Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016–2017) Korea National Health and Nutrition Examination Survey Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Subjects
2.2. Assessment of Dietary Characteristics
2.3. Assessment of Health Characteristics
2.4. Statistical Analysis
3. Results
3.1. Proportion of Subjects According to the Level of Energy Intake from Carbohydrate
3.2. Demographic Characteristics of Subjects
3.3. Dietary Characteristics
3.4. Health Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- The Ministry of Health and Welfare; The Korea Centers for Disease Control and Prevention. Korea Health Statistics 2007; Korea Centers for Disease Control and Prevention: Seoul, Korea, 2009; p. 37. [Google Scholar]
- The Ministry of Health and Welfare; The Korea Centers for Disease Control and Prevention. Korea Health Statistics 2017; Korea Centers for Disease Control and Prevention: Cheongju, Korea, 2019; p. 133. [Google Scholar]
- The Ministry of Health and Welfare; The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2015; The Korean Nutrition Society: Sejong, Korea, 2015; pp. 241, 361, 386, 405, 434, 571, 660, 713, 945–949. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; p. 70. [Google Scholar]
- Dietary Reference Intakes for Japanese. Available online: https://www.mhlw.go.jp (accessed on 25 February 2019).
- Dietary Reference Intakes for Chinese. Available online: https://www.cnsoc.org/ (accessed on 25 February 2019).
- Nutrition Requirements. Available online: https://www.nutrition.org.uk/attachments/article/907/Nutrition%20Requirements_Revised%20August%202019.pdf (accessed on 5 March 2019).
- Park, M.S.; Suh, Y.S.; Chung, Y. Comparison of chronic disease risk by dietary carbohydrate energy ratio in Korean elderly: Using the 2007-2009 Korea National Health and Nutrition Examination Survey. J. Nutr. Health 2014, 47, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Song, S.; Song, Y. High-carbohydrate diets and food patterns and their associations with metabolic disease in the Korean population. Yonsei Med. J. 2018, 59, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Song, S.; Kim, J.; Chung, J.; Yoon, J.; Paik, H.Y.; Song, Y. High carbohydrate intake was inversely associated with high-density lipoprotein cholesterol among Korean adults. Nutr. Res. 2012, 32, 100–106. [Google Scholar] [CrossRef]
- Ha, K.; Kim, K.; Chun, O.K.; Joung, H.; Song, Y. Differential association of dietary carbohydrate intake with metabolic syndrome in the US and Korean adults: Data from the 2007–2012 NHANES and KNHANES. Eur. J. Clin. Nutr. 2018, 72, 848–860. [Google Scholar] [CrossRef]
- Cho, N.H.; Cho, A.K.; Kim, H.K.; Kim, J.B.; Lee, K.E.; Kim, S.S.; Kim, Y.; Jang, H.C.; Baik, I. Carbohydrate composition associated with the 2-year incidence of metabolic syndrome in Korean adults. Clin. Nutr. Res. 2017, 6, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Du, S.; Chen, Y.; Zheng, S.; Zhang, W.; Na, G.; Li, Y.; Sun, C. High carbohydrate intake from starchy foods is positively associated with metabolic disorders: A cohort study from a Chinese population. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Lee, K.S.; Park, H.Y. Dietary carbohydrate intake is associated with cardiovascular disease risk in Korean: Analysis of the third Korea National Health and Nutrition Examination Survey (KNHNES III). Int. J. Cardiol. 2010, 139, 234–240. [Google Scholar] [CrossRef]
- Song, S.; Lee, J.E.; Song, W.O.; Paik, H.Y.; Song, Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef]
- Guidelines for the use of raw data of the 7th (2016-2017) Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.cdc.go.kr/knhanes/sub03/sub03_02_02.do (accessed on 1 February 2019).
