Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants’ Characteristics
2.2. Data Collection
2.3. Assessment of Physical and Muscle Parameters
2.4. Energy and Nutrient Intakes
2.5. Covariate Data Collection
2.6. Statistical Analyses
3. Results
3.1. Characteristics of Participants
3.2. Dietary Nutrient Consumption
3.3. Association between Macro- and Micronutrients and Muscle Health Components
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Median T2 (P25–P75) | Median T5 (P25–P75) | Median of the Difference between T2 and T5 | p-Value | |
---|---|---|---|---|
Total energy intake (kcal/day) | 1767.88 (1439.02–2070.96) | 1615.41 (1264.34–2050.16) | −151.97 | 0.002 |
Macronutrients | ||||
Proteins (g/day) | 80.95 (64.42–97.07) | 73.88 (54.54–101.21) | −4.15 | 0.020 |
Carbohydrates (g/day) | 151.41 (124.52–180.36) | 133.15 (100.49–162.91) | −18.64 | <0.001 |
Lipids (g/day) | 80.25 (61.86–98.12) | 75.78 (57.35–98.67) | −5.30 | 0.083 |
Saturated fatty acids (g/day) | 29.84 (22.99–38.51) | 29.20 (21.39–37.94) | −1.51 | 0.121 |
Polyunsaturated fatty acids (g/day) | 11.70 (8.65–15.47) | 11.17 (7.96–15.61) | −0.64 | 0.188 |
Omega 3 (g/day) | 1.56 (1.17–2.08) | 1.40 (1.04–1.96) | −0.17 | 0.004 |
Omega 6 (g/day) | 9.30 (6.85–12.25) | 9.12 (6.37–12.90) | −0.38 | 0.299 |
Monounsaturated fatty acids (g/day) | 30.84 (25.14–38.63) | 29.26 (21.84–39.11) | −2.57 | 0.048 |
Micronutrients | ||||
Sodium (mg/day) | 2686.85 (2148.48–3228.33) | 2190.19 (1717.06–2711.49) | −467.19 | <0.001 |
Potassium (mg/day) | 3210.88 (2615.01–3857.28) | 2964.15 (2328.73–3685.18) | −249.92 | <0.001 |
Magnesium (mg/day) | 449.30 (362.82–575.20) | 385.85 (307.86–467.27) | −69.45 | <0.001 |
Phosphorus (mg/day) | 1249.66 (1027.50–1543.91) | 1181.27 (871.23–1524.57) | −79.40 | 0.002 |
Iron (mg/day) | 14.53 (11.30–18.34) | 12.43 (9.93–15.68) | −1.80 | <0.001 |
Calcium (mg/day) | 884.41 (703.09–1122.55) | 784.78 (575.14–1045.49) | −91.62 | <0.001 |
Zinc (mg/day) | 11.60 (9.04–14.56) | 10.28 (7.80–13.08) | −1.20 | <0.001 |
Vitamin D (µg/day) | 2.32 (1.63–3.17) | 2.29 (1.54–3.49) | −0.04 | 0.657 |
Vitamin A (µg/day) | 880.88 (644.14–1097.42) | 789.27 (550.44–1047.74) | −66.28 | 0.006 |
Vitamin E (mg/day) | 10.04 (7.78–13.29) | 9.43 (7.18–12.68) | −0.31 | 0.037 |
Vitamin C (mg/day) | 87.79 (62.72–126.79) | 83.44 (57.71–112.70) | −6.14 | 0.010 |
Vitamin K (µg/day) | 120.08 (92.41–163.89) | 104.02 (74.77–151.08) | −9.92 | 0.003 |
Change of Muscle Health Components between T2 and T5 | Gait Speed | Muscle Strength | ||
---|---|---|---|---|
Change of Consumption between T2 and T5 | β | p-Value | β | p-Value |
Calorie | 1.621 × 10−5 | 0.512 | 2.527 × 10−6 | 0.997 |
Protein | 0.004 | 0.343 | −0.113 | 0.235 |
Carbohydrate | −9.7219 × 10−5 | 0.961 | −0.085 | 0.058 |
Lipid | 0.001 | 0.481 | 0.083 | 0.059 |
Saturated fatty acids | 0.004 | 0.356 | 0.195 | 0.039 |
Polyunsaturated fatty acids | 0.001 | 0.846 | 0.024 | 0.864 |
Omega-3 fatty acids | −0.024 | 0.565 | −2.220 | 0.826 |
Omega-6 fatty acids | 0.002 | 0.784 | 0.037 | 0.806 |
Monounsaturated fatty acids | 0.001 | 0.708 | 0.146 | 0.071 |
Vitamin D | −0.009 | 0.546 | −0.486 | 0.162 |
Vitamin A | −7.492 × 10−5 | 0.307 | 0.000 | 0.846 |
Vitamin E | −0.003 | 0.646 | 0.036 | 0.816 |
Vitamin C | 0.000 | 0.797 | 0.015 | 0.146 |
Vitamin K | 0.000 | 0.623 | 0.014 | 0.183 |
Iron | −0.011 | 0.110 | −0.282 | 0.087 |
Calcium | 0.000 | 0.154 | −0.001 | 0.801 |
Sodium | −6.001 × 10−5 | 0.224 | −0.001 | 0.583 |
Potassium | −1.691 × 10−5 | 0.660 | 0.001 | 0.444 |
Magnesium | 0.000 | 0.199 | −0.002 | 0.548 |
Phosphorus | 0.000 | 0.068 | −0.005 | 0.106 |
