Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Treatment
2.2. Determination of Corticosterone in Plasma and Liver
2.3. Tissue Preparations
2.4. Steroid Binding Analysis
2.5. Antioxidant Enzymes Activity and General Redox State Parameters
2.6. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Immunoblotting
2.7. RNA Isolation, Reverse Transcription, and Real-Time PCR
2.8. Data Presentation and Analysis
3. Results
3.1. Effects of Fructose-Rich Diet on Plasma and Liver Corticosterone Concentrations, and the Level of Hepatic 11βHSD1
3.2. Effects of Fructose-Rich Diet on Hepatic Glucocorticoid Receptor Signaling and the Level of Its Regulated Genes—Pepck, G6pase, and Lipin-1
3.3. Effects of Fructose-Rich Diet on Hepatic Level of GLUT2, Fructokinase, and Aldolase B
3.4. Effects of Fructose-Rich Diet on Hepatic Inflammatory and Redox Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanhope, K.L.; Schwarz, J.M.; Havel, P.J. Adverse metabolic effects of dietary fructose: Results from the recent epidemiological, clinical, and mechanistic studies. Curr. Opin. Lipidol. 2013, 24, 198–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, M.J.; Su, Q.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E685–E694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, A.J.; Vegiopoulos, A.; Herzig, S. Role of glucocorticoids and the glucocorticoid receptor in metabolism: Insights from genetic manipulations. J. Steroid Biochem. Mol. Biol. 2010, 122, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Fardet, L.; Feve, B. Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events. Drugs 2014, 74, 1731–1745. [Google Scholar] [CrossRef]
- Ferrau, F.; Korbonits, M. Metabolic comorbidities in Cushing’s syndrome. Eur. J. Endocrinol. 2015, 173, M133–M157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.C.; Gray, N.E.; Kuo, T.; Harris, C.A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2012, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, A.J.; Herzig, S. Metabolic control through glucocorticoid hormones: An update. Mol. Cell. Endocrinol. 2013, 380, 65–78. [Google Scholar] [CrossRef]
- Imai, E.; Stromstedt, P.E.; Quinn, P.G.; Carlstedt-Duke, J.; Gustafsson, J.A.; Granner, D.K. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 1990, 10, 4712–4719. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Chen, J.; Su, Z. Unraveling the Regulation of Hepatic Gluconeogenesis. Front. Endocrinol. 2018, 9, 802. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.E.; Finck, B.N. Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol. Metab. TEM 2011, 22, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Manmontri, B.; Sariahmetoglu, M.; Donkor, J.; Bou Khalil, M.; Sundaram, M.; Yao, Z.; Reue, K.; Lehner, R.; Brindley, D.N. Glucocorticoids and cyclic AMP selectively increase hepatic lipin-1 expression, and insulin acts antagonistically. J. Lipid Res. 2008, 49, 1056–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bosscher, K.; Vanden Berghe, W.; Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev. 2003, 24, 488–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.M.; Jiao, R.Q.; Kong, L.D. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Kanuri, G.; Spruss, A.; Wagnerberger, S.; Bischoff, S.C.; Bergheim, I. Role of tumor necrosis factor alpha (TNFalpha) in the onset of fructose-induced nonalcoholic fatty liver disease in mice. J. Nutr. Biochem. 2011, 22, 527–534. [Google Scholar] [CrossRef]
- Marinho, T.S.; Ornellas, F.; Barbosa-da-Silva, S.; Mandarim-de-Lacerda, C.A.; Aguila, M.B. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 2019, 65, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Grattagliano, I.; Palmieri, V.O.; Portincasa, P.; Moschetta, A.; Palasciano, G. Oxidative stress-induced risk factors associated with the metabolic syndrome: A unifying hypothesis. J. Nutr. Biochem. 2008, 19, 491–504. [Google Scholar] [CrossRef]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948. [Google Scholar] [CrossRef]