- Guthrie, H.A.; Scheer, J.C. Validity of a dietary score for assessing nutrient adequacy. J. Am. Diet. Assoc. 1981, 78, 240–245. [Google Scholar]
- Lee, J.; Hyun, W.; Kwak, C.; Kim, C.; Lee, H. Relationship between the number of different food consumed and nutrient intakes. Korean J. Community Nutr. 2000, 5, 297–306. [Google Scholar]
- Shim, J.E.; Paik, H.Y.; Lee, S.Y.; Moon, H.K.; Kim, Y. Comparative analysis and evaluation of dietary intake of Koreans by age groups: (4) The Korean diet quality index. Korean J. Nutr. 2002, 35, 558–570. [Google Scholar]
- Koszewski, W.; Behrends, D.; Nichols, M.; Sehi, N.; Jones, G. Patterns of family meals and food and nutrition intake in limited resource families. Fam. Consum. Sci. Res. J. 2011, 39, 431–441. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, S.; Lee, J.; Choi, Y.; Chung, H.R.; Kwak, T.; Park, J.; Kang, M. Development of a Nutrition Quotient (NQ) equation modeling for children and the evaluation of its construct validity. Korean J. Nutr. 2012, 45, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K.; Block, G.; Schatzkin, A.; Ziegler, R.G.; Nestle, M. Dietary diversity in the US population, NHANES II, 1976–1980. J. Am. Diet. Assoc. 1991, 91, 1526–1531. [Google Scholar]
- Kant, A.K.; Schatzkin, A.; Block, G.; Ziegler, R.G.; Nestle, M. Food group intake patterns and associated nutrient profiles of the US population. J. Am. Diet. Assoc. 1991, 91, 1532–1537. [Google Scholar]
- Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). J.A.M.A. 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Korean Endocrine Society; Korean Society for the Study of Obesity. Management of Obesity, 2010 Recommendation. Endocrinol. Metab. 2010, 25, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Guidelines for raw data analysis of the Korea National Health and Nutrition Examination Survey (SPSS). Available online: https://knhanes.cdc.go.kr/knhanes/sub03/sub03_06_02.do (accessed on 5 February 2019).
- The National Health and Nutrition Survey in Japan, 2017. Available online: https://www.mhlw.go.jp/content/000451755.pdf (accessed on 18 July 2019).
- What We Eat in America, NHANES 2015-2016. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1516/Table_5_EIN_GEN_15.pdf (accessed on 18 July 2019).
- National Diet and Nutrition Survey: Results from Years 7 and 8 (combined) of the Rolling Programme (2014/2015 to 2015/2016). Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-7-and-8-combined (accessed on 25 February 2019).
- Song, S.; Shim, J.E. Trends in dietary intake of total fat and fatty acids among Korean adolescents from 2007 to 2017. Nutrients 2019, 11, 3073. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Park, M.J.; Paik, H.Y.; Joung, H. Secular trends in dietary patterns and obesity-related risk factors in Korean adolescents aged 10-19 years. Int. J. Obes. 2010, 34, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; van Dam, R.M.; Hankinson, S.E.; Stampfer, M.; Willett, W.C.; Hu, F.B. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann. Intern. Med. 2010, 153, 289–298. [Google Scholar] [CrossRef]
- Song, S.; Song, W.O.; Song, Y. Dietary carbohydrate and fat intakes are differentially associated with lipid abnormalities in Korean adults. J. Clin. Lipidol. 2017, 11, 338–347. [Google Scholar] [CrossRef]