Zinc | 0.002 | 0.816 | −0.290 | 0.204 |
Population with an Adequate Intake at T2 (%) | Population with an Adequate Intake at T5 (%) | p-Value | |
---|---|---|---|
Macronutrients | |||
Proteins | 90.3 | 79.4 | 0.001 |
Carbohydrates | 1.3 | 0.8 | 0.625 |
Lipids | 46.2 | 45.4 | 0.039 |
Saturated fatty acids | 20.2 | 31.1 | 0.003 |
Polyunsaturated fatty acids | 45.0 | 40.3 | 0.417 |
Omega-3 fatty acids | 15.1 | 14.7 | 0.538 |
Omega-6 fatty acids | 43.3 | 38.2 | 0.210 |
Monounsaturated fatty acids | 69.7 | 55.9 | 0.006 |
Micronutrients | |||
Vitamin D | 0.8 | 0.0 | 0.485 |
Vitamin A | 85.7 | 79.8 | 0.059 |
Vitamin E | 60.1 | 54.6 | 0.193 |
Vitamin C | 46.2 | 42.4 | 0.391 |
Vitamin K | 3.8 | 4.2 | 0.644 |
Iron | 97.1 | 94.5 | 0.210 |
Calcium | 69.3 | 56.7 | 0.001 |
Sodium | 0.8 | 5.5 | 0.007 |
Potassium | 29.8 | 30.7 | 0.002 |
Magnesium | 95.8 | 85.7 | <0.001 |
Phosphorus | 97.5 | 94.5 | 0.092 |
Zinc | 82.4 | 76.5 | 0.070 |
- -
- For vitamins D, A, E, K, iron, calcium, sodium, potassium, phosphorus, and zinc: 0.77 * RDA
- -
- For magnesium and vitamin C: 0.83 * RDA
References
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2020, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangen, G.G.; Robinson, H.S. Measuring physical performance in highly active older adults: Associations with age and gender? Aging Clin. Exp. Res. 2020, 32, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auyeung, T.W.; Lee, S.W.J.; Leung, J.; Kwok, T.; Woo, J. Age-associated decline of muscle mass, grip strength and gait speed: A 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr. Gerontol. Int. 2014, 14, 76–84. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Kuo, H.-K.; Leveille, S.G.; Yen, C.-J.; Chai, H.-M.; Chang, C.-H.; Yeh, Y.-C.; Yu, Y.-H.; Bean, J.F. Exploring How Peak Leg Power and Usual Gait Speed Are Linkedto Late-Life Disability: Data from the National Health and Nutrition Examination Survey (NHANES), 1999-2002. Am. J. Phys. Med. Rehabil. 2006, 85, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Hardy, S.E.; Perera, S.; Roumani, Y.F.; Chandler, J.M.; Studenski, S.A. Improvement in usual gait speed predicts better survival in older adults. J. Am. Geriatr. Soc. 2007, 55, 1727–1734. [Google Scholar] [CrossRef]
- Roberts, H.C.; Syddall, H.E.; Cooper, C.; Aihie sayer, A. Is grip strength associated with length of stay in hospitalised older patients admitted for rehabilitation? Findings from the Southampton grip strength study. Age Ageing 2012, 41, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Schmid, A.; Duncan, P.W.; Studenski, S.; Lai, S.M.; Richards, L.; Perera, S.; Wu, S.S. Improvements in speed-based gait classifications are meaningful. Stroke 2007, 38, 2096–2100. [Google Scholar] [CrossRef] [Green Version]
- De Rekeneire, N.; Visser, M.; Peila, R.; Nevitt, M.C.; Cauley, J.A.; Tylavsky, F.A.; Simonsick, E.M.; Harris, T.B. Is a Fall Just a Fall: Correlates of Falling in Healthy Older Persons. The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2003, 51, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Wallace, D.; Chandler, J.M.; Duncan, P.W.; Rooney, E.; Fox, M.; Guralnik, J.M. Physical Performance Measures in the Clinical Setting. J. Am. Geriatr. Soc. 2003, 51, 314–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penninx, B.W.J.H.; Ferrucci, L.; Leveille, S.G.; Rantanen, T.; Pahor, M.; Guralnik, J.M. Lower Extremity Performance in Nondisabled Older Persons as a Predictor of Subsequent Hospitalization. J. Gerontol. 2000, 55, 691–697. [Google Scholar] [CrossRef]