- Carter, E.L.; Ragsdale, S.W. Modulation of nuclear receptor function by cellular redox poise. J. Inorg. Biochem. 2014, 133, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Miesfeld, R.; Rusconi, S.; Godowski, P.J.; Maler, B.A.; Okret, S.; Wikstrom, A.C.; Gustafsson, J.A.; Yamamoto, K.R. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 1986, 46, 389–399. [Google Scholar] [CrossRef]
- Galigniana, M.D.; Piwien-Pilipuk, G.; Assreuy, J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol. Pharmacol. 1999, 55, 317–323. [Google Scholar] [CrossRef]
- Meshinchi, S.; Matic, G.; Hutchison, K.A.; Pratt, W.B. Selective molybdate-directed covalent modification of sulfhydryl groups in the steroid-binding versus the DNA-binding domain of the glucocorticoid receptor. J. Biol. Chem. 1990, 265, 11643–11649. [Google Scholar]
- Semchyshyn, H.M. Fructation in vivo: Detrimental and protective effects of fructose. BioMed Res. Int. 2013, 2013, 343914. [Google Scholar] [CrossRef] [Green Version]
- Bremer, A.A.; Lustig, R.H. Effects of sugar-sweetened beverages on children. Pediatric Ann. 2012, 41, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Friend, A.; Craig, L.; Turner, S. The prevalence of metabolic syndrome in children: A systematic review of the literature. Metab. Syndr. Relat. Disord. 2013, 11, 71–80. [Google Scholar] [CrossRef]
- Brkljačić, J.; Veličković, N.; Elaković, I.; Teofilović, A.; Milutinović, D.V.; Đorđević, A.; Matić, G. Fructose-enriched diet affects hepatic lipid metabolism in young male and female rats in different ways. Arch. Biol. Sci. 2019, 71, 417–424. [Google Scholar] [CrossRef]
- Kovacevic, S.; Nestorov, J.; Matic, G.; Elakovic, I. Dietary fructose-related adiposity and glucocorticoid receptor function in visceral adipose tissue of female rats. Eur. J. Nutr. 2014, 53, 1409–1420. [Google Scholar] [CrossRef]
- Bursac, B.N.; Djordjevic, A.D.; Vasiljevic, A.D.; Milutinovic, D.D.; Velickovic, N.A.; Nestorovic, N.M.; Matic, G.M. Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J. Nutr. Biochem. 2013, 24, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, A.; Velickovic, N.; Bursac, B.; Djordjevic, A.; Milutinovic, D.V.; Nestorovic, N.; Matic, G. Enhanced prereceptor glucocorticoid metabolism and lipogenesis impair insulin signaling in the liver of fructose-fed rats. J. Nutr. Biochem. 2013, 24, 1790–1797. [Google Scholar] [CrossRef]
- Elakovic, I.; Brkljacic, J.; Matic, G. Gender-related differences in the effects of antidepressant imipramine on glucocorticoid receptor binding properties and association with heat shock proteins in the rat liver and kidney. Eur. J. Pharmacol. 2009, 608, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Duma, D.; Collins, J.B.; Chou, J.W.; Cidlowski, J.A. Sexually dimorphic actions of glucocorticoids provide a link to inflammatory diseases with gender differences in prevalence. Sci. Signal. 2010, 3, ra74. [Google Scholar] [CrossRef] [Green Version]
- Bourke, C.H.; Harrell, C.S.; Neigh, G.N. Stress-induced sex differences: Adaptations mediated by the glucocorticoid receptor. Horm. Behav. 2012, 62, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Teofilovic, A.; Brkljacic, J.; Djordjevic, A.; VojnovicMilutinovic, D.; Tappy, L.; Matic, G.; Velickovic, N. Impact of insulin and glucocorticoid signalling on hepatic glucose homeostasis in the rat exposed to high-fructose diet and chronic stress. Int. J. Food Sci. Nutr. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nestorov, J.; Glban, A.M.; Mijuskovic, A.; Nikolic-Kokic, A.; Elakovic, I.; Velickovic, N.; Matic, G. Long-term fructose-enriched diet introduced immediately after weaning does not induce oxidative stress in the rat liver. Nutr. Res. 2014, 34, 646–652. [Google Scholar] [CrossRef]
- Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ter Horst, K.W.; Serlie, M.J. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, G.L.; Allan, G.; Azhar, S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 2004, 145, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Roglans, N.; Vila, L.; Farre, M.; Alegret, M.; Sanchez, R.M.; Vazquez-Carrera, M.; Laguna, J.C. Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 2007, 45, 778–788. [Google Scholar] [CrossRef]
- Aguilera-Mendez, A.; Hernandez-Equihua, M.G.; Rueda-Rocha, A.C.; Guajardo-Lopez, C.; Nieto-Aguilar, R.; Serrato-Ochoa, D.; Ruiz Herrera, L.F.; Guzman-Nateras, J.A. Protective effect of supplementation with biotin against high-fructose-induced metabolic syndrome in rats. Nutr. Res. 2018, 57, 86–96. [Google Scholar] [CrossRef]
- Kovacevic, S.; Nestorov, J.; Matic, G.; Elakovic, I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur. J. Nutr. 2017, 56, 2115–2128. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Mehta, V.; Onkaramurthy, N.; O’Keefe, J.H. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog. Cardiovasc. Dis. 2018, 61, 3–9. [Google Scholar] [CrossRef]
- Bursac, B.; Djordjevic, A.; Velickovic, N.; Milutinovic, D.V.; Petrovic, S.; Teofilovic, A.; Gligorovska, L.; Preitner, F.; Tappy, L.; Matic, G. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet. Mol. Cell. Endocrinol. 2018, 476, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Vasiljevic, A.; Bursac, B.; Djordjevic, A.; Milutinovic, D.V.; Nikolic, M.; Matic, G.; Velickovic, N. Hepatic inflammation induced by high-fructose diet is associated with altered 11betaHSD1 expression in the liver of Wistar rats. Eur. J. Nutr. 2014, 53, 1393–1402. [Google Scholar] [CrossRef]
- Koricanac, G.; Djordjevic, A.; Zakula, Z.; Vojnovic-Milutinovic, D.; Tepavcevic, S.; Velikovic, N.; Milosavljevic, T.; Stojiljkovic, M.; Romic, S.; Matic, G. Gender Modulates Development of the Metabolic Syndrome Phenotype in Fructose-Fed Rats. Arch. Biol. Sci. 2013, 65, 455–464. [Google Scholar] [CrossRef]
- Mayes, P.A. Intermediary metabolism of fructose. Am. J. Clin. Nutr. 1993, 58, 754S–765S. [Google Scholar] [CrossRef]
- Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Pittner, R.A.; Fears, R.; Brindley, D.N. Effects of cyclic AMP, glucocorticoids and insulin on the activities of phosphatidate phosphohydrolase, tyrosine aminotransferase and glycerol kinase in isolated rat hepatocytes in relation to the control of triacylglycerol synthesis and gluconeogenesis. Biochem. J. 1985, 225, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenny, H.P.; Brindley, D.N. The effects of cortisol, corticotropin and thyroxine on the synthesis of glycerolipids and on the phosphatidate phosphohydrolase activity in rat liver. Biochem. J. 1978, 176, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Unger, R.H.; Clark, G.O.; Scherer, P.E.; Orci, L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2010, 1801, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Francini, F.; Castro, M.C.; Schinella, G.; Garcia, M.E.; Maiztegui, B.; Raschia, M.A.; Gagliardino, J.J.; Massa, M.L. Changes induced by a fructose-rich diet on hepatic metabolism and the antioxidant system. Life Sci. 2010, 86, 965–971. [Google Scholar] [CrossRef]
- Pasko, P.; Barton, H.; Zagrodzki, P.; Izewska, A.; Krosniak, M.; Gawlik, M.; Gorinstein, S. Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods Hum. Nutr. 2010, 65, 146–151. [Google Scholar] [CrossRef]