- Kim, K.; Yun, S.H.; Choi, B.Y.; Kim, M.K. Cross-sectional relationship between dietary carbohydrate, glycemic index, glycemic load and risk of the metabolic syndrome in a Korean population. Br. J. Nutr. 2008, 100, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Radhika, G.; Van Dam, R.M.; Sudha, V.; Ganesan, A.; Mohan, V. Refined grain consumption and the metabolic syndrome in urban Asian Indians (Chennai Urban Rural Epidemiology Study 57). Metabolism. 2009, 58, 675–681. [Google Scholar] [CrossRef]
- Sartorius, K.; Sartorius, B.; Madiba, T.E.; Stefan, C. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. B. M. J. Open 2018, 8, e018449. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S. Rice intake and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1468–1477. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Cho, D.S.; Kim, H.J. The effect of salt usage behavior on sodium intake and excretion among Korean women. Nutr. Res. Pract. 2012, 6, 232–237. [Google Scholar] [CrossRef]
- Danquah, I.; Dobrucky, C.L.; Frank, L.K.; Henze, A.; Amoako, Y.A.; Bedu-Addo, G.; Raila, J.; Schulze, M.B.; Mockenhaupt, F.P.; Schweigert, F.J. Vitamin A: potential misclassification of vitamin A status among patients with type 2 diabetes and hypertension in urban Ghana. Am. J. Clin. Nutr. 2015, 102, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jun, S.; Joung, H. Estimated dietary intake of vitamin A in Korean adults: Based on the Korea National Health and Nutrition Examination Survey 2007~2012. J. Nutr. Health 2016, 49, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, C.; Yoshimura, Y.; Kamada, C.; Tanaka, S.; Tanaka, S.; Matsunaga, S.; Hanyu, O.; Araki, A.; Ito, H.; Tanaka, A.; et al. Is the proportion of carbohydrate intake associated with the incidence of diabetes complications?—An analysis of the Japan Diabetes Complications Study. Nutrients 2017, 9, 113. [Google Scholar] [CrossRef] [Green Version]
Variable | <45% (n = 527) | 45–50% (n = 459) | 50–55% (n = 740) | 55–60% (n = 1037) | 60–65% (n = 1342) | 65–70% (n = 1281) | 70–75% (n = 1116) | ≥75% (n = 1064) |
---|---|---|---|---|---|---|---|---|
(%) | ||||||||
Sex | p < 0.001 | |||||||
Male | 59.2 | 54.2 | 53.3 | 51.3 | 52.0 | 51.7 | 45.2 | 41.1 |
Female | 40.8 | 45.8 | 46.7 | 48.7 | 48.0 | 48.3 | 54.8 | 58.9 |
Age (years) | p < 0.001 | |||||||
19–29 | 34.4 | 33.1 | 31.2 | 25.2 | 22.2 | 15.0 | 15.2 | 6.2 |
30–49 | 48.6 | 49.0 | 49.8 | 51.2 | 49.9 | 49.7 | 40.9 | 35.4 |
50–64 | 17.0 | 17.8 | 19.0 | 23.6 | 28.0 | 35.3 | 43.9 | 58.4 |
Residential area | p = 0.001 | |||||||
Urban | 90.3 | 90.4 | 90.5 | 88.7 | 87.1 | 87.5 | 85.7 | 83.7 |
Rural | 9.7 | 9.6 | 9.5 | 11.3 | 12.9 | 12.5 | 14.3 | 16.3 |
Household income level 1 (n = 7555) | p < 0.001 | |||||||
Low | 6.1 | 9.6 | 8.3 | 6.7 | 7.3 | 9.0 | 11.5 | 15.6 |
Medium-low | 22.4 | 18.1 | 20.8 | 21.5 | 22.5 | 23.3 | 22.5 | 27.6 |
Medium-high | 28.5 | 29.6 | 31.3 | 34.4 | 33.7 | 31.5 | 33.1 | 27.4 |
High | 43.0 | 42.7 | 39.7 | 37.5 | 36.6 | 36.1 | 32.9 | 29.4 |
Education level 1 (n = 7224) | p < 0.001 | |||||||
≤Elementary school graduate | 1.5 | 2.1 | 2.0 | 3.6 | 4.2 | 5.9 | 8.5 | 18.0 |
Middle school graduate | 4.1 | 3.6 | 5.1 | 5.4 | 4.7 | 9.4 | 9.8 | 14.4 |