- Hajek, A.; Brettschneider, C.; Eisele, M.; Kaduszkiewicz, H.; Mamone, S.; Wiese, B.; Weyerer, S.; Werle, J.; Fuchs, A.; Pentzek, M.; et al. Correlates of hospitalization among the oldest old: Results of the AgeCoDe–AgeQualiDe prospective cohort study. Aging Clin. Exp. Res. 2020, 32, 1295–1301. [Google Scholar] [CrossRef]
- Mijnarends, D.M.; Luiking, Y.C.; Halfens, R.J.G.; Evers, S.M.A.A.; Lenaerts, E.L.A.; Verlaan, S.; Wallace, M.; Schols, J.M.G.A.; Meijers, J.M.M. Muscle, Health and Costs: A Glance at their Relationship. J. Nutr. Health Aging 2018, 22, 766–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, R.S.; Amaral, T.F.; Sousa, A.S.; Pichel, F.; Restivo, M.T.; Ferreira, S.; Fonseca, I. Handgrip strength measurement as a predictor of hospitalization costs. Eur. J. Clin. Nutr. 2015, 69, 187–192. [Google Scholar] [CrossRef]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef]
- Landi, F.; Camprubi-Robles, M.; Bear, D.E.; Cederholm, T.; Malafarina, V.; Welch, A.A.; Cruz-Jentoft, A.J. Muscle loss: The new malnutrition challenge in clinical practice. Clin. Nutr. 2019, 38, 2113–2120. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, K.A.; Meskers, C.G.M.; Trappenburg, M.C.; Verlaan, S.; Reijnierse, E.M.; Whittaker, A.C.; Maier, A.B. Malnutrition is associated with dynamic physical performance. Aging Clin. Exp. Res. 2020, 32, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, C.; Murphy, C.; Culligan, E.P.; Walton, J.; Sleator, R.D. Malnutrition in the elderly. Sci. Prog. 2019, 102, 171–180. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cereda, E.; Cruz-Jentoft, A.; Goisser, S.; de Groot, L.; Großhauser, F.; Kiesswetter, E.; Norman, K.; et al. Management of Malnutrition in Older Patients—Current Approaches, Evidence and Open Questions. J. Clin. Med. 2019, 8, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adly, N.N.; Abd-El-Gawad, W.M.; Abou-Hashem, R.M. Relationship between malnutrition and different fall risk assessment tools in a geriatric in-patient unit. Aging Clin. Exp. Res. 2020, 32, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Gaudreau, P.; Payette, H. A scoping review of anorexia of aging correlates and their relevance to population health interventions. Appetite 2016, 105, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Lattanzio, F.; Dell’Aquila, G.; Eusebi, P.; Gasperini, B.; Liperoti, R.; Belluigi, A.; Bernabei, R.; Cherubini, A. Prevalence and potentially reversible factors associated with anorexia among older nursing home residents: Results from the ulisse project. J. Am. Med. Dir. Assoc. 2013, 14, 119–124. [Google Scholar] [CrossRef]
- Jadczak, A.D.; Visvanathan, R. Anorexia of Aging—An Updated Short Review. J. Nutr. Health Aging 2019, 23, 306–309. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of aging: Risk factors, consequences, and potential treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Kiesswetter, E.; Cederholm, T.; Donini, L.M.; Eglseer, D.; Norman, K.; Schneider, S.M.; Ströbele-Benschop, N.; Torbahn, G.; Wirth, R.; et al. Development of a Model on Determinants of Malnutrition in Aged Persons: A MaNuEL Project. Gerontol. Geriatr. Med. 2019, 5, 233372141985843. [Google Scholar] [CrossRef]
- Ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.G.A.; Luiking, Y.C.; De Groot, L.C.P.G.M. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef]
- Jensen, G.L.; Cederholm, T. The malnutrition overlap syndromes of cachexia and sarcopenia: A malnutrition conundrum. Am. J. Clin. Nutr. 2018, 108, 1157–1158. [Google Scholar] [CrossRef]
