Offspring Birth Weight Is Associated with Specific Preconception Maternal Food Group Intake: Data from a Linked Population-Based Birth Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Perined-Lifelines Linked Birth Cohort
2.2. Study Group
2.3. Dietary Assessment: Food Groups
2.4. Maternal and Fetal Characteristics
2.5. Statistical Methods
3. Results
3.1. Food Groups Intake in BMI Quintiles
3.2. Association of Intake of Food Groups and Birth Weight
3.3. Macronutrient Contribution to Associations between Food Groups and Birth Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mason, J.B.; Shrimpton, R.; Saldanha, L.S.; Ramakrishnan, U.; Victora, C.G.; Girard, A.W.; McFarland, D.A.; Martorell, R. The first 500 days of life: policies to support maternal nutrition. Glob. Health Action 2014, 7, 23623. [Google Scholar] [CrossRef] [Green Version]
- Kind, K.L.; Moore, V.M.; Davies, M.J. Diet around conception and during pregnancy—Effects on fetal and neonatal outcomes. Reprod. Biomed. Online 2006, 12, 532–541. [Google Scholar] [CrossRef]
- Pinto, E.; Barros, H.; Dos-Santos-Silva, I. Dietary intake and nutritional adequacy prior to conception and during pregnancy: A follow-up study in the north of Portugal. Public Health Nutr. 2009, 12, 922–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salavati, N. Associations between preconception macronutrient intake and birth weight across strata of maternal BMI. PLoS ONE 2019, 14, e0224034. [Google Scholar]
- Mozaffarian, D.; Ludwig, D.S. Dietary Guidelines in the 21st Century—A Time for Food. JAMA 2010, 304, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Kromhout, D.; Spaaij, C.J.K.; De Goede, J.; Weggemans, R.M.; for the Committee Dutch Dietary Guidelines 2015. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- Vinke, P.C.; Corpeleijn, E.; Dekker, L.H.; Jacobs, D.R.; Navis, G.; Kromhout, D. Development of the food-based Lifelines Diet Score (LLDS) and its application in 129,369 Lifelines participants. Eur. J. Clin. Nutr. 2018, 72, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Salavati, N.; Bakker, M.K.; Van Der Beek, E.M.; Erwich, J.H.M. Cohort Profile: The Dutch Perined-Lifelines birth cohort. PLoS ONE 2019, 14, e0225973. [Google Scholar] [CrossRef] [Green Version]
- Perined, Perinatal Care in the Netherlands 2006–2016; Stichting Perinatale Registratie Nederland: Utrecht, The Netherlands, 2018.
- Scholtens, S.; Smidt, N.; A Swertz, M.; Bakker, S.J.L.; Dotinga, A.; Vonk, J.M.; Van Dijk, F.; Van Zon, S.K.R.; Wijmenga, C.; Wolffenbuttel, B.H.R.; et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 2014, 44, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar] [PubMed]
- E Black, A. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.J.; Sampson, L.; Cho, E.; Hughes, M.D.; Hu, F.B.; Willett, W.C. Comparison of Methods to Account for Implausible Reporting of Energy Intake in Epidemiologic Studies. Am. J. Epidemiol. 2015, 181, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Siebelink, E.; Geelen, A.; De Vries, J.H.M. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br. J. Nutr. 2011, 106, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes 2015, 6, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nat. Cell Biol. 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Mace, O.J.; Affleck, J.; Patel, N.; Kellett, G.L. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 2007, 582, 379–392. [Google Scholar] [CrossRef]
