Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context and Participant Recruitment
2.2. Data Collection Procedure
2.3. Demographics and Socioeconomic Status
2.4. Anthropometry
2.5. Dietary Diversity
2.6. Blood Biochemistry
2.7. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Anthropometric Measurements
3.3. Dietary Diversity
3.4. Blood Biochemistry
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Element | Cu | Zn | Se |
---|---|---|---|
Limit of detection (µg/L) | 0.19 | 1.05 | 0.020 |
Limit of quantification (µg/L) | 0.64 | 3.51 | 0.05 |
CRM % Recovery | Cu | Zn | Se |
---|---|---|---|
Seronorm L-1 | 87 | 100 | 100 |
Seronorm L-2 | 88 | 104 | 101 |
References
- Fanzo, J.; Hawkes, C.; Udomkesmalee, E.; Afshin, A.; Allemandi, L.; Assery, O.; Baker, P.; Battersby, J.; Bhutta, Z.; Chen, K. 2018 Global Nutrition Report. 2019. Available online: https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (accessed on 4 November 2020).
- WHO. Malnutrition. Key Facts. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 24 September 2020).
- UN General Assembly. Implementation of the United Nations Decade of Action on Nutrition (2016–2025). Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwja3aCBp5PsAhVJURUIHUzRAf0QFjAGegQIAxAC&url=http%3A%2F%2Fwww.fao.org%2F3%2Fa-i6130e.pdf&usg=AOvVaw0sA22shQkFRCcwzqHsGHVt (accessed on 28 September 2020).
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [PubMed]
- Harding, K.L.; Aguayo, V.M.; Webb, P. Hidden hunger in South Asia: A review of recent trends and persistent challenges. PHN 2018, 21, 785–795. [Google Scholar] [PubMed] [Green Version]
- Winichagoon, P.; Margetts, B.M. The Double Burden of Malnutrition in Low-and Middle-Income Countries. 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjM3vqTppPsAhVDWxUIHSPsAycQFjABegQIBRAC&url=http%3A%2F%2Fpublications.iarc.fr%2F_publications%2Fmedia%2Fdownload%2F4586%2F53944c7a9c0ec4c1547b35ee5b1f2df6f5c0dc3e.pdf&usg=AOvVaw123QZ4VsnVkY7nUhpFJMgs (accessed on 28 September 2020).
- Zia, M.H.; Ahmed, I.; Bailey, E.H.; Lark, R.M.; Young, S.D.; Lowe, N.M.; Joy, E.J.; Wilson, L.; Zaman, M.; Broadley, M. Site-specific factors influence the field performance of a Zn-biofortified wheat variety. Front. Sustain. Food Syst. 2020, 135. [Google Scholar] [CrossRef]
- Capacci, S.; Mazzocchi, M.; Shankar, B.; Traill, B. The triple burden of malnutrition in Europe and Central Asia: A multivariate analysis. FAO Reg. Off. Eur. Cent. Asia Policy Stud. Rural Transit. 2013, 7, 7–8. [Google Scholar]
- Hawkes, C.; Ruel, M.T.; Salm, L.; Sinclair, B.; Branca, F. Double-duty actions: Seizing programme and policy opportunities to address malnutrition in all its forms. Lancet 2020, 395, 142–155. [Google Scholar] [PubMed]
- Government of Pakistan. UNICEF. National Nutrition Survey 2018, Key Findings Report. 2019. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiaj5_xqZPsAhXwThUIHWO6D0YQFjAAegQIARAC&url=https%3A%2F%2Fwww.unicef.org%2Fpakistan%2Freports%2Fnational-nutrition-survey-2018-key-findings-report&usg=AOvVaw1-5DhOp8shiA8Xz_ibjJzB (accessed on 24 September 2020).
- Bhutta, Z.A.; Soofi, S.B.; Zaidi, S.S.H.; Habib, A. Pakistan National Nutrition Survey. 2011. Available online: https://www.humanitarianresponse.info/en/operations/pakistan/document/national-nutrition-survey-2011 (accessed on 24 September 2020).
