Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters
Abstract
:1. Introduction
2. Physiologic Anemia of Pregnancy
3. Iron Balance: An Overview
4. Iron Requirements during Pregnancy
5. ID in Premenopausal Women
6. Evaluation for ID and IDA in Pregnancy
7. Impact of ID during Pregnancy
8. Approach to Iron Administration in Pregnancy
9. ID in Pregnancy: Areas for Further Research
- What is the most effective screening approach? While guidelines from specialty societies recommend screening for anemia as a surrogate for the detection of ID, specific assessment of iron status is restricted to high risk subsets of patients. Should specific testing for iron status replace or complement screening for anemia in all patients? If not, what is the appropriate Hb/Hct level II most effectively detect ID?
- In identifying ID in pregnancy, what is the optimal serum ferritin threshold? Most studies and recommendations favor measurement of serum ferritin concentration as either the recommended initial assessment or as a reasonable choice for initial assessment. Thresholds of serum ferritin concentration for the identification of ID in pregnancy range from 10 µg/L to 30 µg/L. should the standard for ID be the lower limit of the population ferritin range (10–15 µg/L) in women, or should it be a value supported by correlation with bone marrow iron status or with some other factor such as sTfR concentration?
- Is there a role for universal supplementation? If not, what are the parameters that will guide supplementation? Should they be guided by serum ferritin concentration, transferrin saturation, sTfR, or hepcidin? If a stratified/guided approach to iron supplementation in pregnancy is proposed, what are its benefits and costs compared to universal supplementation, looking at parameters of maternal and fetal/newborn l outcomes as well as iron status?
- What is the role of hepcidin in the diagnosis of ID in pregnancy and in its management? Hepcidin provides the potential for a mechanistic, biologically based approach to the assessment of ID in pregnancy as opposed to various surrogate measures of iron stores or availability. Is hepcidin more useful in diagnosis and management than other, more standard, iron parameters such as ferritin? What are the limitations around availability and cost-effectiveness?
- Is there a benefit from maternal iron supplementation/anemia correction for newborn neurocognitive development? As noted in the review, it is unclear that maternal iron supplementation during pregnancy as a beneficial effect on newborn neurocognitive development. Should studies to address this focus only on iron deficient mothers, in whom the potential for benefit may be highest? If such studies demonstrate a benefit, how can it be optimized?
- What is the most cost- and outcome-effective way to deliver iron supplementation/replacement and to perform screening in resource-poor settings? Mothers with access to a high level of prenatal care have additional options for diagnosis and management of ID, such as laboratory testing for serum ferritin or intravenous iron therapy if there is a poor response to oral iron. Mothers in resource-poor environments (which could include individuals with limited healthcare access in more developed nations) may be limited to Hb/Hct testing and oral iron preparations. What is the optimal way provide treatment of this common clinical issue in a way that recognizes economic limitations but also maximizes favorable outcomes?
