hansen-Pupp, I.; Hellgren, G.; Hård, A.L.; Smith, L.; Hellström, A.; Löfqvist, C. Early Surge in Circulatory Adiponectin Is Associated With Improved Growth at Near Term in Very Preterm Infants. J. Clin. Endocrinol. Metab. 2015, 100, 2380–2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Lofqvist, C.A.; Shao, Z.; Sun, Y.; Joyal, J.S.; Hurst, C.G.; Cui, R.Z.; Evans, L.P.; Tian, K.; SanGiovanni, J.P.; et al. Dietary ω-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose-endoplasmic reticulum stress reduction to increase adiponectin. Am. J. Clin. Nutr. 2015, 101, 879–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellstrom, A.; Perruzzi, C.; Ju, M.; Engstrom, E.; Hard, A.L.; Liu, J.L.; Cui, R.Z.; Evans, L.P.; Tian, K.; SanGiovanni, J.P.; et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity. Proc. Natl. Acad. Sci. USA 2001, 98, 5804–5808. [Google Scholar] [CrossRef] [Green Version]
- Hellström, A.; Engström, E.; Hård, A.L.; Albertsson-Wikland, K.; Carlsson, B.; Niklasson, A.; Löfqvist, C.; Svensson, E.; Holm, S.; Ewald, U.; et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003, 112, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yumani, D.F.; Lafeber, H.N.; van Weissenbruch, M.M. Dietary proteins and IGF I levels in preterm infants: Determinants of growth, body composition, and neurodevelopment. Pediatr. Res. 2015, 77, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, P.J.; Yu, C.H.; Hsu, S.P.; Lee, Y.H.; Chiou, C.H.; Hsu, Y.W.; Ho, S.C.; Chu, C.H. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: Positive correlation with birthweight and neonatal adiposity. Clin. Endocrinol. 2004, 61, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.M.; Maravall, F.J.; Gómez, N.; Navarro, M.A.; Casamitjana, R.; Soler, J. Interactions between serum leptin, the insulin-like growth factor-I system, and sex, age, anthropometric and body composition variables in a healthy population randomly selected. Clin. Endocrinol. 2003, 58, 213–219. [Google Scholar] [CrossRef] [PubMed]
- International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W. Aggressive Nutrition of the Preterm Infant. Curr. Pediatr. Rep. 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Klevebro, S.; Westin, V.; Stoltz Sjöström, E.; Norman, M.; Domellöf, M.; Edstedt Bonamy, A.K.; Hallberg, B. Early energy and protein intakes and associations with growth, BPD, and ROP in extremely preterm infants. Clin. Nutr. 2019, 38, 1289–1295. [Google Scholar] [CrossRef] [Green Version]
- Binenbaum, G.; Bell, E.F.; Donohue, P.; Quinn, G.; Shaffer, J.; Tomlinson, L.A.; Ying, G.S. G-ROP Study Group. Development of Modified Screening Criteria for Retinopathy of Prematurity: Primary Results From the Postnatal Growth and Retinopathy of Prematurity Study. JAMA Ophthalmol. 2018, 136, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Fortes Filho, J.B.; Dill, J.C.; Ishizaki, A.; Aguiar, W.W.; Silveira, R.C.; Procianoy, R.S. Score for Neonatal Acute Physiology and Perinatal Extension II as a predictor of retinopathy of prematurity: Study in 304 very-low-birth-weight preterm infants. Ophthalmologica 2009, 223, 177–182. [Google Scholar] [CrossRef]
- Good, W.V.; Group ETfRoPC. Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Trans. Am. Ophthalmol. Soc. 2004, 102, 233–250. [Google Scholar]