- Beaudart, C.; Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.Y.; Lengelé, L.; Bruyère, O. Malnutrition as a strong predictor of the onset of sarcopenia. Nutrients 2019, 11, 2883. [Google Scholar] [CrossRef] [Green Version]
- Amarya, S.; Singh, K.; Sabharwal, M. Changes during aging and their association with malnutrition. J. Clin. Gerontol. Geriatr. 2015, 6, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-Jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudart, C.; Locquet, M.; Touvier, M.; Reginster, J.Y.; Bruyère, O. Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin. Exp. Res. 2019, 31, 815–824. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Adamson, A.; Siervo, M.; Mathers, J.C.; Jagger, C. Low protein intake, muscle strength and physical performance in the very old: The Newcastle 85+ Study. Clin. Nutr. 2018, 37, 2260–2270. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Deeg, D.J.H.; Lips, P. Low Vitamin D and High Parathyroid Hormone Levels as Determinants of Loss of Muscle Strength and Muscle Mass (Sarcopenia): The Longitudinal Aging Study Amsterdam. J. Clin. Endocrinol. Metab. 2003, 88, 5766–5772. [Google Scholar] [CrossRef]
- Houston, D.K.; Tooze, J.A.; Neiberg, R.H.; Hausman, D.B.; Johnson, M.A.; Cauley, J.A.; Bauer, D.C.; Cawthon, P.M.; Shea, M.K.; Schwartz, G.G.; et al. 25-hydroxyvitamin D status and change in physical performance and strength in older adults. Am. J. Epidemiol. 2012, 176, 1025–1034. [Google Scholar] [CrossRef]
- Fingeret, M.; Vollenweider, P.; Marques-Vidal, P. No association between vitamin C and E supplementation and grip strength over 5 years: The Colaus study. Eur. J. Nutr. 2019, 58, 609–617. [Google Scholar] [CrossRef]
- Granic, A.; Mendonça, N.; Hill, T.R.; Jagger, C.; Stevenson, E.J.; Mathers, J.C.; Sayer, A.A. Nutrition in the very old. Nutrients 2018, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Giezenaar, C.; Chapman, I.; Luscombe-Marsh, N.; Feinle-Bisset, C.; Horowitz, M.; Soenen, S. Ageing is associated with decreases in appetite and energy intake—A meta-analysis in healthy adults. Nutrients 2016, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, D.M.; Fritz, S.L.; Krotish, D.E. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J. Geriatr. Phys. Ther. 2013, 36, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Fox, B.; Henwood, T.; Bruyère, O.; Reginster, J.Y.; Beaudart, C.; Buckinx, F.; Roberts, H.; Cooper, C.; Cherubini, A.; et al. Grip strength measurement: Towards a standardized approach in sarcopenia research and practice. Eur. Geriatr. Med. 2016, 7, 247–255. [Google Scholar] [CrossRef]
- Arnault, N. Table de Composition des Aliments, étude NutriNet-Santé. [Food Composition Table, NutriNet-Santé Study]; Les éditions INSERM: Paris, France, 2013. [Google Scholar]
- Taylor, H.L.; Jacobs, D.R.; Schucker, B.; Knudsen, J.; Leon, A.S.; Debacker, G. A questionnaire for the assessment of leisure time physical activities. J. Chronic Dis. 1978, 31, 741–755. [Google Scholar] [CrossRef]
- Vetrano, D.L.; Landi, F.; Volpato, S.; Corsonello, A.; Meloni, E.; Bernabei, R.; Onder, G. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: Results from the CRIME study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Steffl, M.; Bohannon, R.W.; Petr, M.; Kohlikova, E.; Holmerova, I. Relation between cigarette smoking and sarcopenia: Meta-analysis. Physiol. Res. 2015, 64, 419–426. [Google Scholar] [CrossRef]