Author Contributions
Funding
Conflicts of Interest
References
- de Leeuw, N.K.; Lowenstein, L.; Hsieh, Y.S. Iron deficiency and hydremia in normal pregnancy. Medicine 1966, 45, 291–315. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Fraser, D.; Katz, M.; Mazor, M.; Sheiner, E. Maternal anemia during pregnancy is an independent risk factor for low birthweight and preterm delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 122, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Adebisi, O.Y.; Strayhorn, G. Anemia in pregnancy and race in the United States: Blacks at risk. Fam. Med. 2005, 37, 655–662. [Google Scholar]
- Xiong, X.; Buekens, P.; Fraser, W.D.; Guo, Z. Anemia during pregnancy in a Chinese population. Int. J. Gynaecol. Obstet. 2003, 83, 159–164. [Google Scholar] [CrossRef]
- Kozuki, N.; Lee, A.C.; Katz, J.; Child Health Epidemiology Reference Group. Moderate to severe, but not mild, maternal anemia is associated with increased risk of small-for-gestational-age outcomes. J. Nutr. 2012, 142, 358–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabin, B.J.; Hakimi, M.; Pelletier, D. An analysis of anemia and pregnancy-related maternal mortality. J. Nutr. 2001, 131, 604S–614S. [Google Scholar] [CrossRef] [Green Version]
- Mettananda, S.; Suranjan, M.; Fernando, R.; Dias, T.; Mettananda, C.; Rodrigo, R.; Perera, L.; Gibbons, R.; Premawardhena, A.; Higgs, D. Anaemia among females in child-bearing age: Relative contributions, effects and interactions of alpha- and beta-thalassaemia. PLoS ONE 2018, 13, e0206928. [Google Scholar] [CrossRef]
- Huynh, B.T.; Cottrell, G.; Cot, M.; Briand, V. Burden of malaria in early pregnancy: A neglected problem? Clin. Infect. Dis. 2015, 60, 598–604. [Google Scholar] [CrossRef]
- Chen, C.; Grewal, J.; Betran, A.P.; Vogel, J.P.; Souza, J.P.; Zhang, J. Severe anemia, sickle cell disease, and thalassemia as risk factors for hypertensive disorders in pregnancy in developing countries. Pregnancy Hypertens. 2018, 13, 141–147. [Google Scholar] [CrossRef]
- West, C.A.; Sasser, J.M.; Baylis, C. The enigma of continual plasma volume expansion in pregnancy: Critical role of the renin-angiotensin-aldosterone system. Am. J. Physiol. Renal Physiol. 2016, 311, F1125–F1134. [Google Scholar] [CrossRef] [Green Version]
- Robeck, T.R.; Nollens, H.H. Hematological and serum biochemical analytes reflect physiological challenges during gestation and lactation in killer whales (Orcinus orca). Zoo Biol. 2013, 32, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Stangret, A.; Skoda, M.; Wnuk, A.; Pyzlak, M.; Szukiewicz, D. Mild anemia during pregnancy upregulates placental vascularity development. Med. Hypotheses 2017, 102, 37–40. [Google Scholar] [CrossRef] [PubMed]
- de Haas, S.; Ghossein-Doha, C.; van Kuijk, S.M.; van Drongelen, J.; Spaanderman, M.E. Physiological adaptation of maternal plasma volume during pregnancy: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 49, 177–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crispin, P.J.; Sethna, F.; Andriolo, K. Red cell and reticulocyte parameters for the detection of iron deficiency in pregnancy. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef]
- Horowitz, K.M.; Ingardia, C.J.; Borgida, A.F. Anemia in pregnancy. Clin. Lab. Med. 2013, 33, 281–291. [Google Scholar] [CrossRef]
- Milman, N.; Graudal, N.; Nielsen, O.J.; Agger, A.O. Serum erythropoietin during normal pregnancy: Relationship to hemoglobin and iron status markers and impact of iron supplementation in a longitudinal, placebo-controlled study on 118 women. Int. J. Hematol. 1997, 66, 159–168. [Google Scholar] [CrossRef]
