Differential Effect of Four-Week Feeding of Different Dietary Fats on the Accumulation of Fat and the Cholesterol and Triglyceride Contents in the Different Fat Depots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Procedures
2.3. Statistics
3. Results
3.1. Time-Course Changes in Body Weight during the Feeding Period with Different Diets
3.2. Differences in Food and Water Intake in Response to Different Diet Feeding
3.3. Effects of Different Diets on Body Temperature
3.4. Effects of Different Diets on Fat Pad Weight
3.5. Effects of Different Diets on Adipose Cell Number and Cell Size
3.6. Effects of Different Diets on Cholesterol Content in Fat Pads
3.7. Effects of Different Diets on Triacylglycerol Content in Fat Pads
3.8. Effects of Different Diets on Cholesterol Content in the Adipocytes of Different Fat Pads
3.9. Effects of Different Diets on Triacylglycerol Content in Adipocytes of Different Fat Pads
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Curtin, L.R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010, 303, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput. Biol. 2009, 5. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Jones, P.J.H. Dietary fatty acid composition influences energy accretion in rats. J. Nutr. 1993, 123, 2109–2114. [Google Scholar] [CrossRef] [PubMed]
- Lipid Accumulation and Body Fat Distribution is Influenced by Type of Dietary Fat Fed to Rats—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/8387971/ (accessed on 9 October 2020).
- Altberg, A.; Hovav, R.; Chapnik, N.; Madar, Z. Effect of dietary oils from various sources on carbohydrate and fat metabolism in mice. Food Nutr. Res. 2020, 64, 1–12. [Google Scholar] [CrossRef]
- Fuller, S.; Yu, Y.; Allerton, T.D.; Mendoza, T.; Ribnicky, D.M.; Floyd, Z.E. Adaptive fat oxidation is coupled with increased lipid storage in adipose tissue of female mice fed high dietary fat and sucrose. Nutrients 2020, 12, 2233. [Google Scholar] [CrossRef]
- Fong, B.S.; Angel, A. Transfer of free and esterified cholesterol from low-density lipoproteins and high-density lipoproteins to human adipocytes. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1989, 1004, 53–60. [Google Scholar] [CrossRef]
- Zsigmond, E.; Parrish, C.; Fong, B.; Angel, A. Changes in dietary lipid saturation modify fatty acid composition and high-density-lipoprotein binding of adipocyte plasma membrane. Am. J. Clin. Nutr. 1990, 52, 110–119. [Google Scholar] [CrossRef]
- Gondim, P.N.; Rosa, P.V.; Okamura, D.; Silva, V.D.O.; Andrade, E.F.; Biihrer, D.A.; Pereira, L.J. Benefits of fish oil consumption over other sources of lipids on metabolic parameters in obese rats. Nutrients 2018, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Garg, M.L.; Wierzbicki, A.A.; Thomson, A.B.R.; Clandinin, M.T. Fish oil reduces cholesterol and arachidonic acid content more efficiently in rats fed diets containing low linoleic acid to saturated fatty acid ratios. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1988, 962, 337–344. [Google Scholar] [CrossRef]
- Allaire, J.; Vors, C.; Harris, W.S.; Jackson, K.H.; Tchernof, A.; Couture, P.; Lamarche, B. Comparing the serum TAG response to high-dose supplementation of either DHA or EPA among individuals with increased cardiovascular risk: The ComparED study. Br. J. Nutr. 2019, 121, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Budoff, M.; Brent Muhlestein, J.; Le, V.T.; May, H.T.; Roy, S.; Nelson, J.R. Effect of Vascepa (icosapent ethyl) on progression of coronary atherosclerosis in patients with elevated triglycerides (200–499 mg/dL) on statin therapy: Rationale and design of the EVAPORATE study. Clin. Cardiol. 2018, 41, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.; Zucker, L.M.; Cruce, J.A.; Hirsch, J. Cellularity of adipose depots in the genetically obese Zucker rat. J. Lipid Res. 1971, 12, 706–714. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Lu, W.J.; Yang, Q.; Yang, L.; Lee, D.; D’Alessio, D.; Tso, P. Original article chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids 2012, 47, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Kohan, A.B.; Howles, P.N.; Tso, P. Methods for Studying Rodent Intestinal Lipoprotein Production and Metabolism. Curr. Protoc. Mouse Biol. 2012, 2, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Stenkula, K.G.; Erlanson-Albertsson, C. Adipose cell size: Importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R284–R295. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.; Gallian, E. Methods for the determination of adipose cell size in man and animals. J. Lipid Res. 1968, 9, 110–119. [Google Scholar]