- Cao, J.H.; Wagner, B.D.; McCourt, E.A.; Cerda, A.; Sillau, S.; Palestine, A.; Enzenauer, R.W.; Mets-Halgrimson, R.B.; Paciuc-Beja, M.; Gralla, J.; et al. The Colorado-retinopathy of prematurity model (CO-ROP): Postnatal weight gain screening algorithm. J. AAPOS 2016, 20, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ramel, S.E.; Gray, H.L.; Christiansen, E.; Boys, C.; Georgieff, M.K.; Demerath, E.W. Greater early gains in fat-free mass, but not fat mass, are associated with improved neurodevelopment at 1 year corrected age for prematurity in very low birth weight preterm infants. J. Pediatr. 2016, 173, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Pfister, K.M.; Gray, H.L.; Miller, N.C.; Demerath, E.W.; Georgieff, M.K.; Ramel, S.E. Exploratory study of the relationship of fat-free mass to speed of brain processing in preterm infants. Pediatr. Res. 2013, 74, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Théveniaut, C.; Flamant, C.; Frondas-Chauty, A.; Darmaun, D.; Rozé, J.C. In Preterm Infants, Length Growth below Expected Growth during Hospital Stay Predicts Poor Neurodevelopment at 2 Years. Neonatology 2018, 114, 135–141. [Google Scholar] [CrossRef]
- Washburn, L.; Nixon, P.; Russell, G.; Snively, B.M.; O’Shea, T.M. Adiposity in adolescent offspring born prematurely to mothers with preeclampsia. J. Pediatr. 2013, 162, 912–917.e1. [Google Scholar] [CrossRef] [Green Version]
- Halliday, H.L.; Ehrenkranz, R.A.; Doyle, L.W. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst. Rev. 2009, CD001146. [Google Scholar] [CrossRef]
- Matinolli, H.M.; Hovi, P.; Männistö, S.; Sipola-Leppänen, M.; Eriksson, J.G.; Mäkitie OJärvenpää, A.L.; Andersson, S.; Kajantie, E. Early Protein Intake Is Associated with Body Composition and Resting Energy Expenditure in Young Adults Born with Very Low Birth Weight. J. Nutr. 2015, 145, 2084–2091. [Google Scholar] [CrossRef] [Green Version]
- Ramel, S.E.; Brown, L.D.; Georgieff, M.K. The Impact of Neonatal Illness on Nutritional Requirements-One Size Does Not Fit All. Curr. Pediatr. Rep. 2014, 2, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Siahanidou, T.; Mandyla, H.; Papassotiriou, G.P.; Papassotiriou, I.; Chrousos, G. Circulating levels of adiponectin in preterm infants. Arch. Dis. Child. Fetal. Neonatal. Ed. 2007, 92, F286–F290. [Google Scholar] [CrossRef] [Green Version]
In Analysis Group | |||||||
---|---|---|---|---|---|---|---|
No | Yes | All Subjects | |||||
Characteristic | N | Mean ± SD or n (%) | N | Mean ± SD or n (%) | p-value | N | Mean ± SD or n (%) |
Gestational Age (Week) | 20 | 26.6 ± 2.9 | 83 | 28.1 ± 2.2 | 0.013 | 103 | 27.8 ± 2.4 |
Birth Weight (g) | 20 | 889 ± 314 | 83 | 1092 ± 285 | 0.006 | 103 | 1053 ± 300 |
≥Stage 2 ROP | 15 | 83 | 0.005 | 98 | |||
No | 6 (40) | 63 (76) | 69 (70) | ||||
Yes | 9 (60) | 20 (24) | 29 (30) |
ROP <Stage 2 | ROP ≥Stage 2 | p-Value | |||||
---|---|---|---|---|---|---|---|
Characteristic | N | Median | Min–Max | N | Median | Min–Max | |
Sex | 63 | 20 | 0.97 | ||||
Female | 28 (44%) | 9 (45%) | |||||
Male | 35 (56%) | 11 (55%) | |||||
Gestational Age (Week) | 63 | 29.1 | 24.6–31.6 | 20 | 25.7 | 22.1–28.9 | <0.0001 |
Birth Weight (g) | 63 | 1190 | 540–1730 | 20 | 705 | 408–1130 | <0.0001 |
Birth Length (cm) | 63 | 38.0 | 31.5–44.0 | 20 | 33.0 | 28.5–38.0 | <0.0001 |
Birth OFC (cm) | 63 | 26.5 | 21.5–29.5 | 20 | 22.8 | 19.0–25.0 | <0.0001 |
Birth Weight Z Score | 63 | −0.18 | −1.22–1.20 | 20 | 0.01 | −1.63–0.98 | 0.98 |
Birth Length Z Score | 63 | −0.30 | −2.00–1.30 | 20 | −0.15 | −1.20–1.10 | 0.48 |
Birth OFC Z Score | 63 | −0.40 | −1.80–1.50 | 20 | −0.15 | −1.40–1.50 | 0.92 |
SNAPPE-II Score at Day 7 | 63 | 0 | 0–32 | 20 | 5 | 0–30 | <0.0001 |
Total kcal/kg Days 2–8 | 63 | 725.0 | 539.5–859.2 | 20 | 565.9 | 447.0–807.1 | <0.0001 |