- Gerritsen, T.; Walker, A.R. The effect of habitually high iron intake on certain blood values in pregnant Bantu women. J. Clin. Investig. 1954, 33, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Gordeuk, V.R. African iron overload. Semin. Hematol. 2002, 39, 263–269. [Google Scholar] [CrossRef]
- Milman, N.; Byg, K.E.; Agger, A.O. Hemoglobin and erythrocyte indices during normal pregnancy and postpartum in 206 women with and without iron supplementation. Acta Obstet. Gynecol. Scand. 2000, 79, 89–98. [Google Scholar] [CrossRef]
- James, T.R.; Reid, H.L.; Mullings, A.M. Are published standards for haematological indices in pregnancy applicable across populations: An evaluation in healthy pregnant Jamaican women. BMC Pregnancy Childbirth 2008, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Jiang, Y.M.; Shi, H.; Liu, J.H.; Zhou, W.J.; Dai, Q.K.; Yang, H. A prospective, sequential and longitudinal study of haematological profile during normal pregnancy in Chinese women. J. Obstet. Gynaecol. 2010, 30, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Pai, S.H. Change in erythropoiesis with gestational age during pregnancy. Ann. Hematol. 2001, 80, 26–31. [Google Scholar] [CrossRef]
- Camaschella, C.; Pagani, A.; Nai, A.; Silvestri, L. The mutual control of iron and erythropoiesis. Int. J. Lab. Hematol. 2016, 38, 20–26. [Google Scholar] [CrossRef]
- Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and anemia: A tight relationship. Front. Physiol. 2019, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Means, R.T., Jr. Hepcidin and iron regulation in health and disease. Am. J. Med. Sci. 2013, 345, 57–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.; Martinez-Torres, C.; Leets, I.; Ramirez, J.; Garcia-Casal, M.N.; Layrisse, M. Relationships among iron absorption, percent saturation of plasma transferrin and serum ferritin concentration in humans. J. Nutr. 1988, 118, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Means, R.T., Jr. Red blood cell function and disrders of iron metabolism. In Scoentific American Medicine; Singh, A.K., Ed.; Decker: Hamilton, ON, USA, 2016. [Google Scholar]
- Milman, N.; Bergholt, T.; Byg, K.E.; Eriksen, L.; Graudal, N. Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation. Acta Obstet. Gynecol. Scand. 1999, 78, 749–757. [Google Scholar] [CrossRef]
- Milman, N. Prepartum anaemia: Prevention and treatment. Ann. Hematol. 2008, 87, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Milman, N.; Graudal, N.; Agger, A.O. Iron status markers during pregnancy. No relationship between levels at the beginning of the second trimester, prior to delivery and post partum. J. Intern. Med. 1995, 237, 261–267. [Google Scholar] [CrossRef]
- Means, R.T.; Allen, J.; Sears, D.A.; Schuster, S.J. Serum soluble transferrin receptor and the prediction of marrow aspirate results in a heterogeneous group of patients. Clin. Lab. Haematol. 1999, 21, 161–167. [Google Scholar] [CrossRef]
- Auerbach, M.; Abernathy, J.; Juul, S.; Short, V.; Derman, R. Prevalence of iron deficiency in first trimester, nonanemic pregnant women. J. Mater. Fetal Neonatal Med. 2019, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, K. Estimation of iron requirements for women by numerical analysis of population-based data from the National Health and Nutrition Surveys of Japan 2003–2007. J. Trace Elem. Med. Biol. 2014, 28, 453–458. [Google Scholar] [CrossRef] [PubMed]
- North, M.; Dallalio, G.; Donath, A.S.; Melink, R.; Means, R.T. Serum transferrin receptor levels in patients undergoing evaluation of iron stores:correlation with other parameters, and observed versus predicted results. Clin. Lab. Haematol. 1997, 19, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron status in pregnant women and women of reproductive age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655s–1662s. [Google Scholar] [CrossRef]