- Swithers, S.E.; Davidson, T.L. A role for sweet taste: Calorie predictive relations in energy regulation by rats. Behav. Neurosci. 2008, 122, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Swithers, S.E.; Martin, A.A.; Davidson, T.L. High-intensity sweeteners and energy balance. Physiol. Behav. 2010, 100, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Appleton, K.M.; Blundell, J. Habitual high and low consumers of artificially-sweetened beverages: Effects of sweet taste and energy on short-term appetite. Physiol. Behav. 2007, 92, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Pepino, M.Y.; Tiemann, C.D.; Patterson, B.W.; Wice, B.M.; Klein, S. Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load. Diabetes Care 2013, 36, 2530–2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, T.A.; Xiang, A.H.; Page, K.A. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat. Rev. Endocrinol. 2012, 8, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salavati, N.; Gordijn, S.; Sovio, U.; Zill-E-Huma, R.; Gebril, A.; Charnock-Jones, D.S.; Scherjon, S.; Smith, G. Birth weight to placenta weight ratio and its relationship to ultrasonic measurements, maternal and neonatal morbidity: A prospective cohort study of nulliparous women. Placenta 2018, 63, 45–52. [Google Scholar] [CrossRef]
- Van Der Ende, M.Y.; Hartman, M.H.; Hagemeijer, Y.; Meems, L.M.; De Vries, H.S.; Stolk, R.P.; De Boer, R.A.; Sijtsma, A.; Van Der Meer, P.; Rienstra, M.; et al. The LifeLines Cohort Study: Prevalence and treatment of cardiovascular disease and risk factors. Int. J. Cardiol. 2017, 228, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Country Statistics; World Health Organisation: Geneva, Switzerland, 2017. [Google Scholar]
- Koning, S.H.; Hoogenberg, K.; Lutgers, H.L.; Berg, P.P.V.D.; Wolffenbuttel, B.H. Gestational Diabetes Mellitus: Current knowledge and unmet needs. J. Diabetes 2016, 8, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.A.; Caughey, A.B. The interrelationship between ethnicity and obesity on obstetric outcomes. Am. J. Obstet. Gynecol. 2005, 193, 1089–1093. [Google Scholar] [CrossRef]
- Braun, K.V.; Erler, N.S.; Jong, J.C.K.-D.; Jaddoe, V.W.; Hooven, E.H.V.D.; Franco, O.H.; Voortman, T. Dietary Intake of Protein in Early Childhood Is Associated with Growth Trajectories between 1 and 9 Years of Age. J. Nutr. 2016, 146, 2361–2367. [Google Scholar] [CrossRef]
- Mikkelsen, T.B.; Osler, M.; Orozova-Bekkevold, I.; Knudsen, V.K.; Olsen, S.F. Association between fruit and vegetable consumption and birth weight: A prospective study among 43,585 Danish women. Scand. J. Public Health 2006, 34, 616–622. [Google Scholar] [CrossRef]