Total Protein (g)/kg Days 2–8 | 63 | 25.7 | 15.3–31.8 | 20 | 26.5 | 18.9–30.0 | 0.57 |
ROP <Stage 2 | ROP ≥Stage 2 | p-Value | |||||
---|---|---|---|---|---|---|---|
N | Median | Min–Max | N | Median | Min–Max | ||
63 | 20 | ||||||
Post-conceptual age at term (week) | 60 | 36.8 | 34.0–41.9 | 19 | 39.4 | 35.6–41.9 | 0.0003 |
Weight at term (g) | 59 | 2490 | 1816–3980 | 19 | 2696 | 1970–4137 | 0.19 |
Weight-for-age z-score at term | 59 | −0.78 | −2.71–1.58 | 19 | −0.93 | −3.94–0.30 | 0.026 |
Length at term (cm) | 60 | 45.0 | 40.0–51.2 | 19 | 45.5 | 41.0–50.6 | 0.41 |
Head circumference at term (cm) | 60 | 33.2 | 30.5–38.1 | 19 | 33.0 | 30.4–38.3 | 0.80 |
Relative weight gain at term (g/kg/day) | 59 | 20.4 | 9.8–41.2 | 19 | 26.8 | 14.4–63.4 | 0.0001 |
Fat-free mass at term (g) | 60 | 2051 | 1602–2979 | 19 | 2194 | 1647–2994 | 0.29 |
Fat mass at term (g) | 60 | 415 | 172–1076 | 19 | 503 | 215–1143 | 0.14 |
% body fat at term | 60 | 17.7 | 8.4–28.5 | 19 | 19.0 | 8.9–27.6 | 0.12 |
Inpatient rate of change: Weight (g/week) | 63 | 172 | 158–192 | 20 | 171 | 152–180 | 0.40 |
Inpatient rate of change: Length (cm/week) | 63 | 1.00 | 0.91–1.11 | 20 | 0.96 | 0.86–1.06 | 0.0007 |
Inpatient rate of change: OFC (cm/week) | 63 | 0.89 | 0.85–0.96 | 20 | 0.85 | 0.80–0.91 | <0.0001 |
Inpatient rate of change: FFM (g/week) | 63 | 151 | 138–167 | 20 | 145 | 128–159 | 0.0007 |
Inpatient rate of change: FM (g/log(week)) | 63 | 2369 | 2297–2509 | 20 | 2358 | 2245–2486 | 0.55 |
Inpatient rate of change: %BF (%/log(week)) | 63 | 61.0 | 59.6–63.0 | 20 | 61.1 | 59.4–62.4 | 0.63 |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Variable | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Fat-free mass (FFM) at term (g) | 1.0008 (0.9993, 1.0022) | 0.29 | 0.9984 (0.9958, 1.0010) | 0.24 |
Fat mass (FM) at term (g) | 1.0016 (0.9995, 1.0038) | 0.14 | 0.9961 (0.9919, 1.0003) | 0.07 |
% body fat at term | 1.0908 (0.9782, 1.2163) | 0.12 | 0.7889 (0.6367, 0.9774) | 0.03 |
Inpatient rate of change: FFM (g/week) | 0.8691 (0.7928, 0.9527) | 0.003 | 0.6928 (0.6367, 0.9774) | 0.009 |
Inpatient rate of change: FM (g/log(week)) | 0.9964 (0.9851, 1.0079) | 0.54 | 0.9622 (0.9365, 0.9886) | 0.005 |
Inpatient rate of change: %BF (%/log(week)) | 0.8371 (0.4119, 1.7012) | 0.62 | 0.0721 (0.0101, 0.5162) | 0.009 |
Weight-for-age z-score at term | 0.5060 (0.2696, 0.9498) | 0.034 | 0.0450 (0.0042, 0.4877) | 0.011 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingolfsland, E.C.; Haapala, J.L.; Buckley, L.A.; Demarath, E.W.; Guiang, S.F.; Ramel, S.E. Late Growth and Changes in Body Composition Influence Odds of Developing Retinopathy of Prematurity among Preterm Infants. Nutrients 2020, 12, 78. https://doi.org/10.3390/nu12010078
Ingolfsland EC, Haapala JL, Buckley LA, Demarath EW, Guiang SF, Ramel SE. Late Growth and Changes in Body Composition Influence Odds of Developing Retinopathy of Prematurity among Preterm Infants. Nutrients. 2020; 12(1):78. https://doi.org/10.3390/nu12010078
Chicago/Turabian StyleIngolfsland, Ellen C., Jacob L. Haapala, Lauren A. Buckley, Ellen W. Demarath, Sixto F. Guiang, and Sara E. Ramel. 2020. "Late Growth and Changes in Body Composition Influence Odds of Developing Retinopathy of Prematurity among Preterm Infants" Nutrients 12, no. 1: 78. https://doi.org/10.3390/nu12010078
APA StyleIngolfsland, E. C., Haapala, J. L., Buckley, L. A., Demarath, E. W., Guiang, S. F., & Ramel, S. E. (2020). Late Growth and Changes in Body Composition Influence Odds of Developing Retinopathy of Prematurity among Preterm Infants. Nutrients, 12(1), 78. https://doi.org/10.3390/nu12010078