- Hollowell, J.G.; van Assendelft, O.W.; Gunter, E.W.; Lewis, B.G.; Najjar, M.; Pfeiffer, C. Hematological and iron-related analytes--reference data for persons aged 1 year and over: United States, 1988–1994. Vital Health Stat. Data Natl. Health Surv. 2005, Series 11, 1–156. [Google Scholar]
- Sebastiani, G.; Herranz Barbero, A.; Borras-Novell, C.; Alsina Casanova, M.; Aldecoa-Bilbao, V.; Andreu-Fernandez, V.; Pascual Tutusaus, M.; Ferrero Martinez, S.; Gomez Roig, M.D.; Garcia-Algar, O. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients 2019, 11, 557. [Google Scholar] [CrossRef] [Green Version]
- Haslam, N.; Lock, R.J.; Unsworth, D.J. Coeliac disease, anaemia and pregnancy. Clin. Lab. 2001, 47, 467–469. [Google Scholar]
- Napolitano, M.; Dolce, A.; Celenza, G.; Grandone, E.; Perilli, M.G.; Siragusa, S.; Carta, G.; Orecchioni, A.; Mariani, G. Iron-dependent erythropoiesis in women with excessive menstrual blood losses and women with normal menses. Ann. Hematol. 2014, 93, 557–563. [Google Scholar] [CrossRef]
- Dubois, R.W.; Goodnough, L.T.; Ershler, W.B.; Van Winkle, L.; Nissenson, A.R. Identification, diagnosis, and management of anemia in adult ambulatory patients treated by primary care physicians: Evidence-based and consensus recommendations. Curr. Med. Res. Opin. 2006, 22, 385–395. [Google Scholar] [CrossRef]
- Allen, J.; Backstrom, K.R.; Cooper, J.A.; Cooper, M.C.; Detwiler, T.C.; Essex, D.W.; Fritz, R.P.; Means, R.T.; Meier, P.B.; Pearlman, S.R.; et al. Measurement of soluble transferrin receptor in serum of healthy adults. Clin. Chem. 1998, 44, 35–39. [Google Scholar] [CrossRef] [Green Version]
- McLaren, G.D.; Skikine, B.S. Iron deficiency without anemia. In Nutritional Anemia: Scientific Principles, Clinical Practice, and Public Health; Means, R.T., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 69–84. [Google Scholar]
- Hillman, R.S.; Finch, C.A. Red Cell Manual; F.A. Davis: Philadelphia, PA, USA, 1974; Volume 4, pp. 1–84. [Google Scholar]
- Brugnara, C. Iron deficiency and erythropoiesis: New diagnostic approaches. Clin. Chem. 2003, 49, 1573–1578. [Google Scholar] [CrossRef]
- Byg, K.E.; Milman, N.; Hansen, S.; Agger, A.O. Serum ferritin is a reliable, non-invasive test for iron status in pregnancy: Comparison of ferritin with other iron status markers in a longitudinal study on healthy pregnant women. Hematology 2000, 5, 319–325. [Google Scholar] [CrossRef]
- Crispin, P.; Stephens, B.; McArthur, E.; Sethna, F. First trimester ferritin screening for pre-delivery anaemia as a patient blood management strategy. Transfus. Apheresis Sci. 2019, 58, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Daru, J.; Allotey, J.; Pena-Rosas, J.P.; Khan, K.S. Serum ferritin thresholds for the diagnosis of iron deficiency in pregnancy: A systematic review. Transfus. Med. 2017, 27, 167–174. [Google Scholar] [CrossRef]
- Daru, J.; Colman, K.; Stanworth, S.J.; De La Salle, B.; Wood, E.M.; Pasricha, S.R. Serum ferritin as an indicator of iron status: What do we need to know? Am. J. Clin. Nutr. 2017, 106 (Suppl. 6), 1634S–1639S. [Google Scholar] [CrossRef]
- Milman, N.; Pedersen, N.S.; Visfeldt, J. Serum ferritin in healthy Danes: Relation to marrow haemosiderin iron stores. Dan. Med. Bull. 1983, 30, 115–120. [Google Scholar]
- Casonato, A.; Galletta, E.; Sarolo, L.; Daidone, V. Type 2N von Willebrand disease: Characterization and diagnostic difficulties. Haemophilia 2018, 24, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Cunietti, E.; Ciari, M.M.; Monti, M.; Engaddi, I.; Berlusconi, A.; Neri, M.C.; De Luca, P. Distortion of iron status indices by acute inflammation in older hospitalized patients. Arch. Gerontol. Geriatr. 2004, 39, 35–42. [Google Scholar] [CrossRef]