- Farrell, P.; Thow, A.M.; Abimbola, S.; Faruqui, N.; Negin, J. How food insecurity could lead to obesity in LMICs: When not enough is too much: A realist review of how food insecurity could lead to obesity in low-and middle-income countries. Health Promot. Int. 2018, 33, 812–826. [Google Scholar]
- Khan, G.N.; Ariff, S.; Khan, U.; Habib, A.; Umer, M.; Suhag, Z.; Hussain, I.; Bhatti, Z.; Ullah, A.; Turab, A.; et al. Determinants of infant and young child feeding practices by mothers in two rural districts of Sindh, Pakistan: A cross-sectional survey. Int. Breastfeed. J. 2017, 12, 40. [Google Scholar]
- Iqbal, S.; Zakar, R.; Zakar, M.Z.; Fischer, F. Factors associated with infants’ and young children’s (6–23 months) dietary diversity in Pakistan: Evidence from the demographic and health survey 2012–13. Nutrition 2017, 16, 78. [Google Scholar]
- Na, M.; Aguayo, V.M.; Arimond, M.; Stewart, C.P. Risk factors of poor complementary feeding practices in Pakistani children aged 6–23 months: A multilevel analysis of the Demographic and Health Survey 2012–2013. Matern. Child Nutr. 2017, 13, e12463. [Google Scholar]
- Ali, F.; Thaver, I.; Khan, S.A. Assessment of dietary diversity and nutritional status of pregnant women in Islamabad, Pakistan. JAMC 2014, 26, 506–509. [Google Scholar] [PubMed]
- Lander, R.L.; Hambidge, K.M.; Westcott, J.E.; Tejeda, G.; Diba, T.S.; Mastiholi, S.C.; Khan, U.S.; Garcés, A.; Figueroa, L.; Tshefu, A.; et al. Pregnant women in four low-middle income countries have a high prevalence of inadequate dietary intakes that are improved by dietary diversity. Nutrients 2019, 11, 1560. [Google Scholar]
- Qureshi, Z.; Khan, R. Dietary intake trends among pregnant women in rural area of rawalpindi, Pakistan. JAMC 2015, 27, 684–688. [Google Scholar] [PubMed]
- Das, J.K.; Achakzai, A.B.K.; Bhutta, Z.A. Stop stunting: Pakistan perspective on how this could be realized. Matern. Child Nutr. 2016, 12 (Suppl. 1), 253. [Google Scholar]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S.; Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [PubMed] [Green Version]
- Lowe, N.M.; Khan, M.J.; Broadley, M.R.; Zia, M.H.; McArdle, H.J.; Joy, E.J.; Ohly, H.; Shahzad, B.; Ullah, U.; Kabana, G.; et al. Examining the effectiveness of consuming flour made from agronomically biofortified wheat (Zincol-2016/NR-421) for improving Zn status in women in a low-resource setting in Pakistan: Study protocol for a randomised, double-blind, controlled cross-over trial (BiZiFED). BMJ Open 2018, 8, 4. [Google Scholar]
- Bingley, H.; Lowe, N.; Mehdi, R.; Haq, Z.U.; Zaman, M. Developing health service delivery in a poor and marginalised community in North West Pakistan. Pak. J. Med. Sci. 2018, 34, 757. [Google Scholar]
- Khadivzadeh, T. Mid upper arm and calf circumferences as indicators of nutritional status in women of reproductive age. EMHJ 2002, 8, 612–618. [Google Scholar]
- WHO, Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157. [Google Scholar]
- FAO; FHI 360. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016; p. 82. [Google Scholar]
- FAO. Dietary Assessment, A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018. [Google Scholar]
- WHO. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations; No. WHO/NMH/NHD/MNM/11.2; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiMktHVqunsAhXpQkEAHc4DBHAQFjACegQIBBAC&url=https%3A%2F%2Fwww.who.int%2Fvmnis%2Findicators%2Fserum_ferritin.pdf&usg=AOvVaw27fbbZtQb1GsPG0F0t-cKQ (accessed on 4 November 2020).
