Dietary Habits and Dietary Antioxidant Intake Are Related to Socioeconomic Status in Polish Adults: A Nationwide Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Nutrition Assessment
2.4. Socioeconomic Status Scores
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organisation (WHO). Noncommunicable Diseases and Their Risk Factors. Available online: https://www.who.int/ncds/en/ (accessed on 10 September 2019).
- Krusińska, B.; Hawrysz, I.; Wądołowska, L.; Słowińska, M.A.; Biernacki, M.; Czerwińska, A.; Golota, J.J. Associations of Mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: A case-control study. Nutrients 2018, 10, 470. [Google Scholar] [CrossRef] [Green Version]
- Potentas, E.; Witkowska, A.M.; Zujko, M.E. Mediterranean diet for breast cancer prevention and treatment in postmenopausal women. Prz. Menopauzalny 2015, 14, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Zujko, M.E.; Waśkiewicz, A.; Witkowska, A.M.; Szcześniewska, D.; Zdrojewski, T.; Kozakiewicz, K.; Drygas, W. Dietary total antioxidant capacity and dietary polyphenol intake and prevalence of metabolic syndrome in Polish adults: A nationwide study. Oxid. Med. Cell. Longev. 2018, 2018, 7487816. [Google Scholar] [CrossRef]
- Adriouch, S.; Lampuré, A.; Nechba, A.; Baudry, J.; Assmann, K.; Kesse-Guyot, E.; Hercberg, S.; Scalbert, A.; Touvier, M.; Fezeu, L.K. Prospective association between total and specific dietary polyphenol intakes and cardiovascular disease risk in the Nutrinet-Santé French cohort. Nutrients 2018, 10, 1587. [Google Scholar] [CrossRef] [Green Version]
- Zujko, M.E.; Cyuńczyk, M.; Zujko, K. Apple polyphenols in the prevention of cardiovascular disease. Postepy Hig. Med. Dosw. 2018, 72, 740–750. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M.; Waśkiewicz, A.; Piotrowski, W.; Terlikowska, K.M. Dietary antioxidant capacity of the patients with cardiovascular disease in a cross-sectional study. Nutr. J. 2015, 14, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zujko, M.E.; Witkowska, A.M.; Waśkiewicz, A.; Mirończuk-Chodakowska, I. Dietary antioxidant and flavonoid intakes are reduced in the elderly. Oxid. Med. Cell. Longev. 2015, 2015, 843173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, C.; Fukushima, Y.; Kishimoto, Y.; Suzuki-Sugihara, N.; Saita, E.; Takahashi, Y.; Kondo, K. Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients 2015, 7, 10269–10281. [Google Scholar] [CrossRef] [Green Version]
- Claassen, M.A.; Klein, O.; Bratanova, B.; Claes, N.; Corneille, O. A systematic review of psychosocial explanations for the relationship between socioeconomic status and body mass index. Appetite 2019, 132, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; INHES Study Investigators. Socioeconomic status and impact of the economic crisis on dietary habits in Italy: Results from the INHES study. J. Public Health 2018, 40, 703–712. [Google Scholar] [CrossRef]
