Prisoners of Addictive Cues: Biobehavioral Markers of Overweight and Obese Adults with Food Addiction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. General Procedures
2.3. Psycho-Behavioral Questionnaires
2.3.1. YFAS
2.3.2. Three-Factor Eating Questionnaire (TFEQ)
2.3.3. Binge Eating (BE) Symptoms
2.3.4. Beck Depression Inventory (BDI)
2.3.5. Positive Affectivity Negative Affectivity Schedule (PANAS)
2.3.6. Visual Analogue Scale (VAS)-hunger
2.4. The Food Stroop Task
2.5. Electrophysiology (EEG) Procedures
2.6. Statistics
3. Results
3.1. Participants’ Demographics and Clinical Data
3.2. Hemispheric Brain Asymmetry
3.3. The Effect of Food Cues on Attention Bias and Brain Potentials
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Item | Response Categories | Scoring | Criterion | |||||
---|---|---|---|---|---|---|---|---|
In the past 12 months: | 0 | 1 | 2 | 3 | 4 | 0 | 1 | |
1. I find that when I start eating certain foods, I end up eating much more than planned. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–3 | 4 | Substance taken in larger amount and for longer period than intended |
2. I find myself continuing to consume certain foods even though I am no longer hungry. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–3 | 4 | Substance taken in larger amount and for longer period than intended |
3. I eat to the point where I feel physically ill. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–2 | 3–4 | Substance taken in larger amount and for longer period than intended |
4. Not eating certain types of food or cutting down on certain types of food is something I worry about. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–3 | 4 | Persistent desire or repeated unsuccessful attempt to quit |
5. I spend a lot of time feeling sluggish or fatigued from overeating. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–2 | 3–4 | Much time/activity to obtain, use, recover |
6. I find myself constantly eating certain foods throughout the day. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–3 | 4 | Much time/activity to obtain, use, recover |
7. I find that when certain foods are not available, I will go out of my way to obtain them. For example, I will drive to the store to purchase certain foods even though I have other options available to me at home. | never | once a month | 2–4 times a month | 2–3 times a week | 4 or more times or daily | 0–2 | 3–4 | Much time/activity to obtain, use, recover |
FAOB | NFAOB | H-C | Reasons for Drop-out | |
---|---|---|---|---|
Stroop Reaction Time | 30 | 15 | 16 | Incomplete recording of RT (1) Failed to record covariate scores (4) |
EEG at rest | 18 | 15 | 16 | Insufficient data quality |
Event Related Potentials | 22 | 15 | 15 | Insufficient data quality |
Food Stroop—ERP correlations | 22 | 14 | 15 | Insufficient data quality |
Appendix B
References
- Jarolimova, J.; Tagoni, J.; Stern, T.A. Obesity: Its Epidemiology, Comorbidities, and Management. Prim. Care Companion CNS Disord. 2013, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luppino, F.S.; De Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Colditz, G.A. Economic costs of obesity and inactivity. Med. Sci. Sports Exerc. 1999, 31 (Suppl. 11), S663–S667. [Google Scholar] [CrossRef]
- Weiss, E.C.; Galuska, D.A.; Khan, L.K.; Gillespie, C.; Serdula, M.K. Weight Regain in U.S. Adults Who Experienced Substantial Weight Loss, 1999–2002. Am. J. Prev. Med. 2007, 33, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.; Curtis, C.; Levitan, R.D.; Carter, J.C.; Kaplan, A.S.; Kennedy, J.L. Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite 2011, 57, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Davis, C. Compulsive Overeating as an Addictive Behavior: Overlap Between Food Addiction and Binge Eating Disorder. Curr. Obes. Rep. 2013, 2, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Carlier, N.; Marshe, V.S.; Cmorejova, J.; Davis, C.; Müller, D.J. Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for “Food Addiction”? Curr. Psychiatry Rep. 2015, 17, 1–11. [Google Scholar] [CrossRef]