High school graduate | 40.4 | 35.6 | 40.4 | 36.6 | 38.3 | 37.8 | 38.0 | 35.4 |
≥College graduate | 54.0 | 58.7 | 52.4 | 54.4 | 52.8 | 46.9 | 43.8 | 32.1 |
Employment status 1 (n = 7219) | p = 0.017 | |||||||
Employed | 27.9 | 29.5 | 33.9 | 29.0 | 28.6 | 28.5 | 30.9 | 35.9 |
Unemployed | 72.1 | 70.5 | 66.1 | 71.0 | 71.4 | 71.5 | 69.1 | 64.1 |
Marriage status | p < 0.001 | |||||||
Married | 58.0 | 61.8 | 62.4 | 68.5 | 72.3 | 78.7 | 79.6 | 86.1 |
Unmarried | 42.0 | 38.2 | 37.6 | 31.5 | 27.7 | 21.3 | 20.4 | 13.9 |
Number of family members | p < 0.001 | |||||||
1 | 10.2 | 11.0 | 9.4 | 8.2 | 7.4 | 7.1 | 7.6 | 7.2 |
2 | 16.4 | 18.0 | 17.1 | 16.3 | 19.2 | 19.8 | 19.8 | 26.2 |
3 | 32.1 | 33.3 | 33.1 | 30.2 | 29.6 | 28.8 | 33.2 | 28.4 |
4 | 34.9 | 28.1 | 33.1 | 35.4 | 33.9 | 33.7 | 29.1 | 28.2 |
≥5 | 6.4 | 9.6 | 7.3 | 9.9 | 10.0 | 10.7 | 10.3 | 9.9 |
<45% (n = 527) | 45–50% (n = 459) | 50–55% (n = 740) | 55–60% (n = 1037) | 60–65% (n = 1342) | 65–70% (n = 1281) | 70–75% (n = 1116) | ≥75% (n = 1064) | p1 | |
---|---|---|---|---|---|---|---|---|---|
NAR | Mean ± SE | ||||||||
Protein | 0.98 ± 0.004 a, 2 | 0.97 ± 0.01 a | 0.95 ± 0.01 b | 0.96 ± 0.004 b | 0.93 ± 0.004 c | 0.90 ± 0.01 d | 0.86 ± 0.01 e | 0.77 ± 0.01 f | <0.001 |
Vitamin A | 0.56 ± 0.01 ab | 0.55 ± 0.01 ab | 0.55 ± 0.01 a | 0.50 ± 0.01 bc | 0.50 ± 0.01 b | 0.46 ± 0.01 cd | 0.43 ± 0.01 d | 0.36 ± 0.01 e | <0.001 |
Thiamin | 0.94 ± 0.01 bc | 0.95 ± 0.01 a | 0.94 ± 0.01 ab | 0.95 ± 0.005 a | 0.93 ± 0.005 ab | 0.92 ± 0.01 ab | 0.91 ± 0.01 ab | 0.89 ± 0.01 c | <0.001 |
Riboflavin | 0.94 ± 0.01 a | 0.92 ± 0.01 ab | 0.91 ± 0.01 ab | 0.91 ± 0.01 ab | 0.87 ± 0.01 b | 0.84 ± 0.01 c | 0.78 ± 0.01 d | 0.68 ± 0.01 e | <0.001 |
Niacin | 0.91 ± 0.01 a | 0.90 ± 0.01 a | 0.87 ± 0.01 ab | 0.87 ± 0.01 a | 0.83 ± 0.01 b | 0.80 ± 0.01 c | 0.75 ± 0.01 d | 0.69 ± 0.01 e | <0.001 |
Vitamin C | 0.49 ± 0.02 d | 0.53 ± 0.02 c | 0.56 ± 0.01 abc | 0.56 ± 0.01 bc | 0.57 ± 0.01 ab | 0.57 ± 0.01 abc | 0.58 ± 0.01 ab | 0.61 ± 0.02 a | <0.001 |
Calcium | 0.61 ± 0.01 d | 0.65 ± 0.01 abc | 0.65 ± 0.01 ab | 0.66 ± 0.01 ab | 0.64 ± 0.01 a | 0.62 ± 0.01 b | 0.58 ± 0.01 c | 0.50 ± 0.01 e | <0.001 |
Phosphorus | 0.98 ± 0.004 ab | 0.98 ± 0.004 a | 0.97 ± 0.004 ab | 0.97 ± 0.003 a | 0.97 ± 0.003 a | 0.95 ± 0.004 bc | 0.93 ± 0.01 c | 0.88 ± 0.01 d | <0.001 |
Iron | 0.89 ± 0.01 ab | 0.89 ± 0.01 ab | 0.88 ± 0.01 ab | 0.89 ± 0.01 ab | 0.89 ± 0.01 a | 0.88 ± 0.01 ab | 0.88 ± 0.01 ab | 0.87 ± 0.01 b | 0.022 |
MAR | 0.81 ± 0.01 a | 0.82 ± 0.01 a | 0.81 ± 0.01 a | 0.81 ± 0.005 a | 0.79 ± 0.004 b | 0.77 ± 0.01 c | 0.74 ± 0.01 d | 0.69 ± 0.01 e | <0.001 |
<45% (n = 527) | 45–50% (n = 459) | 50–55% (n = 740) | 55–60% (n = 1037) | 60–65% (n = 1342) | 65–70% (n = 1281) | 70–75% (n = 1116) | ≥75% (n = 1064) | p2 | |
---|---|---|---|---|---|---|---|---|---|
DDS 1 | Mean ± SE | ||||||||
3.72 ± 0.03 d,3 | 3.81 ± 0.04 bcd | 3.88 ± 0.04 abc | 3.97 ± 0.03 a | 3.96 ± 0.03 ab | 3.92 ± 0.03 abc | 3.90 ± 0.03 cd | 3.75 ± 0.03 e | <0.001 | |
DDS 1 | % | ||||||||
1 | 0.4 | 0.1 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.4 | <0.001 |
2 | 1.5 | 1.1 | 2.8 | 1.6 | 0.8 | 1.5 | 2.8 | 5.4 | |
3 | 38.5 | 35.2 | 29.9 | 26.5 | 29.4 | 29.0 | 26.7 | 29.4 | |
4 | 44.8 | 44.8 | 42.9 | 44.0 | 42.1 | 44.4 | 46.4 | 48.6 | |