- Kannappan, S.; Palanisamy, N.; Anuradha, C.V. Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Eur. J. Pharmacol. 2010, 645, 177–184. [Google Scholar] [CrossRef]
- Botezelli, J.D.; Cambri, L.T.; Ghezzi, A.C.; Dalia, R.A.; Voltarelli, F.A.; de Mello, M.A. Fructose-rich diet leads to reduced aerobic capacity and to liver injury in rats. Lipids Health Dis. 2012, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crescenzo, R.; Bianco, F.; Falcone, I.; Coppola, P.; Liverini, G.; Iossa, S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur. J. Nutr. 2013, 52, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Glban, A.M.; Vasiljevic, A.; Velickovic, N.; Nikolic-Kokic, A.; Blagojevic, D.; Matic, G.; Nestorov, J. The expression and activity of antioxidant enzymes in the liver of rats exposed to high-fructose diet in the period from weaning to adulthood. J. Sci. Food Agric. 2015, 95, 2319–2324. [Google Scholar] [CrossRef]
- Kovacevic, S.; Nestorov, J.; Matic, G.; Elakovic, I. Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats. Eur. J. Nutr. 2017, 56, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T.; Samini, F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed. Pharmacother. 2017, 87, 223–229. [Google Scholar] [CrossRef]
- Maia-Ceciliano, T.C.; Dutra, R.R.; Aguila, M.B.; Mandarim-De-Lacerda, C.A. The deficiency and the supplementation of vitamin D and liver: Lessons of chronic fructose-rich diet in mice. J. Steroid Biochem. Mol. Biol. 2019, 192, 105399. [Google Scholar] [CrossRef] [PubMed]
- Gabbia, D.; Pozzo, L.; Zigiotto, G.; Roverso, M.; Sacchi, D.; Dalla Pozza, A.; Carrara, M.; Bogialli, S.; Floreani, A.; Guido, M.; et al. Dexamethasone counteracts hepatic inflammation and oxidative stress in cholestatic rats via CAR activation. PLoS ONE 2018, 13, e0204336. [Google Scholar] [CrossRef]
- Velickovic, N.; Djordjevic, A.; Vasiljevic, A.; Bursac, B.; Milutinovic, D.V.; Matic, G. Tissue-specific regulation of inflammation by macrophage migration inhibitory factor and glucocorticoids in fructose-fed Wistar rats. Br. J. Nutr. 2013, 110, 456–465. [Google Scholar] [CrossRef] [Green Version]
Control | Fructose | |
---|---|---|
SOD1 (U/mg protein) | 26.13 ± 4.33 | 26.12 ± 4.45 |
SOD2 (U/mg protein) | 7.42 ± 0.29 | 6.39 ± 0.46 |
CAT (U/mg protein) | 275.71 ± 15.64 | 248.13 ± 13.25 |
GSH-Px (U/mg protein) | 1113.9 ± 32.64 | 1082.91 ± 32.35 |
GSH-Red (U/mg protein) | 63.14 ± 1.41 | 65.82 ± 1.37 |
GSH (nmol/mg protein) | 0.145 ± 0.010 | 0.141 ± 0.007 |
SH groups (µM/mg protein) | 0.052 ± 0.004 | 0.049 ± 0.006 |
TBARS (nmol/mg protein) | 0.382 ± 0.022 | 0.336 ± 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elaković, I.; Kovačević, S.; Vojnović Milutinović, D.; Nikolić-Kokić, A.; Glban, A.M.; Spasić, M.; Tappy, L.; Djordjevic, A.; Matić, G.; Brkljačić, J. Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats. Nutrients 2020, 12, 3470. https://doi.org/10.3390/nu12113470
Elaković I, Kovačević S, Vojnović Milutinović D, Nikolić-Kokić A, Glban AM, Spasić M, Tappy L, Djordjevic A, Matić G, Brkljačić J. Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats. Nutrients. 2020; 12(11):3470. https://doi.org/10.3390/nu12113470
Chicago/Turabian StyleElaković, Ivana, Sanja Kovačević, Danijela Vojnović Milutinović, Aleksandra Nikolić-Kokić, Alhadi M. Glban, Mihajlo Spasić, Luc Tappy, Ana Djordjevic, Gordana Matić, and Jelena Brkljačić. 2020. "Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats" Nutrients 12, no. 11: 3470. https://doi.org/10.3390/nu12113470
APA StyleElaković, I., Kovačević, S., Vojnović Milutinović, D., Nikolić-Kokić, A., Glban, A. M., Spasić, M., Tappy, L., Djordjevic, A., Matić, G., & Brkljačić, J. (2020). Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats. Nutrients, 12(11), 3470. https://doi.org/10.3390/nu12113470