Association of Low Serum l-Carnitine Levels with Aortic Stiffness in Patients with Non-Dialysis Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric Measurements
2.3. Biochemical Analysis
2.4. Determinations of Serum Free l-carnitine Levels by Liquid Chromatography and Mass Spectrometry
2.5. Carotid-Femoral PWV Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 2000, 87, E10–E17. [Google Scholar] [CrossRef]
- Matera, M.; Bellinghieri, G.; Costantino, G.; Santoro, D.; Calvani, M.; Savica, V. History of l-carnitine: Implications for renal disease. J. Ren. Nutr. 2003, 13, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Granata, S.; Dalla Gassa, A.; Tomei, P.; Lupo, A.; Zaza, G. Mitochondria: A new therapeutic target in chronic kidney disease. Nutr. Metab. 2015, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jung, S.; Lee, S.H.; Lee, J.H. Association between arterial stiffness and serum l-octanoylcarnitine and lactosylceramide in overweight middle-aged subjects: 3-year follow-up study. PLoS ONE 2015, 10, e0119519. [Google Scholar] [CrossRef]
- Labonia, W.D. l-carnitine effects on anemia in hemodialyzed patients treated with erythropoietin. Am. J. Kidney Dis. 1995, 26, 757–764. [Google Scholar] [CrossRef]
- Kudoh, Y.; Aoyama, S.; Torii, T.; Chen, Q.; Nagahara, D.; Sakata, H.; Nozawa, A. Long-term effects of oral l-carnitine supplementation on anemia in chronic hemodialysis. Cardiorenal Med. 2014, 4, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Sato, M.; Ohashi, H.; Araki, H.; Tadokoro, M.; Osumi, Y.; Ito, H.; Morita, H.; Amano, I. Effects of l-carnitine supplementation on cardiac morbidity in hemodialyzed patients. Am. J. Nephrol. 2000, 20, 201–207. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, A.; Haymann, J.P.; Bozec, E.; Metzger, M.; Jacquot, C.; Maruani, G.; Houillier, P.; Froissart, M.; Stengel, B.; Guardiola, P.; et al. Large artery stiffening and remodeling are independently associated with all-cause mortality and cardiovascular events in chronic kidney disease. Hypertension 2012, 60, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; Safar, M.E.; London, G.M. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999, 99, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.H.; Lee, M.C.; Ho, G.J.; Liu, C.H.; Hsu, B.G. Association of low serum l-carnitine levels with peripheral arterial stiffness in patients who undergo kidney transplantation. Nutrients 2019, 11, 2000. [Google Scholar] [CrossRef] [Green Version]
- Suchitra, M.M.; Ashalatha, V.L.; Sailaja, E.; Rao, A.M.; Reddy, V.S.; Bitla, A.R.; Sivakumar, V.; Rao, P.V. The effect of l-carnitine supplementation on lipid parameters, inflammatory and nutritional markers in maintenance hemodialysis patients. Saudi J. Kidney Dis. Transpl. 2011, 22, 1155–1159. [Google Scholar]
- Duranay, M.; Akay, H.; Yilmaz, F.M.; Senes, M.; Tekeli, N.; Yucel, D. Effects of l-carnitine infusions on inflammatory and nutritional markers in haemodialysis patients. Nephrol. Dial. Transplant. 2006, 21, 3211–3214. [Google Scholar] [CrossRef]