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; No. WHO/NMH/NHD/MNM/11.1; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjPkZD8qunsAhWAZxUIHZgXBEcQFjABegQIBBAC&url=https%3A%2F%2Fwww.who.int%2Fvmnis%2Findicators%2Fhaemoglobin%2Fen%2F&usg=AOvVaw3zYiLj_OnoC3NvjgeQveUo (accessed on 4 November 2020).
- UN; WHO. Iron Deficiency Anaemia: Assesment, Prevention and Control: A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjw-ti0q-nsAhUjpHEKHbl4C6MQFjABegQIBhAC&url=https%3A%2F%2Fwww.who.int%2Fnutrition%2Fpublications%2Fmicronutrients%2Fanaemia_iron_deficiency%2FWHO_NHD_01.3%2Fen%2F&usg=AOvVaw3m1es0rWZ368mUKaKgrK8Y (accessed on 4 November 2020).
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; Hotz, C.; et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document# 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25 (Suppl. 2), S99–S203. [Google Scholar]
- Thomson, C. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [PubMed] [Green Version]
- Royal College of Physicians and Surgeons of Canada. Clinical Laboratory Tests—Reference Values. 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjp_o-bwI7sAhUdUBUIHR23DCAQFjADegQIARAB&url=http%3A%2F%2Fwww.royalcollege.ca%2Frcsite%2Fdocuments%2Fcredential-exams%2Fclinical-lab-tests-reference-values-e.pdf&usg=AOvVaw0esrInJySYgpP5_Tg2umOV (accessed on 30 September 2020).
- Suega, K.; Kandarini, Y.; Tubung, J. Role of Soluble Transferrin Receptor and Transferrin Receptor-Ferritin Index to Detect Iron Deficiency Anemia in Regular Hemodialysis Patients. OAMJMS 2019, 7, 97. [Google Scholar]
- The Royal Wolverhampton NHS Trust. Haematology Normal Adult Reference Ranges. 2017. Available online: https://www.royalwolverhampton.nhs.uk/services/service-directory-a-z/pathology-services/departments/haematology/haematology-normal-adult-reference-ranges/ (accessed on 30 September 2020).
- Harding, K.L.; Aguayo, V.M.; Namirembe, G.; Webb, P. Determinants of anemia among women and children in Nepal and Pakistan: An analysis of recent national survey data. Matern. Child Nutr. 2018, 14, e12478. [Google Scholar]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. AJCN 2003, 78, 633S–639S. [Google Scholar]
- Tavajjoh, M.; Yasrebi, J.; Karimian, N.; Olama, V. Phytic Acid Concentration and Phytic Acid: Zinc Molar Ratio in Wheat Cultivars and Bread Flours, Fars Province, Iran. J. Agric. Sci. Technol. 2011, 13, 743–755. [Google Scholar]
- Delimont, N.M.; Haub, M.D.; Lindshield, B.L. The impact of tannin consumption on iron bioavailability and status: A narrative review. Curr. Dev. Nutr. 2017, 1, 1–12. [Google Scholar]
- Disler, P.; Lynch, S.; Torrance, J.; Sayers, M.; Bothwell, T.; Charlton, R. The mechanism of the inhibition of iron absorption by tea. S. Afr. J. Med. 1975, 40, 109–116. [Google Scholar]
- Geerligs, P.P.; Brabin, B.; Mkumbwa, A.; Broadhead, R.; Cuevas, L.E. The effect on haemoglobin of the use of iron cooking pots in rural Malawian households in an area with high malaria prevalence: A randomized trial. Trop. Med. Int. Health 2003, 8, 310–315. [Google Scholar] [PubMed] [Green Version]