- Ziauddeen, H.; Farooqi, I.S.; Fletcher, P.C. Obesity and the brain: how convincing is the addiction model? Nat. Rev. Neurosci. 2012, 13, 279–286. [Google Scholar] [CrossRef]
- Fletcher, P.C.; Kenny, P.J. Food addiction: A valid concept? Neuropsychopharmacology 2018, 43, 2506–2513. [Google Scholar] [CrossRef] [Green Version]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Preliminary validation of the Yale Food Addiction Scale. Appetite 2009, 52, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Meule, A.; Kübler, A. Food cravings in food addiction: The distinct role of positive reinforcement. Eat. Behav. 2012, 13, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wise, R.A.; Baler, R. The dopamine motive system: implications for drug and food addiction. Nat. Rev. Neurosci. 2017, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Jasinska, A.J.; Yasuda, M.; Burant, C.F.; Gregor, N.; Khatri, S.; Sweet, M.; Falk, E.B. Impulsivity and inhibitory control deficits are associated with unhealthy eating in young adults. Appetite 2012, 59, 738–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubman, D.I.; Yücel, M.; Pantelis, C. Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction 2004, 99, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Lavagnino, L.; Arnone, D.; Cao, B.; Soares, J.C.; Selvaraj, S. Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci. Biobehav. Rev. 2016, 68, 714–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batterink, L.; Yokum, S.; Stice, E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. Neuroimage 2010, 52, 1696–1703. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.F.; Sabino, V.; Koob, G.F.; Cottone, P. Pathological Overeating: Emerging Evidence for a Compulsivity Construct. Neuropsychopharmacology 2017, 42, 1375–1389. [Google Scholar] [CrossRef] [Green Version]
- Berkman, N.D.; Brownley, K.A.; Peat, C.M.; Lohr, K.N.; Cullen, K.E.; Morgan, L.X.; Bann, C.M.; Wallace, I.F.; Bulik, C.M. Table 1, DSM-IV and DSM-5 diagnostic criteria for binge-eating disorder. In Management and Outcomes of Binge-Eating Disorder; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2015. [Google Scholar]
- Gearhardt, A.N.; White, M.A.; Masheb, R.M.; Grilo, C.M. An examination of food addiction in a racially diverse sample of obese patients with binge eating disorder in primary care settings. Compr. Psychiatry 2013, 54, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Ms, A.N.G.; White, M.A.; Masheb, R.M.; Morgan, P.T.; Crosby, R.D.; Grilo, C.M. An examination of the food addiction construct in obese patients with binge eating disorder. Int. J. Eat. Disord. 2012, 45, 657–663. [Google Scholar]
- Devoto, F.; Zapparoli, L.; Bonandrini, R.; Berlingeri, M.; Ferrulli, A.; Luzi, L.; Banfi, G.; Paulesu, E. Hungry brains: A meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci. Biobehav. Rev. 2018, 94, 271–285. [Google Scholar] [CrossRef]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 2015, 18, e0117959. [Google Scholar] [CrossRef] [PubMed]
- Pursey, K.M.; E Collins, C.; Stanwell, P.; Burrows, T.L. Foods and dietary profiles associated with ‘food addiction’ in young adults. Addict. Behav. Rep. 2015, 2, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, K.C.; Ho, C.-Y.; Richard, J.M.; DiFeliceantonio, A.G. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010, 1350, 43–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Baler, R. Food and drug reward: Overlapping circuits in human obesity and addiction. Curr. Top. Behav. Neurosci. 2011, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Nijs, I.M.T.; Franken, I.H.A. Attentional Processing of Food Cues in Overweight and Obese Individuals. Curr. Obes. Rep. 2012, 1, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Werthmann, J.; Jansen, A.; Roefs, A. Worry or craving? A selective review of evidence for food-related attention biases in obese individuals, eating-disorder patients, restrained eaters and healthy samples. In Proceedings of the Nutrition Society; Cambridge University Press: Cambridge, UK, 2015; pp. 99–114. [Google Scholar]