- Suchdev, P.S.; Williams, A.M.; Mei, Z.; Flores-Ayala, R.; Pasricha, S.R.; Rogers, L.M.; Namaste, S.M. Assessment of iron status in settings of inflammation: Challenges and potential approaches. Am. J. Clin. Nutr. 2017, 106, 1626s–1633s. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetrics & Gynecology. ACOG Practice Bulletin No. 95: Anemia in pregnancy. Obstet. Gynecol. 2008, 112, 201–207. [Google Scholar] [CrossRef]
- Pavord, S.; Daru, J.; Prasannan, N.; Robinson, S.; Stanworth, S.; Girling, J. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Pavord, S.; Myers, B.; Robinson, S.; Allard, S.; Strong, J.; Oppenheimer, C. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2012, 156, 588–600. [Google Scholar] [CrossRef]
- Harvey, T.; Zkik, A.; Auges, M.; Clavel, T. Assessment of iron deficiency and anemia in pregnant women: An observational French study. Womens Health 2016, 12, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Naess-Andresen, M.L.; Eggemoen, A.R.; Berg, J.P.; Falk, R.S.; Jenum, A.K. Serum ferritin, soluble transferrin receptor, and total body iron for the detection of iron deficiency in early pregnancy: A multiethnic population-based study with low use of iron supplements. Am. J. Clin. Nutr. 2019, 109, 566–575. [Google Scholar] [CrossRef]
- Gottschalk, R.; Wigand, R.; Dietrich, C.F.; Oremek, G.; Liebisch, F.; Hoelzer, D.; Kaltwasser, J.P. Total iron-binding capacity and serum transferrin determination under the influence of several clinical conditions. Clin. Chim. Acta 2000, 293, 127–138. [Google Scholar] [CrossRef]
- Kasvosve, I.; Delanghe, J. Total iron binding capacity and transferrin concentration in the assessment of iron status. Clin. Chem. Lab. Med. 2002, 40, 1014–1018. [Google Scholar] [CrossRef]
- Sharma, J.B.; Bumma, S.D.; Saxena, R.; Kumar, S.; Roy, K.K.; Singh, N.; Vanamail, P. Cross sectional, comparative study of serum erythropoietin, transferrin receptor, ferritin levels and other hematological indices in normal pregnancies and iron deficiency anemia during pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 203, 99–103. [Google Scholar] [CrossRef]
- Tomkins, A. Assessing micronutrient status in the presence of inflammation. J. Nutr. 2003, 133, 1649s–1655s. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron sequestration and anemia of inflammation. Semin. Hematol. 2009, 46, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Guida, C.; Altamura, S.; Klein, F.A.; Galy, B.; Boutros, M.; Ulmer, A.J.; Hentze, M.W.; Muckenthaler, M.U. A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood 2015, 125, 2265–2275. [Google Scholar] [CrossRef] [Green Version]
- Byg, K.E.; Milman, N.; Ole Agger, A. Correlations between iron status markers during normal pregnancy in women with and without Iron supplementation. Hematology 2000, 4, 529–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinsooto, V.; Ojwang, P.J.; Govender, T.; Moodley, J.; Connolly, C.A. Soluble transferrin receptors in anaemia of pregnancy. J. Obstet. Gynaecol. 2001, 21, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin. Chim. Acta 2003, 329, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dewey, K.G.; Lonnerdal, B.; Hernell, O.; Chaparro, C.; Adu-Afarwuah, S.; McLean, E.D.; Cohen, R.J.; Domellof, M.; Allen, L.H.; et al. Comparison of plasma ferritin concentration with the ratio of plasma transferrin receptor to ferritin in estimating body iron stores: Results of 4 intervention trials. Am. J. Clin. Nutr. 2008, 87, 1892–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tussing-Humphreys, L.; Pusatcioglu, C.; Nemeth, E.; Braunschweig, C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: Introducing hepcidin. J. Acad. Nutr. Diet. 2012, 112, 391–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, B.; Rasool, S.; Jasim, S.; Abdulah, D. Hepcidin as a diagnostic biomarker of iron deficiency anemia during pregnancy. J. Matern. Fetal Neonatal Med. 2019, 1–9. [Google Scholar] [CrossRef]