- Dallongeville, J.; Maré, N.; Fruchart, J.-C.; Amouyel, P. Community and International Nutrition Cigarette Smoking Is Associated with Unhealthy Patterns of Nutrient Intake: A Meta-analysis. J. Nutr. 1998, 128, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Zadak, Z.; Hyspler, R.; Ticha, A.; Vlcek, J. Polypharmacy and malnutrition. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 50–55. [Google Scholar] [CrossRef]
- Streicher, M.; van Zwienen-Pot, J.; Bardon, L.; Nagel, G.; Teh, R.; Meisinger, C.; Colombo, M.; Torbahn, G.; Kiesswetter, E.; Flechtner-Mors, M.; et al. Determinants of Incident Malnutrition in Community-Dwelling Older Adults: A MaNuEL Multicohort Meta-Analysis. J. Am. Geriatr. Soc. 2018, 66, 2335–2343. [Google Scholar] [CrossRef] [Green Version]
- Beaudart, C.; Reginster, J.Y.; Petermans, J.; Gillain, S.; Quabron, A.; Locquet, M.; Slomian, J.; Buckinx, F.; Bruyère, O. Quality of life and physical components linked to sarcopenia: The SarcoPhAge study. Exp. Gerontol. 2015, 69, 103–110. [Google Scholar] [CrossRef]
- Thiébaut, A.; Kesse, E.; Com-Nougué, C.; Clavel-Chapelon, F.; Bénichou, J. Ajustement sur l’apport énergétique dans l’évaluation des facteurs de risque alimentaires Adjustment for energy intake in the assessment of dietary risk factors. Rev. Epidemiol. Sante Publique 2004, 52, 539–557. [Google Scholar]
- Conseil Supérieur de la Santé (CSS). Recommandations Nutritionnelles Pour la Belgique 2016; CSSAvis n°9285: Bruxelles, Belgium, 2016. [Google Scholar]
- Wysokiński, A.; Sobów, T.; Kłoszewska, I.; Kostka, T. Mechanisms of the anorexia of aging—A review. Age 2015, 37. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Minimal clinically important difference for grip strength: A systematic review. Soc. Phys. Ther. Sci. 2019, 31, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Araujo de Carvalho, I.; Bautmans, I.; Bernabei, R.; et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.; Granic, A.; Sayer, A.A. Nutrition and muscle strength, as the key component of sarcopenia: An overview of current evidence. Nutrients 2019, 11, 2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Úbeda, N.; Achón, M.; Varela-Moreiras, G. Omega 3 fatty acids in the elderly. Br. J. Nutr. 2012, 107, s131–s151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauretani, F.; Semba, R.D.; Bandinelli, S.; Dayhoff-Brannigan, M.; Giacomini, V.; Corsi, A.M.; Guralnik, J.M.; Ferrucci, L. Low Plasma Carotenoids and Skeletal Muscle Strength Decline Over 6 Years. J. Gerontol. 2008, 63, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Rondanelli, M.; Faliva, M.; Monteferrario, F.; Peroni, G.; Repaci, E.; Allieri, F.; Perna, S. Novel insights on nutrient management of sarcopenia in elderly. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E. The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association Between Vitamin D Status and Physical Performance: The InCHIANTI Study. J. Gerontol. 2007, 62, 440–446. [Google Scholar] [CrossRef]
- Remelli, F.; Vitali, A.; Zurlo, A.; Volpato, S. Vitamin D deficiency and sarcopenia in older persons. Nutrients 2019, 11, 2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, M.K.; Loeser, R.F.; Hsu, F.C.; Booth, S.L.; Nevitt, M.; Simonsick, E.M.; Strotmeyer, E.S.; Vermeer, C.; Kritchevsky, S.B. Vitamin K Status and Lower Extremity Function in Older Adults: The Health Aging and Body Composition Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1348–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, K.; Inoue, S. Multiple modes of vitamin K actions in aging-related musculoskeletal disorders. Int. J. Mol. Sci. 2019, 20, 2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen Torben; Everts Maria Regulation of the Na,K-pump in skeletal muscle. Int. Soc. Nephrol. 1989, 35, 1–13.