- Savica, V.; Santoro, D.; Mazzaglia, G.; Ciolino, F.; Monardo, P.; Calvani, M.; Bellinghieri, G.; Kopple, J.D. l-carnitine infusions may suppress serum c-reactive protein and improve nutritional status in maintenance hemodialysis patients. J. Ren. Nutr. 2005, 15, 225–230. [Google Scholar] [CrossRef]
- Higuchi, T.; Abe, M.; Yamazaki, T.; Mizuno, M.; Okawa, E.; Ando, H.; Oikawa, O.; Okada, K.; Kikuchi, F.; Soma, M. Effects of levocarnitine on brachial-ankle pulse wave velocity in hemodialysis patients: A randomized controlled trial. Nutrients 2014, 6, 5992–6004. [Google Scholar] [CrossRef] [Green Version]
- Malaguarnera, M.; Vacante, M.; Avitabile, T.; Malaguarnera, M.; Cammalleri, L.; Motta, M. l-carnitine supplementation reduces oxidized ldl cholesterol in patients with diabetes. Am. J. Clin. Nutr. 2009, 89, 71–76. [Google Scholar] [CrossRef]
- Serban, M.C.; Sahebkar, A.; Mikhailidis, D.P.; Toth, P.P.; Jones, S.R.; Muntner, P.; Blaha, M.J.; Andrica, F.; Martin, S.S.; Borza, C.; et al. Impact of l-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2016, 6, 19188. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Lee, C.J.; Chen, M.L.; Yang, C.F.; Chen, Y.C.; Hsu, B.G. Association of serum osteoprotegerin levels with carotid-femoral pulse wave velocity in hypertensive patients. J. Clin. Hypertens. 2014, 16, 301–308. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [Green Version]
- The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘Establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef]
- London, G.M.; Safar, M.E.; Pannier, B. Aortic aging in ESRD: Structural, hemodynamic, and mortality implications. J. Am. Soc. Nephrol. 2016, 27, 1837–1846. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Boutouyrie, P. Arterial stiffness: A new surrogate end point for cardiovascular disease? J. Nephrol. 2007, 20 (Suppl. S12), S45–S50. [Google Scholar]
- Ramirez, A.J.; Christen, A.I.; Sanchez, R.A. Serum uric acid elevation is associated to arterial stiffness in hypertensive patients with metabolic disturbances. Curr. Hypertens. Rev. 2018, 14, 154–160. [Google Scholar] [CrossRef]
- Levisianou, D.; Melidonis, A.; Adamopoulou, E.; Skopelitis, E.; Koutsovasilis, A.; Protopsaltis, I.; Zairis, M.; Kougialis, S.; Skoularigis, I.; Koukoulis, G.; et al. Impact of the metabolic syndrome and its components combinations on arterial stiffness in type 2 diabetic men. Int. Angiol. 2009, 28, 490–495. [Google Scholar]
- Cecelja, M.; Chowienczyk, P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: A systematic review. Hypertension 2009, 54, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Schram, M.T.; Henry, R.M.; van Dijk, R.A.; Kostense, P.J.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Westerhof, N.; Stehouwer, C.D. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: The hoorn study. Hypertension 2004, 43, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Najjar, S.S.; Sun, K.; Lakatta, E.G.; Ferrucci, L. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am. J. Hypertens. 2009, 22, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, D.; Mansour, A.S.; Zhang, Y.; Protogerou, A.D.; Ouerdane, S.; Blacher, J.; Safar, M.E. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus. J. Hum. Hypertens. 2017, 31, 189–194. [Google Scholar] [CrossRef]