- Mertens, E.; Kuijsten, A.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Favret, S.; Havard, S.; Trolle, E.; et al. Geographic and socioeconomic diversity of food and nutrient intakes: A comparison of four European countries. Eur. J. Nutr. 2019, 58, 1475–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozela, M.; Polak, M.; Doryńska, A.; Borowiec, A.; Bielecki, W.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.; Drygas, W.; Pająk, A. Socioeconomic and sex differences in health care utilisation, counselling on cardiovascular disease (CVD) risk factors, and CVD risk factors control in the Polish population. The WOBASZ II Study. Kardiol. Pol. 2018, 76, 1516–1524. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.; Frazão, E. Food costs, diet quality and energy balance in the United States. Physiol. Behav. 2014, 134, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Drygas, W.; Niklas, A.A.; Piwońska, A.; Piotrowski, W.; Flotyńska, A.; Kwaśniewska, M.; Nadrowski, P.; Puch-Walczak, A.; Szafraniec, K.; Bielecki, W.; et al. Multi-centre National Population Health Examination Survey (WOBASZ II study): Assumptions, methods, and implementation. Kardiol. Pol. 2016, 74, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Waśkiewicz, A.; Szcześniewska, D.; Szostak-Węgierek, D.; Kwaśniewska, M.; Pająk, A.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.; Zujko, M.E.; et al. Are dietary habits of the Polish population consistent with the recommendations for prevention of cardiovascular disease? WOBASZ II project. Kardiol. Pol. 2016, 74, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome. A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute Press: Warsaw, Poland, 2000. [Google Scholar]
- Kunachowicz, H.; Nadolna, I.; Przygoda, B.; Iwanow, K. Food Composition Tables; PZWL: Warsaw, Poland, 2005. [Google Scholar]
- Jankovic, N.; Geelen, A.; Streppel, M.T.; de Groot, L.C.; Orfanos, P.; van den Hooven, E.H.; Pikhart, H.; Boffetta, P.; Trichopoulou, A.; Bobak, M.; et al. Adherence to a healthy diet according to the World Health Organization guidelines and all-cause mortality in elderly adults from Europe and the United States. Am. J. Epidemiol. 2014, 180, 978–988. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of selected food. Int. J. Food Prop. 2011, 14, 300–308. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of beverages, chocolates, nuts, and seeds. Int. J. Food Prop. 2014, 17, 86–92. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, K.; Podolecka, E.; Kwaśniewska, M.; Drygas, W.; Pająk, A.; Tendera, M. Association between socioeconomic status and cardiovascular risk. Kardiol. Pol. 2016, 74, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.E.; Chrysohoou, C.A.; Skoumas, J.; Toutouza, M.; Belegrinos, D.; Toutouzas, P.K.; Stefanadis, C. The association between educational status and risk factors related to cardiovascular disease in healthy individuals: The ATTICA study. Ann. Epidemiol. 2004, 14, 188–194. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.Y.; Kim, C.W.; Suh, Y.J.; Hong, S.; Ahn, S.H.; Seo, D.H.; Nam, M.S.; Chon, S.; Woo, J.T.; et al. Impact of socioeconomic status on health behaviors, metabolic control, and chronic complications in type 2 diabetes mellitus. Diabetes Metab. J. 2018, 42, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Collier, A.; Ghosh, S.; Hair, M.; Waugh, N. Impact of socioeconomic status and gender on glycaemic control, cardiovascular risk factors and diabetes complications in type 1 and 2 diabetes: A population based analysis from a Scottish region. Diabetes Metab. 2015, 41, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Smyth, A.; Rangarajan, S.; Ramasundarahettige, C.; Bangdiwala, S.I.; AlHabib, K.F.; Avezum, A.; Bengtsson Boström, K.; Chifamba, J.; Gulec, S.; et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: The Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob. Health 2019, 7, e748–e760. [Google Scholar] [CrossRef] [Green Version]