- Charles, C.V.; Summerlee, A.J.; Dewey, C.E. Iron content of Cambodian foods when prepared in cooking pots containing an iron ingot. Trop. Med. Int. Health 2011, 16, 1518–1524. [Google Scholar]
- Tripp, K.; MacKeith, N.; Woodruff, B.A.; Talley, L.; Mselle, L.; Mirghani, Z.; Abdalla, F.; Bhatia, R.; Seal, A.J. Acceptability and use of iron and iron-alloy cooking pots: Implications for anaemia control programmes. Public Health Nutr. 2010, 13, 123–130. [Google Scholar]
- Alam, A.; Ali, A.; Lodhi, A.; Alam, S.; Rauf, N. Serum selenium concentration and subsequent risk of diabetes miletus in Pakistan. JDCM 2016, 1, 2. [Google Scholar]
- Pan American Health Organization; UNICEF. ProPAN: Process for the Promotion of Child Feeding: A Tool to Improve Infant and Young Child Feeding; PAHO: Washington, DC, USA, 2013. [Google Scholar]
Characteristic | Mean (SD) | N (%) | Median | Range |
---|---|---|---|---|
Demographic features | ||||
Age (in years) | 36 (7) | 35 | 22–48 | |
Education level | ||||
None | 46 (98) | |||
Matriculation * | 1 (2) | |||
Married | 47 (100) | |||
Anthropometric Features | ||||
Height (m) | 1.56 (0.06) | 1.56 | 1.47–1.70 | |
Weight (kg) | 66.3 (14.2) | 67 | 44–100 | |
BMI ƾ (kg/m2) | 27.1 (5.6) | 27.0 | 17.4–41.4 | |
Underweight (<18.5) | 3 (6) | |||
Healthy weight (18.5–24.9) | 15 (32) | |||
Overweight (25–29.9) | 15 (34) | |||
Obese (>30) | 13 (28) | |||
Mid-upper-arm circumference (cm) | 29.0 (4.3) | 29 | 21.5–39.0 | |
Household features | ||||
No. adult women in the household | 2.0 (0.8) | 2 | 1–4 | |
No. adult men in the household | 1.8 (0.7) | 2 | 1–3 | |
No. children in household (total) | 4.5 (1.8) | 4 | 1–8 | |
Number of rooms in the house | 2.4 (1.3) | 2 | 1–6 | |
Structure of House | ||||
Bricks | 16 (34) | |||
Katcha ¶ | 31 (66) | |||
Toilet facility present | ||||
Yes | 38 (81) | |||
No | 9 (19) | |||
House ownership | ||||
Own | 40 (85) | |||
Rent | 4 (9) | |||
Free tenant ǂ | 3 (6) | |||
Food, Water, and Hygiene | ||||
Preparation of meals | ||||
Kitchen | 40 (85) | |||
Open space | 6 (13) | |||
Room (inside room living in) | 1 (2) | |||
Source of drinking water | ||||
Tube well (hand pump) | 3 (6) | |||
Bore hole (motorized pump) | 37 (79) | |||
Open well (open container with pulley system) | 7 (15) |
Food Group Category | All Foods Consumed by Category |
---|---|
1. Grains, white roots and tubers, and plantains | Wheat (flour), maize (flour), potato, rice, turnip, vermicelli |
2. Pulses (beans, peas, and lentils) | Lentil, kidney beans, chickpeas, white beans, dried peas |
3. Nuts and seeds | Peanuts |
4. Dairy | Milk (cow and buffalo), yogurt |
5. Meat, poultry, and fish | Chicken, beef, liver, fish |
6. Eggs | Chicken eggs |
7. Dark green leafy vegetables | Spinach, colocasia leaves |
8. Other vitamin A-rich fruits and vegetables | Carrot, pumpkin |