- Castellanos, E.H.; Charboneau, E.; Dietrich, M.S.; Park, S.; Bradley, B.P.; Mogg, K.; Cowan, R.L. Obese adults have visual attention bias for food cue images: Evidence for altered reward system function. Int. J. Obes. 2009, 33, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Spielberg, J.M.; Stewart, J.L.; Levin, R.L.; Miller, G.A.; Heller, W. Prefrontal Cortex, Emotion, and Approach/Withdrawal Motivation. Soc. Pers. Psychol. Compass 2008, 2, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Alonso, M.; Pascual-Leone, A. The Right Brain Hypothesis for Obesity. JAMA 2007, 297, 1819–1822. [Google Scholar] [CrossRef]
- Ochner, C.N.; Green, D.; Van Steenburgh, J.J.; Kounios, J.; Lowe, M.R. Asymmetric prefrontal cortex activation in relation to markers of overeating in obese humans. Appetite 2009, 53, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Morys, F.; Janssen, L.K.; Cesnaite, E.; Beyer, F.; Garcia-Garcia, I.; Kube, J.; Kumral, D.; Liem, F.; Mehl, N.; Mahjoory, K.; et al. Hemispheric asymmetries in resting-state EEG and fMRI are related to approach and avoidance behaviour, but not to eating behaviour or BMI. Hum. Brain Mapp. 2019, 41, 1136–1152. [Google Scholar] [CrossRef]
- McGeown, L.; Davis, R. Frontal EEG asymmetry moderates the association between attentional bias towards food and body mass index. Biol. Psychol. 2018, 136, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Karhunen, L.; Vanninen, E.J.; Kuikka, J.T.; Lappalainen, R.I.; Tiihonen, J.; Uusitupa, M.I. Regional cerebral blood flow during exposure to food in obese binge eating women. Psychiatry Res. Neuroimaging 2000, 99, 29–42. [Google Scholar] [CrossRef]
- Finocchiaro, R.; Balconi, M. Left/Right Hemispheric “Unbalance” Model in Addiction. In Addictive Substances and Neurological Disease: Alcohol, Tobacco, Caffeine, and Drugs of Abuse in Everyday Lifestyles; Elsevier: Amsterdam, The Netherlands, 2017; pp. 383–391. [Google Scholar]
- Shevorykin, A.; Ruglass, L.M.; Melara, R. Frontal Alpha Asymmetry and Inhibitory Control among Individuals with Cannabis Use Disorders. Brain Sci. 2019, 9, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, H.W. Laterality of Brain Activation for Risk Factors of Addiction. Curr. Drug Abus. Rev. 2016, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N. Neural Correlates of Food Addiction. Arch. Gen. Psychiatry 2011, 68, 808–816. [Google Scholar] [CrossRef] [PubMed]
- McBride, D.; Barrett, S.P.; Kelly, J.T.; Aw, A.; Dagher, A. Effects of Expectancy and Abstinence on the Neural Response to Smoking Cues in Cigarette Smokers: An fMRI Study. Neuropsychopharmacology 2006, 31, 2728–2738. [Google Scholar] [CrossRef] [Green Version]
- Garavan, H.; Pankiewicz, J.; Bloom, A.; Cho, J.-K.; Sperry, L.; Ross, T.J.; Salmeron, B.J.; Risinger, R.; Kelley, D.; Stein, E.A. Cue-Induced Cocaine Craving: Neuroanatomical Specificity for Drug Users and Drug Stimuli. Am. J. Psychiatry 2000, 157, 1789–1798. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.; London, E.D.; Newlin, D.B.; Villemagne, V.L.; Liu, X.; Contoreggi, C.; Phillips, R.L.; Kimes, A.S.; Margolin, A. Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA 1996, 93, 12040–12045. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-J.; Volkow, N.D.; Fowler, J.S.; Cervany, P.; Hitzemann, R.J.; Pappas, N.R.; Wong, C.T.; Felder, C. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci. 1999, 64, 775–784. [Google Scholar] [CrossRef]
- Davis, C.; Loxton, N.J.; Levitan, R.D.; Kaplan, A.S.; Carter, J.C.; Kennedy, J.L. ‘Food addiction’ and its association with a dopaminergic multilocus genetic profile. Physiol. Behav. 2013, 118, 63–69. [Google Scholar] [CrossRef]