- Cushman, S.W.; Salans, L.B. Determination of adipose cell size and number in suspensions of isolated rat and human adipose cells. J. Lipid Res. 1978, 19, 269–273. [Google Scholar] [PubMed]
- Parrish, C.C.; Pathy, D.A.; Parkes, J.G.; Angel, A. Dietary fish oils modify adipocyte structure and function. J. Cell. Physiol. 1991, 148, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.C.; Pathy, D.A.; Angel, A. Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 1990, 39, 217–219. [Google Scholar] [CrossRef]
- Fukagawa, K.; Sakata, T.; Yoshimatsu, H.; Fujimoto, K.; Uchimura, K.; Asano, C. Advance shift of feeding circadian rhythm induced by obesity progression in Zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1992, 263. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.; Han, P.W. Cellularity of rat adipose tissue: Effects of growth, starvation, and obesity. J. Lipid Res. 1969, 10, 77–82. [Google Scholar]
- Salans, L.B.; Horton, E.S.; Sims, E.A. Experimental obesity in man: Cellular character of the adipose tissue. J. Clin. Invest. 1971, 50, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Faust, I.M.; Johnson, P.R.; Stern, J.S.; Hirsch, J. Diet-induced adipocyte number increase in adult rats: A new model of obesity. Am. J. Physiol. Endocrinol. Metab. Gastrointest. Physiol. 1978, 4. [Google Scholar] [CrossRef]
- Johnson, P.R.; Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J. Lipid Res. 1972, 13, 2–11. [Google Scholar] [PubMed]
- Stiles, J.W.; Francendese, A.A.; Masoro, E.J. Influence of age on size and number of fat cells in the epididymal depot. Am. J. Physiol. 1975, 229, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.O.; Dorton, J.; Sykes, M.N.; Digirolamo, M. Reversal of dietary obesity is influenced by its duration and severity. Int. J. Obes. 1989, 13, 711–722. [Google Scholar]
- Matsuo, T.; Shimomura, Y.; Saitoh, S.; Tokuyama, K.; Takeuchi, H.; Suzuki, M. Sympathetic activity is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet. Metabolism 1995, 44, 934–939. [Google Scholar] [CrossRef]
- Shimomura, Y.; Tamura, T.; Suzuki, M. Less body fat accumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet. J. Nutr. 1990, 120, 1291–1296. [Google Scholar] [CrossRef]
- Despres, J.P.; Fong, B.S.; Julien, P.; Jimenez, J.; Angel, A. Regional variation in HDL metabolism in human fat cells: Effect of cell size. Am. J. Physiol. Endocrinol. Metab. 1987, 252. [Google Scholar] [CrossRef]
- Khuu Thi-Dinh, K.L.; Demarne, Y.; Nicolas, C.; Lhuillery, C. Effect of dietary fat on phospholipid class distribution and fatty acid composition in rat fat cell plasma membrane. Lipids 1990, 25, 278–283. [Google Scholar] [CrossRef]
- Zsigmond, E.; Fong, B.; Angel, A. Dietary polyunsaturated fatty acids enhance the uptake of high-density lipoprotein cholesterol ester by rat adipocytes. Am. J. Clin. Nutr. 1990, 52, 289–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Östman, J.; Arner, P.; Engfeldt, P.; Kager, L. Regional differences in the control of lipolysis in human adipose tissue. Metabolism 1979, 28, 1198–1205. [Google Scholar] [CrossRef]
- Harris, W.S.; Bulchandani, D. Why do omega-3 fatty acids lower serum triglycerides? Curr. Opin. Lipidol. 2006, 17, 387–393. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, D.Q.-H.; Black, D.D.; Tso, P. Differential Effect of Four-Week Feeding of Different Dietary Fats on the Accumulation of Fat and the Cholesterol and Triglyceride Contents in the Different Fat Depots. Nutrients 2020, 12, 3241. https://doi.org/10.3390/nu12113241
Liu M, Wang DQ-H, Black DD, Tso P. Differential Effect of Four-Week Feeding of Different Dietary Fats on the Accumulation of Fat and the Cholesterol and Triglyceride Contents in the Different Fat Depots. Nutrients. 2020; 12(11):3241. https://doi.org/10.3390/nu12113241
Chicago/Turabian StyleLiu, Min, David Q.-H. Wang, Dennis D Black, and Patrick Tso. 2020. "Differential Effect of Four-Week Feeding of Different Dietary Fats on the Accumulation of Fat and the Cholesterol and Triglyceride Contents in the Different Fat Depots" Nutrients 12, no. 11: 3241. https://doi.org/10.3390/nu12113241
APA StyleLiu, M., Wang, D. Q. -H., Black, D. D., & Tso, P. (2020). Differential Effect of Four-Week Feeding of Different Dietary Fats on the Accumulation of Fat and the Cholesterol and Triglyceride Contents in the Different Fat Depots. Nutrients, 12(11), 3241. https://doi.org/10.3390/nu12113241