- McLeod, J.C.; Stokes, T.; Phillips, S.M. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Kamo, T.; Ishii, H.; Suzuki, K.; Nishida, Y. The impact of malnutrition on efficacy of resistance training in community-dwelling older adults. Physiother. Res. Int. 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.I.; Mikhail, A.; Lan, L.; Carlo, A.D.; Hamilton, B.; Barnard, K.; Hettinga, B.P.; Hatcher, E.; Tarnopolsky, M.G.; Nederveen, J.P.; et al. A five-ingredient nutritional supplement and home-based resistance exercise improve lean mass and strength in free-living elderly. Nutrients 2020, 12, 2391. [Google Scholar] [CrossRef]
- Gropper, S.S.; Tappen, R.M.; Vieira, E.R. Differences In Nutritional And Physical Health Indicators Among Older African Americans, European Americans, And Hispanic Americans. J. Nutr. Gerontol. Geriatr. 2019, 38, 205–217. [Google Scholar] [CrossRef]
- Du, K.; Goates, S.; Arensberg, M.B.; Pereira, S.; Gaillard, T. Prevalence of Sarcopenia and Sarcopenic Obesity Vary with Race/Ethnicity and Advancing Age. Divers. Equal. Health Care 2018, 15. [Google Scholar] [CrossRef]
- Kalonji, E.; Sirot, V.; Noel, L.; Guerin, T.; Margaritis, I.; Leblanc, J.-C. Nutritional Risk Assessment of Eleven Minerals and Trace Elements: Prevalence of Inadequate and Excessive Intakes from the Second French Total Diet Study. Eur. J. Nutr. Food Saf. 2015, 5, 281–296. [Google Scholar] [CrossRef]
- Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES) Avis de l’ANSES, Saisine n°2012-SA-0142; 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex. 2015. Available online: https://www.anses.fr/fr/system/files/NUT2012sa0142.pdf (accessed on 1 October 2020).
- Carriquiry, A.L. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1998, 2, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
T2 (n = 238) | T5 (n = 238) | p-Value | |
---|---|---|---|
Age (years) | 72.0 (70.0–78.0) | 76 (73.0–81.0) | <0.001 |
Sex | |||
Women | 145 (60.9) | 145 (60.9) | --- |
Number of drugs | 6.0 (4.0–8.0) | 7.0 (5.0–10.0) | <0.001 |
Number of concomitant diseases | 4.0 (2.7–5.0) | 4.0 (3.0–5.0) | 0.001 |
MMSE (/30 points) | |||
25–30 points | 231 (97.1) | 222 (93.3) | 0.04 |
21–24 points | 2 (0.8) | 13 (5.5) | |
≤20 points | 3 (1.2) | 2 (0.8) | |
Level of physical activity (kcal/day) | |||
Women | 1323.0 (677.2–2527.2) | 1484.5 (847.0–2697.0) | <0.001 |
Men | 1687.0 (1011.5–2761.7) | 1837.0 (847.0–3265.9) | <0.001 |
Smoking | |||
Yes | 18 (7.6) * | 18 (7.6) * | --- |
Body mass index (kg/m2) | 26.9 (23.9–29.4) | 26.4 (23.6–29.5) | 0.01 |
Gait speed (m/s) | 1.2 (1.0–1.3) | 1.2 (1.0–1.4) | 0.01 |
Grip strength (kg) | |||