- Mathews, F.; Yudkin, P.; Neil, A. Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 1999, 319, 339–343. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Nutrition, Physical Activity and Obesity Netherlands Demographic Data Monitoring and Surveillance Prevalence Of Overweight And Obesity (%) Among Dutch Adults Based on WHO 2008 Estimates; World Health Organisation: Geneva, Switzerland, 2013. [Google Scholar]
- Brown, R.J.; De Banate, M.A.; Rother, K.I. Artificial Sweeteners: A systematic review of metabolic effects in youth. Pediatr. Obes. 2010, 5, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Low BMI (Q1) 1 (20.3 [19.6–20.8]) N = 329 (100%) | Normal BMI (Q2-Q4) 1 (23.8 [22.6–25.5]) N = 1043 (100%) | High (Q5) 1 (30.5 [28.9–32.9]) N = 326 (100%) | p2 | Complete Cohort (N = 1698) | |||||
---|---|---|---|---|---|---|---|---|---|
LLDS 3 | 25 | [21–29] | 24 | [20–28] | 23 | [19–27] | 0.006 | 24 | [20–28] |
Energy (in kcal) | |||||||||
Food groups | |||||||||
Vegetables | 50.6 | [35.2–74.7] | 54.7 | [36.4–74.8] | 53.5 | [34.4–79.4] | 0.51 | 53.8 | [35.7–76.0] |
Fruit | 66.6 | [37.6–106.8] | 65.3 | [29.6–109.7] | 58.3 | [28.4–113.4] | 0.57 | 64.6 | [30.5–109.8] |
Whole grain products | 53.9 | [39.5–68.7] | 52.5 | [36.4–68.2] | 50.8 | [35.5–67.5] | 0.31 | 52.1 | [37.1–68.2] |
Legumes and Nuts | 7.9 | [3.6–13.8] | 6.3 | [2.7–12.1] | 5.8 | [1.8–11.5] | 0.003 | 6.4 | [2.7–12.4] |
Fish | 4.8 | [1.9–7.9] | 5.3 | [2.0–8.2] | 5.5 | [1.7–8.3] | 0.51 | 5.3 | [1.9–8.2] |
Oils and soft margarines | 8.4 | [2.5–14.5] | 8.7 | [3.2–14.9] | 8.6 | [3.2–14.1] | 0.52 | 8.7 | [3.1–14.7] |
Unsweetened dairy | 65.0 | [29.4–117.1] | 71.8 | [28.6–135.9] | 82.3 | [25.2–154.3] | 0.14 | 71.3 | [27.7–133.2] |
Coffee | 77.1 | [0.0–175.6] | 95.3 | [0.0–204.0] | 58.0 | [0.0–191.4] | 0.15 | 85.5 | [0.0–194.6] |
Tea | 186.2 | [104.2–290.9] | 160.6 | [73.3–282.8] | 150.7 | [61.9–269.7] | 0.008 | 164.8 | [77.6–282.1] |
Eggs | 3.6 | [2.4–7.4] | 4.0 | [2.6–7.4] | 4.3 | [2.5–9.1] | 0.05 | 4.0 | [2.5–7.7] |
Red and processed meat | 29.5 | [20.5–38.5] | 33.9 | [24.5–42.8] | 35.9 | [28.3–46.8] | <0.001 | 33.6 | [24.6–43.0] |
Butter and hard margarines | 7.3 | [2.4–13.5] | 7.7 | [2.2–14.5] | 8.2 | [2.4–14.4] | 0.74 | 7.7 | [2.3–14.4] |
Sugar-sweetened beverages | 61.0 | [27.1–127.2] | 65.7 | [22.6–128.1] | 65.0 | [24.5–138.7] | 0.94 | 64.7 | [24.1–130.3] |
Potatoes | 28.5 | [14.2–42.8] | 29.5 | [16.0–44.4] | 27.7 | [15.7–43.9] | 0.84 | 28.9 | [15.6–44.2] |
Refined grain products | 38.7 | [27.2–56.2] | 36.9 | [25.1–53.1] | 34.3 | [24.6–49.4] | 0.03 | 36.7 | [25.4–53.0] |
White, unprocessed meat | 5.1 | [2.9–8.1] | 5.9 | [3.7–9.0] | 6.5 | [4.5–9.9] | <0.001 | 5.9 | [3.7–9.1] |
Cheese | 10.1 | [5.7–17.3] | 9.6 | [5.0–16.7] | 10.3 | [6.1–17.0] | 0.18 | 9.8 | [5.4–16.9] |
Savory and ready products | 50.9 | [35.8–69.0] | 51.6 | [37.5–67.4] | 55.4 | [40.6–73.2] | 0.15 | 52.1 | [37.6–69.3] |
Sugary products | 40.9 | [30.1–51.8] | 37.2 | [27.1–49.1] | 34.6 | [23.4–45.6] | <0.001 | 37.4 | [26.9–49.3] |
Soups | 15.1 | [9.8–26.2] | 15.9 | [9.8–27.2] | 16.3 | [9.2–28.1] | 0.77 | 15.9 | [9.7–27.3] |
Sweetened dairy products | 47.0 | [23.9–71.2] | 47.7 | [22.9–78.9] | 48.6 | [25.8–79.4] | 0.29 | 47.7 | [23.8–77.7] |
Artificially sweetened products | 12.9 | [0.0–47.4] | 21.5 | [0.07–6.5] | 43.9 | [4.6–116.6] | <0.001 | 22.2 | [0.0–77.4] |