- Bruthans, J.; Mayer, O., Jr.; De Bacquer, D.; De Smedt, D.; Reiner, Z.; Kotseva, K.; Cífková, R.; EUROASPIRE IV investigators. Educational level and risk profile and risk control in patients with coronary heart disease. Eur. J. Prev. Cardiol. 2016, 23, 881–890. [Google Scholar] [CrossRef]
- Valencia, M.L.C.; Tran, B.T.; Lim, M.K.; Choi, K.S.; Oh, J.K. Association between socioeconomic status and early initiation of smoking, alcohol drinking, and sexual behavior among Korean adolescents. Asia Pac. J. Public Health 2019, 31, 443–453. [Google Scholar] [CrossRef]
- Puciato, D.; Rozpara, M.; Mynarski, W.; Oleśniewicz, P.; Markiewicz-Patkowska, J.; Dębska, M. Physical activity of working-age people in view of their income status. Biomed. Res. Int. 2018, 2018, 8298527. [Google Scholar] [CrossRef] [Green Version]
- Puth, M.T.; Weckbecker, K.; Schmid, M.; Münster, E. Prevalence of multimorbidity in Germany: Impact of age and educational level in a cross-sectional study on 19,294 adults. BMC Public Health 2017, 17, 826. [Google Scholar] [CrossRef] [Green Version]
- Newton, S.; Braithwaite, D.; Akinyemiju, T.F. Socio-economic status over the life course and obesity: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0177151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, K.M.; Olstad, D.L.; Leech, R.M.; Ball, K.; Meertens, B.; Potter, J.; Cleanthous, X.; Reynolds, R.; McNaughton, S.A. Socioeconomic inequities in diet quality and nutrient intakes among Australian adults: Findings from a nationally representative cross-sectional study. Nutrients 2017, 9, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamułka, J.; Głąbska, D.; Guzek, D.; Białkowska, A.; Sulich, A. Intake of saturated fatty acids affects atherogenic blood properties in young, caucasian, overweight women even without influencing blood cholesterol. Int. J. Environ. Res. Public Health 2018, 15, 2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, M.A.; Białecka, A.; Pietruszka, B.; Hamułka, J. Vegetables and fruit, as a source of bioactive substances, and impact on memory and cognitive function of elderly. Postepy Hig. Med. Dosw. 2017, 71, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Sulich, A.; Hamułka, J.; Nogal, D. Dietary sources of lutein in adults suffering eye disease (AMD/cataracts). Rocz. Panstw. Zakl. Hig. 2015, 66, 55–60. [Google Scholar]
- Del Bo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019, 11, 1355. [Google Scholar]
- Doo, M.; Kim, Y. The consumption of dietary antioxidant vitamins modifies the risk of obesity among Korean men with short sleep duration. Nutrients 2017, 9, 780. [Google Scholar]
- Zhao, L.G.; Shu, X.O.; Li, H.L.; Zhang, W.; Gao, J.; Sun, J.W.; Zheng, W.; Xiang, Y.B. Dietary antioxidant vitamins intake and mortality: A report from two cohort studies of Chinese adults in Shanghai. J. Epidemiol. 2017, 27, 89–97. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Zujko, M.E.; Szcześniewska, D.; Tykarski, A.; Kwaśniewska, M.; Drygas, W.; Witkowska, A.M. Polyphenols and dietary antioxidant potential, and their relationship with arterial hypertension: A cross-sectional study of the adult population in Poland (WOBASZ II). Adv. Clin. Exp. Med. 2019, 28, 797–806. [Google Scholar] [CrossRef]