- Yapei, Y.; Xiaoyan, R.; Sha, Z.; Li, P.; Xiao, M.; Shuangfeng, C.; Lexin, W.; Lianqun, C. Clinical significance of arterial stiffness and thickness biomarkers in type 2 diabetes mellitus: An up-to-date meta-analysis. Med. Sci. Monit. 2015, 21, 2467–2475. [Google Scholar]
- Yun, B.H.; Chon, S.J.; Cho, S.H.; Choi, Y.S.; Lee, B.S.; Seo, S.K. Decreased renal function is a risk factor for subclinical coronary atherosclerosis in korean postmenopausal women. J. Menopausal. Med. 2016, 22, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, B.; Dhaun, N.; Markie, D.; Stansell, P.; Goddard, J.; Newby, D.E.; Webb, D.J. Renal function is associated with arterial stiffness and predicts outcome in patients with coronary artery disease. QJM 2009, 102, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.L.; Tomlinson, L.A.; Chapman, T.P.; Rajkumar, C.; Holt, S.G. Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4. Hypertension 2010, 55, 1110–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Ishibashi-Ueda, H.; Niizuma, S.; Yoshihara, F.; Horio, T.; Kawano, Y. Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin. J. Am. Soc. Nephrol. CJASN 2009, 4, 1892–1900. [Google Scholar] [CrossRef]
- Ioannou, K.; Stel, V.S.; Dounousi, E.; Jager, K.J.; Papagianni, A.; Pappas, K.; Siamopoulos, K.C.; Zoccali, C.; Tsakiris, D. Inflammation, endothelial dysfunction and increased left ventricular mass in chronic kidney disease (ckd) patients: A longitudinal study. PLoS ONE 2015, 10, e0138461. [Google Scholar] [CrossRef]
- London, G.M. Arterial stiffness in chronic kidney disease and end-stage renal disease. Blood Purif. 2018, 45, 154–158. [Google Scholar] [CrossRef]
- Peyster, E.; Chen, J.; Feldman, H.I.; Go, A.S.; Gupta, J.; Mitra, N.; Pan, Q.; Porter, A.; Rahman, M.; Raj, D.; et al. Inflammation and arterial stiffness in chronic kidney disease: Findings from the cric study. Am. J. Hypertens. 2017, 30, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Bremer, J. Carnitine—Metabolism and functions. Physiol. Rev. 1983, 63, 1420–1480. [Google Scholar] [CrossRef]
- Shakeri, A.; Tabibi, H.; Hedayati, M. Effects of l-carnitine supplement on serum inflammatory cytokines, C-reactive protein, lipoprotein (a), and oxidative stress in hemodialysis patients with lp (a) hyperlipoproteinemia. Hemodial. Int. 2010, 14, 498–504. [Google Scholar] [CrossRef]