- Abioye, A.I.; Aboud, S.; Premji, Z.; Etheredge, A.J.; Gunaratna, N.S.; Sudfeld, C.R.; Noor, R.A.; Hertzmark, E.; Spiegelman, D.; Duggan, C.; et al. Hemoglobin and hepcidin have good validity and utility for diagnosing iron deficiency anemia among pregnant women. Eur. J. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Bah, A.; Muhammad, A.K.; Wegmuller, R.; Verhoef, H.; Goheen, M.M.; Sanyang, S.; Danso, E.; Sise, E.A.; Pasricha, S.R.; Armitage, A.E.; et al. Hepcidin-guided screen-and-treat interventions against iron-deficiency anaemia in pregnancy: A randomised controlled trial in The Gambia. Lancet Glob. Health 2019, 7, e1564–e1574. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, L.M.; Scanlon, K.S.; Freedman, D.S.; Siega-Riz, A.M.; Cogswell, M.E. High prevalence of postpartum anemia among low-income women in the United States. Am. J. Obstet. Gynecol. 2001, 185, 438–443. [Google Scholar] [CrossRef]
- Ellman, L.M.; Vinogradov, S.; Kremen, W.S.; Poole, J.H.; Kern, D.M.; Deicken, R.F.; Brown, A.S. Low maternal hemoglobin during pregnancy and diminished neuromotor and neurocognitive performance in offspring with schizophrenia. Schizophr. Res. 2012, 138, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Abioye, A.I.; McDonald, E.A.; Park, S.; Ripp, K.; Bennett, B.; Wu, H.W.; Pond-Tor, S.; Sagliba, M.J.; Amoylen, A.J.; Baltazar, P.I.; et al. Maternal anemia type during pregnancy is associated with anemia risk among offspring during infancy. Pediatr. Res. 2019, 86, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Shaikh, F.; Fawwad, A.; Hakeem, R.; Shera, A.S.; Hitman, G.A.; Bhowmik, B.; do Vale Moreira, N.C.; Basit, A.; Hussain, A. Maternal nutrition during early pregnancy and cardiometabolic status of neonates at birth. J. Diabetes Res. 2018, 2018, 7382946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janbek, J.; Sarki, M.; Specht, I.O.; Heitmann, B.L. A systematic literature review of the relation between iron status/anemia in pregnancy and offspring neurodevelopment. Eur. J. Clin. Nutr. 2019, 73, 1561–1578. [Google Scholar] [CrossRef]
- Rioux, F.M.; Belanger-Plourde, J.; Leblanc, C.P.; Vigneau, F. Relationship between maternal DHA and iron status and infants’ cognitive performance. Can. J. Diet. Pract. Res. 2011, 72, 76. [Google Scholar]
- Larson, L.M.; Phiri, K.S.; Pasricha, S.R. Iron and cognitive development: What Is the evidence? Ann. Nutr. Metab. 2017, 71 (Suppl. 3), 25–38. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, C.; Polson, R.; van Woerden, H.C.; Wilson, P. The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring: A systematic review and meta-analysis. BMC Pediatr. 2018, 18, 150. [Google Scholar] [CrossRef]
- Verhoef, H.; Mwangi, M.N.; Cerami, C.; Prentice, A.M. Antenatal iron supplementation and birth weight in conditions of high exposure to infectious diseases. BMC Med. 2019, 17, 146. [Google Scholar] [CrossRef] [Green Version]
- Lukens, J.N. Neonatal haematological abnormalities associated with maternal disease. Clin. Haematol. 1978, 7, 155–173. [Google Scholar]
- Caramihai, E.; Karayalcin, G.; Aballi, A.J.; Lanzkowsky, P. Leukocyte count differences in healthy white and black children 1 to 5 years of age. J. Pediatr. 1975, 86, 252–254. [Google Scholar] [CrossRef]
- Lanzkowsky, P. Hematologic values in healthy infants and children in three racial groups in Cape Town. J. Pediatr. 1962, 61, 620–625. [Google Scholar] [CrossRef]