- Cano-Ibáñez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet quality and nutrient density in subjects with metabolic syndrome: Influence of socioeconomic status and lifestyle factors. A cross-sectional assessment in the PREDIMED-Plus study. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Orr, C.J.; Keyserling, T.C.; Ammerman, A.S.; Berkowitz, S.A. Diet quality trends among adults with diabetes by socioeconomic status in the U.S.: 1999–2014. BMC Endocr. Disord. 2019, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Szcześniewska, D.; Śmigielski, W.; Stepaniak, U.; Pająk, A.; Drygas, W. The consumption of nuts is associated with better dietary and lifestyle patterns in Polish adults: Results of WOBASZ and WOBASZ II surveys. Nutrients 2019, 11, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.H.T.; Sui, Z.; Rangan, A.; Louie, J.C. Discrepancy in socioeconomic status does not fully explain the variation in diet quality between consumers of different coffee types. Eur. J. Nutr. 2018, 57, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
Men (N = 2142) | Women (N = 2632) | p | |
---|---|---|---|
Education level | |||
1. Incomplete elementary or uneducated | 8 (0.37%) | 28 (1.06%) | <0.0001 |
2. Elementary | 313 (14.61%) | 485 (18.43%) | |
3. Vocational based on elementary school | 650 (30.35%) | 460 (17.48%) | |
4. Gymnasium | 21 (0.98%) | 9 (0.34%) | |
5. Vocational based on middle school | 29 (1.35%) | 29 (1.10%) | |
6. Secondary | 670 (31.28%) | 776 (29.48%) | |
7. Post-secondary | 57 (2.66%) | 201 (7.64%) | |
8. Bachelor’s degree | 33 (1.54%) | 81 (3.08%) | |
9. University | 361 (16.85%) | 563 (21.39%) | |
Monthly income (net) per capita in a family | |||
1. <500 PLN (<125 €) | 250 (11.67%) | 340 (12.92%) | <0.0001 |
2. 501–1000 PLN (126–250 €) | 658 (30.72%) | 932 (35.41%) | |
3. 1001–1500 PLN (250–375 €) | 515 (24.04%) | 713 (27.09%) | |
4. 1501–2000 PLN (376–500 €) | 344 (16.06%) | 343 (13.03%) | |
5. 2001–2500 PLN (501–625 €) | 161 (7.52%) | 155 (5.89%) | |
6. 2501–3000 PLN (626–750 €) | 92 (4.30%) | 77 (2.93%) | |
7. >3000 PLN (>750 €) | 122 (5.70%) | 72 (2.74%) |
Men N = 2142 | Women N = 2632 | |||||||
---|---|---|---|---|---|---|---|---|
SES | p | SES | p | |||||
Low (1–8) N = 740 | Medium (9–18) N = 745 | High (19–63) N = 657 | Low (1–8) N = 913 | Medium (9–18) N = 918 | High (19–63) N = 801 | |||
Age | 54.6 ± 16.0 | 49.1 ± 15.6 | 44.3 ± 15.6 | <0.0001 | 58.3 ± 16.4 | 47.9 ± 15.5 | 45.9 ± 14.4 | <0.0001 |
Leisure-time physical activity low level | 407 (54.7%) | 324 (43.7%) | 213 (33.0%) | <0.0001 | 487 (51.2%) | 349 (39.0 %) | 278 (36.4%) | <0.0001 |
Smoking status current smokers | 260 (37.5%) | 225 (30.0%) | 135 (18.2 %) | <0.0001 | 169 (19.9%) | 197 (20.9%) | 133 (15.7%) | 0.0155 |
BMI (kg/m2) BMI ≥ 25 | 460 (75.7) | 520 (72.9) | 447 (61.3) | <0.0001 | 604 (61.9) | 525 (63.4) | 373 (54.8) | 0.0004 |
Central obesity (≥102 cm—M; ≥88 cm—W) | 250 (31.2%) | 266 (36.7%) | 190 (33.1%) | 0.0724 | 558 (54.4%) | 445 (52.7%) | 283 (42.0%) | <0.0001 |
Diseases | ||||||||
Diabetes | 119 (13.8%) | 88 (12.4%) | 45 (10.3%) | 0.1468 | 152 (13.6%) | 72 (9.8%) | 48 (8.9%) | 0.0050 |
Hypertension | 398 (48.2%) | 376 (51.4%) | 288 (51.0%) | 0.3599 | 521 (45.7%) | 354 (43.8%) | 239 (38.3%) | 0.0012 |