- Fatouros, I.G.; Douroudos, I.; Panagoutsos, S.; Pasadakis, P.; Nikolaidis, M.G.; Chatzinikolaou, A.; Sovatzidis, A.; Michailidis, Y.; Jamurtas, A.Z.; Mandalidis, D.; et al. Effects of l-carnitine on oxidative stress responses in patients with renal disease. Med. Sci. Sports Exerc. 2010, 42, 1809–1818. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Fatuzzo, P.; Rapisarda, F.; Neri, S.; Ferrante, M.; Oliveri Conti, G.; Fallico, R.; Di Pino, L.; Pennisi, G.; Celotta, G.; et al. Propionyl-l-carnitine therapy: Effects on endothelin-1 and homocysteine levels in patients with peripheral arterial disease and end-stage renal disease. Kidney Blood Press. R. 2006, 29, 100–107. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Participants (n = 136) | Control Group (n = 92) | Aortic Stiffness Group (n = 44) | p-Value |
---|---|---|---|---|
Age (years) | 67.75 ± 12.73 | 65.99 ± 12.88 | 71.73 ± 11.71 | 0.019 * |
Height (cm) | 158.24 ± 9.69 | 158.11 ± 9.53 | 158.50 ± 10.13 | 0.827 |
Body weight (kg) | 65.38 ± 14.80 | 65.25 ± 15.72 | 65.65 ± 12.83 | 0.885 |
BMI (kg/m2) | 25.94 ± 4.41 | 25.92 ± 4.80 | 25.98 ± 3.53 | 0.942 |
cfPWV (m/s) | 8.85 (7.40–10.80) | 7.80 (6.70–8.90) | 12.45 (10.83–14.75) | <0.001 * |
SBP (mmHg) | 149.80 ± 26.47 | 145.59 ± 23.88 | 158.61 ± 29.60 | 0.007 * |
DBP (mmHg) | 84.57 ± 13.92 | 82.87 ± 12.65 | 88.11 ± 15.83 | 0.039 * |
TCH (mg/dL) | 159.31 ± 43.66 | 151.17 ± 46.46 | 163.77 ± 37.22 | 0.412 |
Triglyceride (mg/dL) | 119.0 (86.00–161.25) | 110.50 (86.00–155.00) | 130.00 (94.25–177.00) | 0.152 |
LDL-C (mg/dL) | 89.29 ± 36.77 | 88.03 ± 38.78 | 91.93 ± 32.42 | 0.565 |
Fasting glucose (mg/dL) | 99.00 (92.00–138.75) | 96.00 (92.00–130.25) | 107.00 (94.50–156.50) | 0.038 * |
HbA1c, (%) | 6.2 (5.975–7.5) | 6.25 (6.0–7.5) | 6.2 (5.8–7.85) | 0.859 |
BUN (mg/dL) | 33.00 (24.00–44.00) | 32.50 (24.00–47.50) | 33.50 (24.50–43.75) | 0.980 |
Creatinine (mg/dL) | 1.85 (1.43–2.60) | 1.85 (1.40–2.80) | 1.85 (1.60–2.38) | 0.655 |
Albumin (mg/dL) | 4.00 (3.90–4.30) | 4.00 (3.90–4.30) | 4.00 (3.83–4.30) | 0.759 |
eGFR (mL/min) | 31.39 ± 15.15 | 32.25 ± 15.89 | 29.60 ± 13.47 | 0.412 |
Total Ca (mg/dL) | 9.17 ± 1.88 | 9.22 ± 1.92 | 9.06 ± 1.83 | 0.645 |
Phosphorus (mg/dL) | 3.85 ± 0.81 | 3.91 ± 0.81 | 3.73 ± 0.81 | 0.226 |
l-carnitine (µmol/L) | 33.45 (25.22–39.87) | 35.11 (26.38–44.27) | 28.50 (23.16–36.59) | 0.003 * |
Female, n (%) | 67 (49.3) | 45 (48.9) | 22 (50.0) | 0.906 |
DM, n (%) | 51 (37.5) | 29 (31.5) | 22 (50.0) | 0.037 * |
HTN, n (%) | 108 (79.4) | 75 (81.5) | 33 (75.0) | 0.379 |
GN, n (%) | 38 (27.9) | 29 (31.5) | 9 (20.5) | 0.178 |
Smoking, n (%) | 12 (9.0) | 7 (7.7) | 5 (11.6) | 0.456 |
ARB use, n (%) | 59 (43.4) | 39 (42.4) | 20 (45.5) | 0.736 |
β-blocker use, n (%) | 33 (24.3) | 25 (27.2) | 8 (18.2) | 0.252 |
α-blocker use, n (%) | 18 (13.2) | 13 (14.1) | 5 (11.4) | 0.656 |
CCB use, n (%) | 54 (39.7) | 36 (39.1) | 18 (40.9) | 0.843 |
Statin use, n (%) | 67 (49.3) | 45 (48.9) | 22 (50.0) | 0.906 |
Fibrate use, n (%) | 10 (7.4) | 8 (8.7) | 2 (4.5) | 0.386 |
CKD stage 3, n (%) | 68 (50.0) | 47 (51.1) | 21 (47.7) | 0.781 |
CKD stage 4, n (%) | 41 (30.1) | 26 (28.2) | 15 (34.1) | |
CKD stage 5, n (%) | 27 (19.9) | 19 (20.7) | 8 (18.2) |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