Adjusted Analysis 1 | |||
---|---|---|---|
Analysis | Coeff (95% CI) 2 | p | |
LLDS 3 | −6.4E−5 | (−0.008 to 0.008) | 0.99 |
Food groups | |||
Vegetables | 0.002 | (0.000 to 0.003) | 0.03 |
Fruit | 0.000 | (−0.001 to 0.001) | 0.73 |
Whole grain products | −0.001 | (−0.004 to 0.002) | 0.52 |
Legumes and Nuts | −0.003 | (−0.009 to 0.004) | 0.41 |
Fish | −0.001 | (−0.009 to 0.007) | 0.75 |
Oils and soft margarines | 0.003 | (−0.005 to 0.010) | 0.48 |
Unsweetened dairy | 0.000 | (0.000 to 0.001) | 0.22 |
Coffee | 0.000 | (−0.001 to 0.000) | 0.14 |
Tea | 6.26E−5 | (0.000 to 0.000) | 0.71 |
Eggs | −0.093 | (−0.174 to −0.013) | 0.02 |
Red and& processed meat | 0.005 | (−0.033 to 0.044) | 0.78 |
Butter and hard margarines | 0.045 | (−0.031 to 0.121) | 0.25 |
Sugar-sweetened beverages | −0.006 | (−0.013 to 0.001) | 0.08 |
Potatoes | 0.000 | (−0.025 to 0.026) | 0.98 |
Refined grain products | 0.000 | (−0.027 to 0.027) | 0.99 |
White, unprocessed meat | −0.033 | (−0.132 to 0.067) | 0.52 |
Cheese | −0.010 | (−0.068 to 0.048) | 0.73 |
Savory and ready products | −0.005 | (−0.032 to 0.021) | 0.70 |
Sugary products | 0.014 | (−0.026 to 0.054) | 0.50 |
Soups | 0.002 | (−0.020 to 0.024) | 0.83 |
Sweetened dairy products | −0.002 | (−0.014 to 0.009) | 0.68 |
Artificially sweetened products | 0.001 | (0.000 to 0.001) | 0.002 |
Adjusted Analysis 1 | |||
---|---|---|---|
Coeff (95% CI) 2 | p | ||
Model 1-main macronutrients | |||
Total protein | 0.047 | (0.004 to 0.089) | 0.03 |
Total fat | −0.003 | (−0.034 to 0.027) | 0.83 |
Total carbohydrates | −0.001 | (−0.025 to 0.022) | 0.93 |
Model 2-nutrient quality | |||
Animal protein | 0.050 | (0.009 to 0.093) | 0.02 |
Plant protein 3 | - | - | - |
Total fat | −0.009 | (−0.043 to 0.025) | 0.59 |
Mono- and disaccharides | −0.004 | (−0.027 to 0.020) | 0.08 |
Polysaccharides | 0.008 | (−0.014 to 0.030) | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salavati, N.; Vinke, P.C.; Lewis, F.; Bakker, M.K.; Erwich, J.J.H.M.; M.van der Beek, E. Offspring Birth Weight Is Associated with Specific Preconception Maternal Food Group Intake: Data from a Linked Population-Based Birth Cohort. Nutrients 2020, 12, 3172. https://doi.org/10.3390/nu12103172
Salavati N, Vinke PC, Lewis F, Bakker MK, Erwich JJHM, M.van der Beek E. Offspring Birth Weight Is Associated with Specific Preconception Maternal Food Group Intake: Data from a Linked Population-Based Birth Cohort. Nutrients. 2020; 12(10):3172. https://doi.org/10.3390/nu12103172
Chicago/Turabian StyleSalavati, Nastaran, Petra C. Vinke, Fraser Lewis, Marian K. Bakker, Jan Jaap H.M. Erwich, and Eline M.van der Beek. 2020. "Offspring Birth Weight Is Associated with Specific Preconception Maternal Food Group Intake: Data from a Linked Population-Based Birth Cohort" Nutrients 12, no. 10: 3172. https://doi.org/10.3390/nu12103172
APA StyleSalavati, N., Vinke, P. C., Lewis, F., Bakker, M. K., Erwich, J. J. H. M., & M.van der Beek, E. (2020). Offspring Birth Weight Is Associated with Specific Preconception Maternal Food Group Intake: Data from a Linked Population-Based Birth Cohort. Nutrients, 12(10), 3172. https://doi.org/10.3390/nu12103172