Cardiovascular disease | 178 (18.9%) | 158 (21.6%) | 103 (21.1%) | 0.3310 | 266 (22.4%) | 163 (20.5%) | 139 (21.9%) | 0.5524 |
Metabolic syndrome | 303 (36.0%) | 326 (44.0%) | 233 (39.6%) | 0.0151 | 423 (38.7%) | 281 (33.7%) | 189 (28.8%) | <0.0001 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
SES | p | SES | p | |||||
Low (1–8) | Medium (9–18) | High (19–63) | Low (1–8) | Medium (9–18) | High (19–63) | |||
Healthy diet index (points), mean, CI | 3.23 3.14–3.33 | 3.25 3.15–3.34 | 3.18 3.08–3.29 | 0.6662 | 3.26 3.18–3.34 | 3.26 3.18–3.34 | 3.29 3.19–3.36 | 0.9337 |
Use of dietary supplements (%) | 6.52 4.28–8.80 | 10.30 8.10–10.56 | 16.86 14.44–19.27 | <0.0001 | 12.76 10.17–15.36 | 18.41 15.91–20.92 | 24.65 21.94–27.36 | <0.0001 |
Use of special diet (%) | ||||||||
Weight-loss diet | 0.14 | 0.27 | 2.28 | <0.0001 | 0.33 | 1.31 | 1.87 | <0.0001 |
Low-fat, low-cholesterol, or diabetic diet | 8.38 | 9.13 | 4.57 | 12.81 | 6.97 | 5.24 | ||
Other diet | 1.35 | 0.81 | 2.13 | 0.44 | 1.96 | 3.12 | ||
Energy (kcal/day), mean, CI | 2432 2365–2498 | 2319 2254–2385 | 2186 2116–2257 | <0.0001 | 1731 1688–1774 | 1664 1622–1705 | 1640 1595–1684 | 0.0129 |
Cereal products (g/day), mean, CI | 202.6 195.9–209.4 | 190.4 183.7–197.0 | 164.7 157.5–171.9 | <0.0001 | 135.8 131.4–140.2 | 127.1 122.9–131.4 | 120.1 115.5–124.7 | <0.0001 |
Wholemeal bread (g/day), mean, CI | 18.8 14.0–23.7 | 32.9 28.1–37.7 | 36.2 31.1–41.4 | <0.0001 | 20.9 17.5–24.2 | 28.5 25.2–31.8 | 32.9 29.3–36.4 | <0.0001 |
Vegetables (g/day), mean, CI | 244.9 230.9–258.9 | 266.5 252.8–280.3 | 274.4 259.5–289.3 | 0.0142 | 211.7 200.9–222.6 | 235.1 224.7–245.6 | 244.4 233.1–255.7 | 0.0002 |
Legumes (g/day), mean, CI | 5.21 3.92–6.51 | 3.66 2.39–4.93 | 2.81 1.44–4.18 | 0.0420 | 3.18 2.25–4.09 | 2.24 1.35–3.12 | 3.11 2.16–4.07 | 0.2710 |
Fruits (g/day), mean, CI | 180.6 162.9–198.4 | 196.4 179.1–213.8 | 196.3 177.5–215.1 | 0.3768 | 196.7 181.1–212.4 | 222.3 207.2–237.3 | 235.6 219.3–251.9 | 0.0036 |
Red meat (g/day), mean, CI | 184.3 172.4–196.2 | 169.9 158.3–181.6 | 129.4 116.8–142.1 | <0.0001 | 79.6 73.5–85.8 | 77.5 71.6–83.5 | 77.0 70.6–83.5 | 0.8332 |
Poultry (g/day), mean, CI | 56.4 47.5–65.2 | 65.1 56.4–73.7 | 68.6 59.2–78.0 | 0.1638 | 56.2 50.1–62.2 | 51.3 45.5–57.1 | 46.9 40.6–53.2 | 0.1268 |
Fish (g/day), mean, CI | 18.3 13.1–23.5 | 22.7 17.6–27.7 | 25.9 20.4–31.4 | 0.1485 | 12.0 8.4–15.5 | 12.4 9.0–15.9 | 18.8 15.1–22.5 | 0.0158 |
Dairy products (g/day), mean, CI | 367.0 326.2–407.9 | 416.4 376.4–456.5 | 541.6 498.2–584.9 | <0.0001 | 383.9 354.0–413.9 | 441.2 412.3–470.2 | 474.6 443.3–505.8 | 0.0003 |
Animal fats (butter, lard) (g/day), mean, CI | 24.7 22.5–26.9 | 26.3 24.2–28.5 | 26.5 24.1–28.8 | 0.4758 | 19.5 18.1–20.8 | 20.0 18.7–21.3 | 19.2 17.7–20.6 | 0.7030 |
Plant fats (oil, margarine) (g/day), mean, CI | 28.4 26.6–30.3 | 24.5 22.7–26.4 | 21.9 20.0–23.9 | <0.0001 | 19.1 18.0–20.3 | 16.0 14.9–17.1 | 15.6 14.5–16.9 | <0.0001 |
Tea infusion (mL/day), mean, CI | 365.0 344.7–385.2 | 337.2 317.3–357.1 | 313.2 291.8–334.8 | 0.0033 | 339.5 322.5–356.4 | 309.6 293.2–326.0 | 312.5 294.9–330.2 | 0.0313 |
Coffee infusion (mL/day), mean, CI | 169.7 155.3–184.1 | 163.6 149.5–177.7 | 165.6 150.4–180.9 | 0.8348 | 179.7 167.3–192.1 | 193.0 181.0–205.0 | 210.1 197.1–223.0 | 0.0050 |