- Lanzkowsky, P. The influence of maternal iron-deficiency anaemia on the haemoglobin of the infant. Arch. Dis. Child. 1961, 36, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shott, R.J.; Andrews, B.F. Iron status of a medical high-risk population at delivery. Am. J. Dis. Child. 1972, 124, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, C.W.; Bridgeforth, E.B. Relationship between the hemogram of the infant and that of the mother during pregnancy. Pediatrics 1953, 12, 681–685. [Google Scholar] [PubMed]
- van Eijk, H.G.; Kroos, M.J.; Hoogendoorn, G.A.; Wallenburg, H.C. Serum ferritin and iron stores during pregnancy. Clin. Chim. Acta 1978, 83, 81–91. [Google Scholar] [CrossRef]
- Harthoorn-Lasthuizen, E.J.; Lindemans, J.; Langenhuijsen, M.M. Does iron-deficient erythropoiesis in pregnancy influence fetal iron supply? Acta Obstet. Gynecol. Scand. 2001, 80, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Hay, G.; Refsum, H.; Whitelaw, A.; Melbye, E.L.; Haug, E.; Borch-Iohnsen, B. Predictors of serum ferritin and serum soluble transferrin receptor in newborns and their associations with iron status during the first 2 y of life. Am. J. Clin. Nutr. 2007, 86, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Guillet, R.; Cooper, E.M.; Westerman, M.; Orlando, M.; Kent, T.; Pressman, E.; O’Brien, K.O. Prevalence of anemia and associations between neonatal iron status, hepcidin, and maternal iron status among neonates born to pregnant adolescents. Pediatr. Res. 2016, 79, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ru, Y.; Pressman, E.K.; Guillet, R.; Katzman, P.J.; Bacak, S.J.; O’Brien, K.O. Predictors of anemia and iron status at birth in neonates born to women carrying multiple fetuses. Pediatr. Res. 2018, 84, 199–204. [Google Scholar] [CrossRef]
- Huang, A.; Zhang, R.; Yang, Z. Quantitative (stereological) study of placental structures in women with pregnancy iron-deficiency anemia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 97, 59–64. [Google Scholar] [CrossRef]
- Marti, A.; Pena-Marti, G.; Munoz, S.; Lanas, F.; Comunian, G. Association between prematurity and maternal anemia in Venezuelan pregnant women during third trimester at labor. Arch. Latinoam. Nutr. 2001, 51, 44–48. [Google Scholar]
- Turgeon O’Brien, H.; Santure, M.; Maziade, J. The association of low and high ferritin levels and anemia with pregnancy utcome. Can. J. Diet. Pract. Res. 2000, 61, 121–127. [Google Scholar] [PubMed]
- Abraha, I.; Bonacini, M.I.; Montedori, A.; Di Renzo, G.C.; Angelozzi, P.; Micheli, M.; Germani, A.; Carloni, D.; Scaccetti, A.; Palmieri, G.; et al. Oral iron-based interventions for prevention of critical outcomes in pregnancy and postnatal care: An overview and update of systematic reviews. J. Evid. Based Med. 2019, 12, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Pena-Rosas, J.P.; De-Regil, L.M.; Dowswell, T.; Viteri, F.E. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2012, 12, Cd004736. [Google Scholar] [CrossRef] [PubMed]
- Yakoob, M.Y.; Bhutta, Z.A. Effect of routine iron supplementation with or without folic acid on anemia during pregnancy. BMC Public Health 2011, 11 (Suppl. 3), S21. [Google Scholar] [CrossRef] [Green Version]
- Mahomed, K. Iron supplementation in pregnancy. Cochrane Database Syst. Rev. 2000. [Google Scholar] [CrossRef]
- Siu, A.L. Screening for iron deficiency anemia and iron supplementation in pregnant women to improve maternal health and birth outcomes: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2015, 163, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Sekhar, D.L.; Kunselman, A.R.; Chuang, C.H.; Paul, I.M. Optimizing hemoglobin thresholds for detection of iron deficiency among reproductive-age women in the United States. Transl. Res. 2017, 180, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Milman, N. Iron prophylaxis in pregnancy—General or individual and in which dose? Ann. Hematol. 2006, 85, 821–828. [Google Scholar] [CrossRef]