- Frayn, M.; Sears, C.R.; Von Ranson, K.M. A sad mood increases attention to unhealthy food images in women with food addiction. Appetite 2016, 100, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Meule, A.; Gearhardt, A.N. Five years of the Yale Food Addiction Scale: Taking stock and moving forward. Curr. Addict. Rep. 2014, 1, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Siep, N.; Roefs, A.; Roebroeck, A.; Havermans, R.; Bonte, M.L.; Jansen, A. Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav. Brain Res. 2009, 198, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Stockburger, J.; Schmälzle, R.; Flaisch, T.; Bublatzky, F.; Schupp, H.T. The impact of hunger on food cue processing: An event-related brain potential study. Neuroimage 2009, 47, 1819–1829. [Google Scholar] [CrossRef] [Green Version]
- Loeber, S.; Grosshans, M.; Herpertz, S.; Kiefer, F.; Herpertz, S.C. Hunger modulates behavioral disinhibition and attention allocation to food-associated cues in normal-weight controls. Appetite 2013, 71, 32–39. [Google Scholar] [CrossRef]
- Tapper, K.; Pothos, E.M.; Lawrence, A.D. Feast your eyes: Hunger and trait reward drive predict attentional bias for food cues. Emotion 2010, 10, 949–954. [Google Scholar] [CrossRef]
- Duncan, N.W.; Northoff, G. Overview of potential procedural and participant- related confounds for neuroimaging of the resting state. J. Psychiatry Neurosci. 2013, 38, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Jasinska, A.J.; Stein, E.A.; Kaiser, J.; Naumer, M.J.; Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neurosci. Biobehav. Rev. 2014, 38, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lemeshow, A.R.; Gearhardt, A.N.; Genkinger, J.M.; Corbin, W.R. Assessing the psychometric properties of two food addiction scales. Eat. Behav. 2016, 23, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Shearin, E.N.; Russ, M.J.; Hull, J.W.; Clarkin, J.F.; Smith, G.P. Construct validity of the Three-Factor Eating Questionnaire: flexible and rigid control subscales. Int. J. Eat. Disord. 1994, 16, 187–198. [Google Scholar] [CrossRef]
- Anglé, S.; Engblom, J.; Eriksson, T.; Kautiainen, S.; Saha, M.T.; Lindfors, P.; Lehtinen, M.; Rimpelä, A. Three factor eating questionnaire-R18 as a measure of cognitive restraint, uncontrolled eating and emotional eating in a sample of young Finnish females. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfein, J.A.; Devlin, M.J.; Kamenetz, C. Eating Disorder Examination-Questionnaire with and without instruction to assess binge eating in patients with binge eating disorder. Int. J. Eat. Disord. 2005, 37, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Celio, A.A.; Wilfley, D.E.; Crow, S.; Mitchell, J.; Walsh, B.T. A comparison of the binge eating scale, questionnaire for eating and weight patterns-revised, and eating disorder examination questionnaire with instructions with the eating disorder examination in the assessment of binge eating disorder and its symptoms. Int. J. Eat. Disord. 2004, 36, 434–444. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Carbin, M.G. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin. Psychol. Rev. 1988, 8, 77–100. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- De Carvalho, H.W.; Andreoli, S.B.; Lara, D.R.; Patrick, C.J.; Quintana, M.I.; Bressan, R.A.; De Melo, M.F.; Mari, J.D.J.; Jorge, M.R. Structural validity and reliability of the Positive and Negative Affect Schedule (PANAS): evidence from a large Brazilian community sample. Rev. Bras. Psiquiatr. 2013, 35, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Cserjési, R.; Luminet, O.; Poncelet, A.-S.; Lénárd, L. Altered executive function in obesity. Exploration of the role of affective states on cognitive abilities. Appetite 2009, 52, 535–539. [Google Scholar] [CrossRef]
- Nijs, I.M.; Muris, P.; Euser, A.S.; Franken, I.H. Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite 2010, 54, 243–254. [Google Scholar] [CrossRef]
- Cox, W.M.; Fadardi, J.S.; Pothos, E.M. The Addiction-Stroop test: Theoretical considerations and procedural recommendations. Psychol. Bull. 2006, 132, 443–476. [Google Scholar] [CrossRef]