l-carnitine, 1 µmol/L | 0.936 | 0.893–0.980 | 0.005 * |
Age, 1 year | 1.053 | 1.011–1.097 | 0.013 * |
Female | 1.032 | 0.415–2.563 | 0.947 |
Diabetes mellitus, present | 1.755 | 0.639–4.823 | 0.276 |
Systolic blood pressure, 10 mmHg | 0.990 | 0.719–1.365 | 0.953 |
Diastolic blood pressure, 10 mmHg | 1.591 | 0.871–2.909 | 0.131 |
Fasting glucose, 10 mg/dL | 1.029 | 0.940–1.127 | 0.533 |
Total calcium, 1 mg/dL | 0.947 | 0.728–1.232 | 0.686 |
Phosphorus, 1 mg/dL | 0.554 | 0.290–1.056 | 0.073 |
CKD stage 3 | 1 | ||
CKD stage 4 | 1.474 | 0.534–4.151 | 0.462 |
CKD stage 5 | 0.930 | 0.238–3.635 | 0.917 |
Variables | Carotid-Femoral Pulse Wave Velocity (m/s) | |||
---|---|---|---|---|
Univariate | Multivariate | |||
r | p-Value | Standardized Beta | p-Value | |
Female | −0.079 | 0.362 | −0.074 | 0.343 |
Diabetes mellitus | 0.176 | 0.040 * | 0.142 | 0.068 |
Hypertension | 0.071 | 0.414 | – | – |
Glomerulonephritis | −0.060 | 0.485 | – | – |
Age (years) | 0.253 | 0.003 * | 0.197 | 0.025 * |
Height (cm) | 0.034 | 0.693 | – | – |
Body weight (kg) | 0.215 | 0.148 | – | – |
BMI (kg/m2) | 0.141 | 0.102 | – | – |
SBP (mmHg) | 0.410 | <0.001 * | 0.255 | 0.075 |
DBP (mmHg) | 0.263 | 0.002 * | 0.039 | 0.786 |
TCH (mg/dL) | −0.014 | 0.874 | – | – |
Log-Triglyceride (mg/dL) | 0.112 | 0.193 | – | – |
LDL-C (mg/dL) | −0.069 | 0.424 | – | – |
Log-Glucose (mg/dL) | 0.138 | 0.109 | – | – |
Log-Albumin (mg/dL) | −0.041 | 0.639 | – | – |
Log-BUN (mg/dL) | 0.075 | 0.383 | – | – |
Log-Creatinine (mg/dL) | 0.147 | 0.087 | – | – |
eGFR (mL/min) | −0.197 | 0.021 * | −0.191 | 0.042 * |
Total calcium (mg/dL) | −0.023 | 0.795 | 0.098 | 0.239 |
Phosphorus (mg/dL) | −0.073 | 0.388 | −0.216 | 0.013 * |
Log-l-carnitine (µmol/L) | −0.346 | <0.001 * | −0.243 | 0.003 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, Y.-J.; Hsu, B.-G.; Lai, Y.-H.; Wang, C.-H.; Lin, Y.-L.; Kuo, C.-H.; Tsai, J.-P. Association of Low Serum l-Carnitine Levels with Aortic Stiffness in Patients with Non-Dialysis Chronic Kidney Disease. Nutrients 2020, 12, 2918. https://doi.org/10.3390/nu12102918
Hsieh Y-J, Hsu B-G, Lai Y-H, Wang C-H, Lin Y-L, Kuo C-H, Tsai J-P. Association of Low Serum l-Carnitine Levels with Aortic Stiffness in Patients with Non-Dialysis Chronic Kidney Disease. Nutrients. 2020; 12(10):2918. https://doi.org/10.3390/nu12102918
Chicago/Turabian StyleHsieh, Yi-Jen, Bang-Gee Hsu, Yu-Hsien Lai, Chih-Hsien Wang, Yu-Li Lin, Chiu-Huang Kuo, and Jen-Pi Tsai. 2020. "Association of Low Serum l-Carnitine Levels with Aortic Stiffness in Patients with Non-Dialysis Chronic Kidney Disease" Nutrients 12, no. 10: 2918. https://doi.org/10.3390/nu12102918
APA StyleHsieh, Y. -J., Hsu, B. -G., Lai, Y. -H., Wang, C. -H., Lin, Y. -L., Kuo, C. -H., & Tsai, J. -P. (2020). Association of Low Serum l-Carnitine Levels with Aortic Stiffness in Patients with Non-Dialysis Chronic Kidney Disease. Nutrients, 12(10), 2918. https://doi.org/10.3390/nu12102918