Women | 21.0 (18.0–24.0) | 16.0 (12.0–18.5) | <0.001 |
Men | 39.5 (34.5–44.0) | 32.0 (26.5–39.0) | <0.001 |
Median T2 (P25–P75) | Median T5 (P25–P75) | Diff 1 | p-Value | |
---|---|---|---|---|
Total energy intake (kcal/day) | 1767.9 (1439.0–2071.0) | 1615.4 (1264.3–2050.2) | −159.4 | 0.002 § |
Macronutrients | ||||
(% in relation to the calorie intake) | ||||
Proteins | 18.3 (16.7–20.3) | 18.6 (16.4–21.0) | 0.3 | 0.124 |
Carbohydrates | 34.8 (30.7–39.4) | 32.7 (28.5–37.9) | −2.0 | <0.001 § |
Lipids | 41.6 (37.7–45.5) | 42.4 (37.7–46.5) | 0.8 | 0.052 |
Saturated fatty acids | 15.6 (14.2–17.5) | 16.4 (14.1–18.6) | 0.5 | 0.038 § |
Polyunsaturated fatty acids | 6.0 (5.1–7.2) | 6.0 (4.9–8.0) | 0.0 | 0.413 |
Omega 3 fatty acids | 0.8 (0.7–1.0) | 0.8 (0.6–1.0) | −0.0 | 0.065 |
Omega 6 fatty acids | 4.7 (4.0–5.9) | 4.8 (3.9–6.5) | 0.0 | 0.238 |
Monounsaturated fatty acids | 15.9 (13.9–18.3) | 16.2 (13.8–18.5) | 0.5 | 0.307 |
Micronutrients (per 1000 kcal) | ||||
Vitamin D (µg/day) | 1.3 (1.0–1.8) | 1.3 (1.0–1.9) | 0.0 | 0.226 |
Vitamin A (µg/day) | 497.0 (409.6–565.3) | 479.4 (391.9–569.1) | −13.4 | 0.530 |
Vitamin E (mg/day) | 5.8 (4.9–7.0) | 5.6 (4.7–7.2) | −0.0 | 0.770 |
Vitamin C (mg/day) | 51.4 (37.2–71.7) | 49.5 (35.8–65.7) | −0.6 | 0.768 |
Vitamin K (µg/day) | 70.8 (54.9–85.6) | 67.0 (52.5–88.5) | −2.7 | 0.176 |
Iron (mg/day) | 8.3 (7.1–9.8) | 7.8 (6.7–8.7) | −0.5 | <0.001 § |
Calcium (mg/day) | 508.8 (435.6–602.6) | 481.0 (390.0–572.1) | −33.5 | 0.005 § |
Sodium (mg/day) | 1512.8 (1360.1–1720.9) | 1374.5 (1232.3–1514.8) | 141.5 | <0.001 § |
Potassium (mg/day) | 1823.7 (1620.1–2030.7) | 1820.0 (1608.8–2047.0) | −11.4 | 0.975 |
Magnesium (mg/day) | 263.0 (220.4–308.3) | 236.3 (195.0–275.7) | −22.0 | <0.001 § |
Phosphorus (mg/day) | 730.8 (653.1–782.7) | 727.1 (643.0–794.4) | −2.3 | 0.834 |
Zinc (mg/day) | 6.6 (5.9–7.4) | 6.4 (5.6–7.2) | −0.2 | 0.004 § |
Muscle Parameters at T2 | Gait Speed | Muscle Strength | ||
---|---|---|---|---|
Intake at T2 | β | p-Value * | β | p-Value * |
Macronutrients | ||||
Calorie | 5.538 × 10−5 | 0.122 | 0.003 | 0.003 § |
Protein | 0.003 | 0.606 | 0.26 | 0.098 |
Carbohydrate | 0.000 | 0.898 | −0.077 | 0.280 |
Lipid | 0.000 | 0.882 | 0.046 | 0.524 |
Saturated fatty acids | 0.002 | 0.666 | −0.031 | 0.828 |
Polyunsaturated fatty acids | −0.006 | 0.480 | 0.116 | 0.599 |
Omega 3 fatty acids | −0.056 | 0.230 | 2.578 | 0.031 § |
Omega 6 fatty acids | −0.006 | 0.562 | 0.015 | 0.951 |
Monounsaturated fatty acids | 0.002 | 0.610 | 0.120 | 0.311 |
Micronutrients | ||||
Vitamin D | −0.013 | 0.419 | 0.899 | 0.031 § |
Vitamin A | 0.000 | 0.291 | 0.006 | 0.045 § |
Vitamin E | −0.009 | 0.373 | 0.119 | 0.630 |