- Fadardi, J.S.; Bazzaz, M.M. A Combi-Stroop test for measuring food-related attentional bias. Exp. Clin. Psychopharmacol. 2011, 19, 371–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijs, I.M.; Franken, I.H.; Muris, P. Food-related Stroop interference in obese and normal-weight individuals: Behavioral and electrophysiological indices. Eat. Behav. 2010, 11, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Forestell, C.A.; Lau, P.; Gyurovski, I.I.; Dickter, C.L.; Haque, S.S. Attentional biases to foods: The effects of caloric content and cognitive restraint. Appetite 2012, 59, 748–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werthmann, J.; Roefs, A.; Nederkoorn, C.; Mogg, K.; Bradley, B.P.; Jansen, A. Can(not) take my eyes off it: Attention bias for food in overweight participants. Health Psychol. 2011, 30, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hume, D.J.; Howells, F.M.; Rauch, H.L.; Kroff, J.; Lambert, E.V. Electrophysiological indices of visual food cue-reactivity. Differences in obese, overweight and normal weight women. Appetite 2015, 85, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Blechert, J.; Lender, A.; Polk, S.; Busch, N.A.; Ohla, K. Food-Pics_Extended—An Image Database for Experimental Research on Eating and Appetite: Additional Images, Normative Ratings and an Updated Review. Front. Psychol. 2019, 10, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, G.; Jones, B.T. A pictorial Stroop paradigm reveals an alcohol attentional bias in heavier compared to lighter social drinkers. J. Psychopharmacol. 2004, 18, 527–533. [Google Scholar] [CrossRef]
- Blechert, J.; Emeule, A.; Busch, N.A.; Eohla, K. Food-pics: an image database for experimental research on eating and appetite. Front. Psychol. 2014, 5, 617. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Alyagon, U.; Shahar, H.; Hadar, A.; Barnea-Ygael, N.; Lazarovits, A.; Shalev, H.; Zangen, A. Alleviation of ADHD symptoms by non-invasive right prefrontal stimulation is correlated with EEG activity. Neuroimage Clin. 2020, 26, 102206. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2010, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zibman, S.; Daniel, E.; Alyagon, U.; Etkin, A.; Zangen, A. Interhemispheric cortico-cortical paired associative stimulation of the prefrontal cortex jointly modulates frontal asymmetry and emotional reactivity. Brain Stimul. 2019, 12, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Friedrich, P.; Schmitz, J.; Schlüter, C.; Genc, E.; Güntürkün, O.; Peterburs, J.; Grimshaw, G. Beyond frontal alpha: investigating hemispheric asymmetries over the EEG frequency spectrum as a function of sex and handedness. Laterality Asymmetries Body Brain Cogn. 2018, 24, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Van Bochove, M.E.; Ketel, E.; Wischnewski, M.; Wegman, J.; Aarts, E.; De Jonge, B.; Medendorp, W.P.; Schutter, D.J. Posterior resting state EEG asymmetries are associated with hedonic valuation of food. Int. J. Psychophysiol. 2016, 110, 40–46. [Google Scholar] [CrossRef] [PubMed]
- AlOmari, R.A.; Fernandez, M.; Banks, J.B.; Acosta, J.; Tartar, J.L. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects. Brain Sci. 2015, 5, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Schupp, H.T.; Cuthbert, B.N.; Bradley, M.M.; Cacioppo, J.T.; Ito, T.; Lang, P.J. Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology 2000, 37, 257–261. [Google Scholar] [CrossRef]
- Cuthbert, B.N.; Schupp, H.T.; Bradley, M.M.; Birbaumer, N.; Lang, P.J. Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol. Psychol. 2000, 52, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Knock, S.; Ritter, P.; Jirsa, V. Relating Alpha Power and Phase to Population Firing and Hemodynamic Activity Using a Thalamo-cortical Neural Mass Model. PLoS Comput. Biol. 2015, 11, e1004352. [Google Scholar] [CrossRef] [Green Version]
- Fetterman, A.K.; Ode, S.; Robinson, M.D. For which side the bell tolls: The laterality of approach-avoidance associative networks. Motiv. Emot. 2013, 37, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Tops, M.; Quirin, M.; Boksem, M.A.; Koole, S.L. Large-scale neural networks and the lateralization of motivation and emotion. Int. J. Psychophysiol. 2017, 119, 41–49. [Google Scholar] [CrossRef]