- Pena-Rosas, J.P.; De-Regil, L.M.; Gomez Malave, H.; Flores-Urrutia, M.C.; Dowswell, T. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Moretti, D.; Goede, J.S.; Zeder, C.; Jiskra, M.; Chatzinakou, V.; Tjalsma, H.; Melse-Boonstra, A.; Brittenham, G.; Swinkels, D.W.; Zimmermann, M.B. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015, 126, 1981–1989. [Google Scholar] [CrossRef]
- Auerbach, M. Commentary: Iron deficiency of pregnancy—A new approach involving intravenous iron. Reprod. Health 2018, 15, 96. [Google Scholar] [CrossRef] [PubMed]
- Lewkowitz, A.K.; Gupta, A.; Simon, L.; Sabol, B.A.; Stoll, C.; Cooke, E.; Rampersad, R.A.; Tuuli, M.G. Intravenous compared with oral iron for the treatment of iron-deficiency anemia in pregnancy: A systematic review and meta-analysis. J. Perinatol. 2019, 39, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Sultan, P.; Bampoe, S.; Shah, R.; Guo, N.; Estes, J.; Stave, C.; Goodnough, L.T.; Halpern, S.; Butwick, A.J. Oral vs intravenous iron therapy for postpartum anemia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019, 221, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Park, D.I.; Ryu, S.H.; Oh, S.J.; Yoo, T.W.; Kim, H.J.; Cho, Y.K.; Sung, I.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I. Significance of endoscopy in asymptomatic premenopausal women with iron deficiency anemia. Dig. Dis. Sci. 2006, 51, 2372–2376. [Google Scholar] [CrossRef]
25th Percentile | 50th Percentile | 75th Percentile | 90th Percentile | |
---|---|---|---|---|
All women | 20.1 | 36.0 | 58.8 | 92.0 |
Non-Latina white women | 22.1 | 37.7 | 59.7 | 89.0 |
African American women | 18.4 | 35.9 | 68.5 | 117.3 |
Latina women | 15.0 | 24.7 | 50.5 | 62.0 |
Parameter | Iron-Deficient Erythropoiesis | IDA |
---|---|---|
Hb | Normal but may be decreasing | Decreased |
Hct | Normal but may be decreasing | Decreased |
MCV | Low-normal to decreased | Decreased |
MCHC | Low-normal to decreased | Decreased |
Serum iron concentration | Decreased | Decreased |
Serum transferrin concentration | Increased | Increased |
Serum TIBC | Increased | Increased |
Serum transferrin or TIBC saturation | <20% | <15% |
Serum ferritin concentration | Decreased | Decreased |
Serum soluble transferrin receptor concentrations (sTfR) | Increased | Increased |
Year of Publication | Source | Report Type | Ferritin Threshold |
---|---|---|---|
2008 | USA | Society guideline [53] | 10 µg/L |
2019 | UK | Society guideline [54,55] | 30 µg/L |
2016 | France | Registry study [35,56] | 15 µg/L |
2017 | Europe (15 countries) | Literature survey [35] | 30 µg/L |
2019 | Norway | Population study [57] | 15 µg/L |
Difference Observed (Number of Studies) | No Difference Observed (Number of Studies) | |
---|---|---|
Mother | ↓ Frequency of anemia at term (11) | Frequency of maternal infection (1) |
↓ Frequency of IDA at term (6) | Frequency of maternal mortality (2) | |
↓ Frequency of ID at term (7) | Frequency of iron side effects (11) | |
Newborn | ↓Frequency of low birthweight (11) | Neonatal death (4) |
↓ Frequency of preterm delivery (13) | Placental malaria (2) | |
↑ Birthweight (15) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Means, R.T. Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients 2020, 12, 447. https://doi.org/10.3390/nu12020447
Means RT. Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients. 2020; 12(2):447. https://doi.org/10.3390/nu12020447
Chicago/Turabian StyleMeans, Robert T. 2020. "Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters" Nutrients 12, no. 2: 447. https://doi.org/10.3390/nu12020447
APA StyleMeans, R. T. (2020). Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients, 12(2), 447. https://doi.org/10.3390/nu12020447