5 | 14.9 | 18.8 | 24.1 | 27.6 | 27.4 | 24.9 | 23.8 | 16.2 |
<45% (n = 527) | 45–50% (n = 459) | 50–55% (n = 740) | 55–60% (n = 1037) | 60–65% (n = 1342) | 65–70% (n = 1281) | 70–75% (n = 1116) | ≥75% (n = 1064) | p2 | |
---|---|---|---|---|---|---|---|---|---|
DMGFV 1 | % | ||||||||
11111 | 14.9 | 18.8 | 24.1 | 27.6 | 27.4 | 24.9 | 23.8 | 16.2 | <0.001 |
01111 | 24.8 | 22.0 | 23.2 | 26.5 | 25.7 | 31.0 | 34.6 | 41.8 | |
11101 | 18.6 | 21.9 | 19.3 | 17.2 | 15.8 | 12.0 | 10.2 | 3.5 | |
01101 | 35.9 | 32.9 | 28.1 | 25.6 | 27.8 | 27.2 | 25.1 | 19.9 | |
Others | 5.8 | 4.4 | 5.3 | 3.1 | 3.3 | 4.9 | 6.3 | 18.6 |
<45% (n = 527) | 45–50% (n = 459) | 50–55% (n = 740) | 55–60% (n = 1037) | 60–65% (n = 1342) | 65–70% (n = 1281) | 70–75% (n = 1116) | ≥75% (n = 1064) | |
---|---|---|---|---|---|---|---|---|
OR (95% CI) 2 | ||||||||
Obesity3 (n = 7559) | 1.25 (0.97–1.61) | 1.15 (0.88–1.50) | 1.11 (0.90–1.37) | 1.14 (0.93–1.40) | Reference | 0.98 (0.80–1.21) | 0.89 (0.73–1.08) | 1.05 (0.85–1.29) |
Hypercholesterolemia3 (n = 7205) | 0.89 (0.65–1.21) | 0.87 (0.60–1.26) | 0.97 (0.72–1.31) | 0.81 (0.62–1.06) | Reference | 0.81 (0.64–1.03) | 0.79 (0.61–1.02) | 0.86 (0.68–1.10) |
Metabolic syndrome3,4 (n = 7334) | 1.06 (0.79–1.42) | 0.98 (0.69–1.40) | 1.14 (0.86–1.53) | 0.88 (0.68–1.15) | Reference | 0.99 (0.79–1.24) | 0.98 (0.76–1.27) | 1.10 (0.86–1.40) |
Risk factors of metabolic syndrome3,5 (n = 7334) | ||||||||
High waist circumference | 1.16 (0.88–1.52) | 1.12 (0.84–1.50) | 1.16 (0.91–1.49) | 1.09 (0.87–1.36) | Reference | 0.98 (0.79–1.22) | 1.05 (0.84–1.32) | 1.05 (0.83–1.32) |
Hypertriglyceridemia | 1.03 (0.81–1.30) | 1.23 (0.92–1.63) | 1.13 (0.90–1.44) | 1.07 (0.86–1.34) | Reference | 1.10 (0.91–1.33) | 1.00 (0.81–1.24) | 1.14 (0.92–1.40) |
Low HDL-cholesterolemia | 1.00 (0.78–1.28) | 0.89 (0.66–1.19) | 1.07 (0.85–1.35) | 1.13 (0.91–1.39) | Reference | 1.18 (0.97–1.43) | 1.20 (0.98–1.47) | 1.37 (1.10–1.70) ** |
Hypertension | 1.48 (1.10–2.00) ** | 1.20 (0.89–1.61) | 1.16 (0.91–1.48) | 0.97 (0.77–1.22) | Reference | 0.96 (0.79–1.18) | 1.25 (1.00–1.55) * | 1.10 (0.87–1.38) |
Impaired fasting glucose | 0.96 (0.66–1.40) | 0.94 (0.63–1.40) | 1.05 (0.73–1.50) | 0.83 (0.62–1.12) | Reference | 0.99 (0.76–1.29) | 1.01 (0.77–1.31) | 1.10 (0.86–1.41) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soh, S.M.; Chung, S.-J.; Yoon, J. Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016–2017) Korea National Health and Nutrition Examination Survey Data. Nutrients 2020, 12, 429. https://doi.org/10.3390/nu12020429
Soh SM, Chung S-J, Yoon J. Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016–2017) Korea National Health and Nutrition Examination Survey Data. Nutrients. 2020; 12(2):429. https://doi.org/10.3390/nu12020429
Chicago/Turabian StyleSoh, Sue Min, Sang-Jin Chung, and Jihyun Yoon. 2020. "Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016–2017) Korea National Health and Nutrition Examination Survey Data" Nutrients 12, no. 2: 429. https://doi.org/10.3390/nu12020429
APA StyleSoh, S. M., Chung, S. -J., & Yoon, J. (2020). Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016–2017) Korea National Health and Nutrition Examination Survey Data. Nutrients, 12(2), 429. https://doi.org/10.3390/nu12020429