- Lowe, M.R.; Van Steenburgh, J.; Ochner, C.; Coletta, M. Neural correlates of individual differences related to appetite. Physiol. Behav. 2009, 97, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; Woolf, K.; Pagoto, S.L.; Schneider, K.L.; Whited, M.C.; Liebman, R. Inhibiting Food Reward: Delay Discounting, Food Reward Sensitivity, and Palatable Food Intake in Overweight and Obese Women. Obesity 2011, 19, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Feig, E.; Kounios, J.; Erickson, B.; Berkowitz, S.; Lowe, M. The relation of hedonic hunger and restrained eating to lateralized frontal activation. Physiol. Behav. 2016, 163, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Forcano, L.; Castellano, M.; Cuenca-Royo, A.; Goday-Arno, A.; Pastor, A.; Langohr, K.; Castañer, O.; Pérez-Vega, K.A.; Serra, C.; Ruffini, G.; et al. Prefrontal Cortex Neuromodulation Enhances Frontal Asymmetry and Reduces Caloric Intake in Patients with Morbid Obesity. Obesity 2020, 28, 696–705. [Google Scholar] [CrossRef]
- Spielberg, J.M.; Heller, W.; Miller, G.A. Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit. Front. Hum. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, M.; Hellrung, L.; Pleger, B.; Schlogl, H.; Kabisch, S.; Stumvoll, M.; Villringer, A.; Horstmann, A. Neural correlates of the volitional regulation of the desire for food. Int. J. Obes. 2011, 36, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Gordon, E.; Palmer, D.M.; Cooper, N. EEG Alpha Asymmetry in Schizophrenia, Depression, PTSD, Panic Disorder, ADHD and Conduct Disorder. Clin. EEG Neurosci. 2010, 41, 178–183. [Google Scholar] [CrossRef]
- Braet, C.; Crombez, G. Cognitive interference due to food cues in childhood obesity. J. Clin. Child. Adolesc. Psychol. 2003, 32, 32–39. [Google Scholar] [CrossRef]
- Fagundo, A.B.; De La Torre, R.; Jiménez-Murcia, S.; Agüera, Z.; Granero, R.; Tárrega, S.; Botella, C.; Baños, R.; Fernández-Real, J.M.; Rodríguez, R.; et al. Executive Functions Profile in Extreme Eating/Weight Conditions: From Anorexia Nervosa to Obesity. PLoS ONE 2012, 7, e43382. [Google Scholar] [CrossRef] [Green Version]
- Field, M.; Munafò, M.R.; Franken, I.H.A. A meta-analytic investigation of the relationship between attentional bias and subjective craving in substance abuse. Psychol. Bull. 2009, 135, 589–607. [Google Scholar] [CrossRef]
- Carbine, K.A.; Rodeback, R.; Modersitzki, E.; Miner, M.; LeCheminant, J.D.; Larson, M.J. The utility of event-related potentials (ERPs) in understanding food-related cognition: A systematic review and recommendations. Appetite 2018, 128, 58–78. [Google Scholar] [CrossRef] [PubMed]
- Hollitt, S.; Kemps, E.; Tiggemann, M.; Smeets, E.; Mills, J.S. Components of attentional bias for food cues among restrained eaters. Appetite 2010, 54, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veenstra, E.M.; De Jong, P.J.; Koster, E.H.W.; Roefs, A. Attentional avoidance of high-fat food in unsuccessful dieters. J. Behav. Exp. Psychiatry 2010, 41, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, N.; Henik, A.; Mor, N. Can Emotion Modulate Attention? Evidence for Reciprocal Links in the Attentional Network Test. Exp. Psychol. 2011, 58, 171–179. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Treat, T.A.; Hollingworth, A.; Corbin, W.R. The relationship between eating-related individual differences and visual attention to foods high in added fat and sugar. Eat. Behav. 2012, 13, 371–374. [Google Scholar] [CrossRef]
- Field, M.; Cox, W.M. Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug Alcohol Depend. 2008, 97, 1–20. [Google Scholar] [CrossRef]
- Carrigan, M.H.; Randall, C.L. Self-medication in social phobia: a review of the alcohol literature. Addict. Behav. 2003, 28, 269–284. [Google Scholar] [CrossRef]
- Beck, A.T.; Clark, D.A. An information processing model of anxiety: Automatic and strategic processes. Behav. Res. Ther. 1997, 35, 49–58. [Google Scholar] [CrossRef]