9. Other vegetables | Tomatoes, onions, cauliflower, okra, cucumber, radish, apple gourd, aubergine (brinjal), fresh peas, French beans |
10. Other fruits | Apple, banana, guava, raisins |
A. Other oils and fats | Ghee, oil |
B. Sugar-sweetened beverages | Black tea with sugar, green tea with sugar |
C. Condiments and seasonings | Chili pepper (red and green), garlic, mixed spices, coriander leaves, coriander seed, salt |
D. Other beverages and foods | Black tea, green tea |
E. Sweets | Cake, biscuit |
Food Group Score | T1 (n = 47) | T2 (n = 47) | T3 (n = 47) | T4 (n = 46) | T5 (n = 45) |
---|---|---|---|---|---|
2 | 4 | 0 | 0 | 4 | 7 |
3 | 17 | 21 | 23 | 17 | 13 |
4 | 53 | 38 | 43 | 37 | 49 |
5 | 17 | 38 | 23 | 37 | 29 |
6 | 9 | 0 | 9 | 4 | 2 |
7 | 0 | 2 | 2 | 0 | 0 |
Blood Biomarker | n | Mean (SD) | Min | Median | Max | Number below Cutoff or Reference Range, n (%) | Cutoff Value or Reference Range (RR) for Adult Women |
---|---|---|---|---|---|---|---|
Plasma Zinc (µg/L) | 47 | 701.6 (124.2) | 435.9 | 695.6 | 1060.8 | 14 (30) | Cutoff: 660 µg/L [30] |
Plasma Selenium (µg/L) | 47 | 96.1 (17.1) | 56.1 | 95.3 | 139.9 | 8 (17) | Cutoff: 80 µg/L [31] |
Plasma Iron (µg/L) | 47 | 962.8 (682.7) | 220.6 | 899.7 | 3813.7 | 1 (2) | RR: 280-1620 µg/L [32] |
Serum Ferritin (µg/L) | 43 | 55.3 (48.8) | 2.94 | 46.7 | 302.1 | 4 (9) | Cutoff: 15 μg/L [27] |
Soluble Transferrin Receptor (mg/L) | 44 | 0.76 (0.60) | 0.06 | 0.6 | 3.01 | 0 | RR: 0.16–4.23 [33] |
Hemoglobin (g/L) | 45 | 129 (17) | 97 | 129 | 213 | 6 (13) | Cutoff: 120 g/L [28] |
Hematocrit (%) | 45 | 39.4 (4.64) | 30.1 | 38.4 | 62.3 | 10 (22) | RR: 37–47% [32] |
Mean Corpuscular Volume (fL) | 45 | 82.8 (7.4) | 57.9 | 83.5 | 93.2 | 5 (11) | RR: 76–100 fL [32] |
Mean Corpuscular Hemoglobin Concentration (g/L) | 45 | 325 (18) | 268 | 329 | 354 | 12 (27) | RR: 320–360 g/L [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brazier, A.K.M.; Lowe, N.M.; Zaman, M.; Shahzad, B.; Ohly, H.; McArdle, H.J.; Ullah, U.; Broadley, M.R.; Bailey, E.H.; Young, S.D.; et al. Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan. Nutrients 2020, 12, 3407. https://doi.org/10.3390/nu12113407
Brazier AKM, Lowe NM, Zaman M, Shahzad B, Ohly H, McArdle HJ, Ullah U, Broadley MR, Bailey EH, Young SD, et al. Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan. Nutrients. 2020; 12(11):3407. https://doi.org/10.3390/nu12113407
Chicago/Turabian StyleBrazier, Anna K. M., Nicola M. Lowe, Mukhtiar Zaman, Babar Shahzad, Heather Ohly, Harry J. McArdle, Ubaid Ullah, Martin R. Broadley, Elizabeth H. Bailey, Scott D. Young, and et al. 2020. "Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan" Nutrients 12, no. 11: 3407. https://doi.org/10.3390/nu12113407
APA StyleBrazier, A. K. M., Lowe, N. M., Zaman, M., Shahzad, B., Ohly, H., McArdle, H. J., Ullah, U., Broadley, M. R., Bailey, E. H., Young, S. D., Tishkovskaya, S., & Khan, M. J. (2020). Micronutrient Status and Dietary Diversity of Women of Reproductive Age in Rural Pakistan. Nutrients, 12(11), 3407. https://doi.org/10.3390/nu12113407