Vitamin C | 0.001 | 0.403 | 0.019 | 0.276 |
Vitamin K | 0.001 | 0.247 | 0.042 | 0.013 § |
Iron | −0.005 | 0.552 | −0.179 | 0.427 |
Calcium | −9.261 × 10−5 | 0.463 | 0.004 | 0.231 |
Sodium | 6.525 × 10−5 | 0.221 | 0.002 | 0.176 |
Potassium | 5.335 × 10−5 | 0.316 | 0.003 | 0.035 § |
Magnesium | −3.843 × 10−5 | 0.987 | 0.005 | 0.376 |
Phosphorus | −5.244 × 10−5 | 0.744 | 0.005 | 0.207 |
Zinc | 0.006 | 0.585 | 0.119 | 0.685 |
Change of Muscle Health Components between T2 and T5 | Gait Speed | Muscle Strength | ||
---|---|---|---|---|
Change of Consumption between T2 and T5 | β | p-Value * | β | p-Value * |
Macronutrients | ||||
Calorie | 1.645 × 10−5 | 0.506 | 4.612 × 10−6 | 0.994 |
Protein | 0.004 | 0.326 | −0.112 | 0.245 |
Carbohydrate | −2.795 × 10−5 | 0.988 | −0.079 | 0.077 |
Lipid | 0.001 | 0.513 | 0.077 | 0.077 |
Saturated fatty acids | 0.003 | 0.375 | 0.183 | 0.051 |
Polyunsaturated fatty acids | 0.001 | 0.875 | 0.013 | 0.927 |
Omega 3 fatty acids | −0.024 | 0.567 | −0.206 | 0.838 |
Omega 6 fatty acids | 0.001 | 0.814 | 0.024 | 0.873 |
Monounsaturated fatty acids | 0.001 | 0.741 | 0.139 | 0.086 |
Micronutrients | ||||
Vitamin D | −0.009 | 0.550 | −0.485 | 0.164 |
Vitamin A | −7.567 × 10−5 | 0.300 | 0.000 | 0.904 |
Vitamin E | −0.003 | 0.621 | 0.024 | 0.877 |
Vitamin C | 0.000 | 0.789 | 0.016 | 0.141 |
Vitamin K | 0.000 | 0.631 | 0.015 | 0.174 |
Iron | −0.011 | 0.122 | −0.260 | 0.112 |
Calcium | 0.000 | 0.158 | −0.001 | 0.792 |
Sodium | −5.914 × 10−5 | 0.230 | −0.001 | 0.620 |
Potassium | −1.716 × 10−5 | 0.655 | 0.001 | 0.445 |
Magnesium | 0.000 | 0.212 | −0.002 | 0.628 |
Phosphorus | 0.000 | 0.066 | −0.005 | 0.111 |
Zinc | 0.003 | 0.789 | −0.274 | 0.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lengelé, L.; Moehlinger, P.; Bruyère, O.; Locquet, M.; Reginster, J.-Y.; Beaudart, C. Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort. Nutrients 2020, 12, 3485. https://doi.org/10.3390/nu12113485
Lengelé L, Moehlinger P, Bruyère O, Locquet M, Reginster J-Y, Beaudart C. Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort. Nutrients. 2020; 12(11):3485. https://doi.org/10.3390/nu12113485
Chicago/Turabian StyleLengelé, Laetitia, Pauline Moehlinger, Olivier Bruyère, Médéa Locquet, Jean-Yves Reginster, and Charlotte Beaudart. 2020. "Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort" Nutrients 12, no. 11: 3485. https://doi.org/10.3390/nu12113485
APA StyleLengelé, L., Moehlinger, P., Bruyère, O., Locquet, M., Reginster, J. -Y., & Beaudart, C. (2020). Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort. Nutrients, 12(11), 3485. https://doi.org/10.3390/nu12113485