- Root, M.P. Persistent, disordered eating as a gender-specific, post-traumatic stress response to sexual assault. Psychother. Theory Res. Pract. Train. 1991, 28, 96–102. [Google Scholar] [CrossRef]
- Carter, J.C.; Van Wijk, M.; Rowsell, M. Symptoms of ‘food addiction’ in binge eating disorder using the Yale Food Addiction Scale version 2.0. Appetite 2019, 133, 362–369. [Google Scholar] [CrossRef]
- Ivezaj, V.; White, M.A.; Grilo, C.M. Examining binge-eating disorder and food addiction in adults with overweight and obesity. Obesity 2016, 24, 2064–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.A.; Potenza, M.N. Binge Eating Disorder and Food Addiction. Curr. Drug Abus. Rev. 2011, 4, 201–207. [Google Scholar]
- Amianto, F.; Ottone, L.; Giovanni, A.D.; Fassino, S. Binge-eating disorder diagnosis and treatment: a recap in front of DSM-5. BMC Psychiatry 2015, 15, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smarr, K.L.; Keefer, A.L. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionna. Arthritis Rheum. 2011, 63 (Suppl. 11), S454–S466. [Google Scholar] [CrossRef]
- Burmeister, J.M.; Hinman, N.; Koball, A.; Hoffmann, D.A.; Carels, R.A. Food addiction in adults seeking weight loss treatment. Implications for psychosocial health and weight loss. Appetite 2013, 60, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Nunes-Neto, P.R.; Köhler, C.A.; Schuch, F.B.; Solmi, M.; Quevedo, J.; Maes, M.; Murru, A.; Vieta, E.; McIntyre, R.S.; McElroy, S.L.; et al. Food addiction: Prevalence, psychopathological correlates and associations with quality of life in a large sample. J. Psychiatr. Res. 2018, 96, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Sansone, R.A.; Sansone, L.A. Obesity and Substance Misuse: Is There a Relationship? Innov. Clin. Neurosci. 2013, 10, 30–35. [Google Scholar]
- Schulte, E.M.; Gearhardt, A.N. Associations of Food Addiction in a Sample Recruited to Be Nationally Representative of the United States. Eur. Eat. Disord. Rev. 2018, 26, 112–119. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Development of the Yale Food Addiction Scale Version 2.0. Psychol. Addict. Behav. 2016, 30, 113–121. [Google Scholar] [CrossRef] [Green Version]
Variable | FAOB (M ± SE) | NFAOB (M ± SE) | H-C (M ± SE) | p Value |
---|---|---|---|---|
Age | 39.05 (13.01) | 37.56 (12.9) | 34 (6.38) | 0.34 |
Gender (M; F) | 7; 23 | 6; 10 | 9; 9 | 0.24 |
Education | 14.3 (0.33) | 15.13 (0.52) | 15.07 (0.44) | 0.27 |
BMI | 34.54 (0.76) | 34.29 (1.17) | 22.98 (0.38) | <0.0001 ^#§ |
VAS (hunger) | 4.81 (0.2) | 5.5 (0.19) | 5.06 (0.28) | 0.11 |
YFAS-S | 5.71 (0.26) | 3.28 (0.54) | 1.38 (0.21) | <0.0001 ^#*§ |
TFEQ-EE | 9.42 (0.55) | 7.75 (0.6) | 5.56 (0.45) | <0.0001 ^#* |
TFEQ-UE | 27.96 (0.81) | 24.94 (1.18) | 16.78 (1.06) | <0.0001 ^#* |
TFEQ-CR | 13.27 (0.62) | 13.72 (0.97) | 15.31 (1.1) | 0.22 |
BDI | 10.46 (1.34) | 5.07 (1.19) | 2.88 (0.9) | <0.0001 #* |
BE | 6.73 (1.19) | 1.09 (0.45) | 0.07 (0.05) | <0.0001 #* |
PANAS | 17.87 (7.93) | 21.73 (8.35) | 17.12 (7.25) | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviram-Friedman, R.; Kafri, L.; Baz, G.; Alyagon, U.; Zangen, A. Prisoners of Addictive Cues: Biobehavioral Markers of Overweight and Obese Adults with Food Addiction. Nutrients 2020, 12, 3563. https://doi.org/10.3390/nu12113563
Aviram-Friedman R, Kafri L, Baz G, Alyagon U, Zangen A. Prisoners of Addictive Cues: Biobehavioral Markers of Overweight and Obese Adults with Food Addiction. Nutrients. 2020; 12(11):3563. https://doi.org/10.3390/nu12113563
Chicago/Turabian StyleAviram-Friedman, Roni, Lior Kafri, Guy Baz, Uri Alyagon, and Abraham Zangen. 2020. "Prisoners of Addictive Cues: Biobehavioral Markers of Overweight and Obese Adults with Food Addiction" Nutrients 12, no. 11: 3563. https://doi.org/10.3390/nu12113563
APA StyleAviram-Friedman, R., Kafri, L., Baz, G., Alyagon, U., & Zangen, A. (2020). Prisoners of Addictive Cues: Biobehavioral Markers of Overweight and Obese Adults with Food Addiction. Nutrients, 12(11), 3563. https://doi.org/10.3390/nu12113563