Nuts and seeds (g/day), mean, CI | 1.53 0.48–2.56 | 2.26 1.24–3.27 | 3.14 2.04–4.24 | 0.1227 | 1.01 0.11–1.91 | 1.55 0.68–2.41 | 3.30 2.37–4.23 | 0.0018 |
Sugar-sweetened beverages (mL/day), mean, CI | 38.0 23.7–52.3 | 41.7 827.8–55.8 | 75.5 60.3–90.6 | 0.0007 | 20.9 14.2–27.5 | 16.6 10.2–23.0 | 11.9 5.0–18.8 | 0.1992 |
Fruit and vegetable juices (mL/day), mean, CI | 32.8 22.5–43.2 | 40.3 30.2–50.4 | 55.7 44.7–66.6 | 0.0122 | 34.7 26.8–42.5 | 44.5 36.9–52.1 | 44.5 36.4–52.8 | 0.1460 |
Alcohol (pure ethanol) (mL/day), mean, CI | 4.58 3.32–5.85 | 4.42 3.17–5.66 | 4.57 3.22–5.91 | 0.9801 | 0.57 0.25–0.90 | 0.61 0.29–0.92 | 0.74 0.40–1.08 | 0.7618 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
SES | p | SES | p | |||||
Low (1–8) | Medium (9–18) | High (19–63) | Low (1–8) | Medium (9–18) | High (19–63) | |||
Dietary antioxidant capacity (mmol/day), mean, CI | 12.46 11.90–13.03 | 12.59 12.03–13.14 | 12.37 11.77–12.97 | 0.8665 | 11.59 11.09–12.09 | 12.34 11.85–12.82 | 13.15 12.63–13.67 | 0.0002 |
Dietary antioxidant capacity/1000 kcal (mmol/day), mean, CI | 5.44 5.19–5.69 | 5.77 5.53–6.02 | 6.15 5.89–6.42 | 0.0010 | 7.26 6.92–7.59 | 7.95 7.63–8.28 | 8.49 8.14–8.84 | <0.0001 |
Dietary polyphenol intake (mg), mean, CI | 2120.9 2051–2190 | 2090.5 2022–2159 | 2038.6 1964–2113 | 0.2931 | 1923.7 1866–1981 | 1985.7 1931–2041 | 2069.3 2010–2129 | 0.0031 |
Dietary polyphenol intake/1000 kcal (mg), mean, CI | 917.6 886.7–948.5 | 958.9 886.7–989.2 | 1005.5 972.7–1038.3 | 0.0009 | 1188.4 1150–1227 | 1271.3 1234–1309 | 1335.4 1295–1375 | <0.0001 |
Vitamin C with supplementation (mg), mean, CI | 77.8 71.8–83.7 | 85.6 79.8–91.5 | 100.9 94.6–107.2 | <0.0001 | 78.2 72.0–84.4 | 97.2 91.3–103.2 | 109.5 103.1–116.0 | <0.0001 |
Vitamin C with supplementation/1000 kcal (mg), mean, CI | 34.7 31.7–37.8 | 40.0 37.0–43.0 | 50.1 46.8–53.3 | <0.0001 | 47.8 43.4–52.2 | 63.1 58.8–67.3 | 72.9 68.4–77.6 | <0.0001 |
Vitamin E with supplementation (mg), mean, CI | 12.5 11.9–13.1 | 12.8 12.2–13.4 | 12.6 12.0–13.3 | 0.8227 | 10.3 9.3–11.3 | 10.5 9.5–11.4 | 12.2 11.1–13.2 | 0.0211 |
Vitamin E with supplementation/1000 kcal (mg), mean, CI | 5.12 4.87–5.38 | 5.68 5.43–5.93 | 5.96 5.69–6.23 | <0.0001 | 6.13 5.43–6.82 | 6.59 5.92–7.26 | 7.64 6.92–8.37 | 0.0121 |
Vitamin A with supplementation (µg), mean, CI | 1286.2 1126–1446 | 1124.0 968–1281 | 1199.2 1030–1369 | 0.3651 | 938.6 822–1055 | 1078.7 966–1191 | 1125.5 1004–1247 | 0.0854 |
Vitamin A with supplementation/1000 kcal (µg), mean, CI | 521.0 456.4–585.6 | 513.4 450.1–576.6 | 593.0 524.5–661.6 | 0.1956 | 570.1 492.4–647.8 | 695.0 620.0–770.2 | 752.0 670.8–833.1 | 0.0064 |
Zinc with supplementation (mg), mean, CI | 11.86 11.49–12.03 | 11.73 11.36–12.09 | 11.12 10.73–11.52 | 0.0209 | 8.28 8.00–8.57 | 8.50 8.22–8.77 | 8.98 8.68–9.27 | 0.0043 |
Zinc with supplementation/1000 kcal (mg), mean, CI | 4.97 4.86–5.08 | 5.19 5.08–5.30 | 5.25 5.12–5.37 | 0.0026 | 4.95 4.79–5.12 | 5.32 5.17–5.48 | 5.68 5.52–5.86 | <0.0001 |
Iron with supplementation (mg), mean, CI | 13.14 12.68–13.59 | 12.47 12.02–12.91 | 12.10 11.62–12.58 | 0.0087 | 10.12 9.64–10.60 | 9.94 9.48–10.41 | 10.31 9.81–10.81 | 0.5722 |
Iron with supplementation/1000 kcal (mg), mean, CI | 5.48 5.32–5.63 | 5.56 5.40–5.71 | 5.76 5.59–5.93 | 0.0483 | 6.00 5.72–6.28 | 6.20 5.93–6.47 | 6.58 6.28–6.87 | 0.0213 |
Copper with supplementation (mg), mean, CI | 1.28 1.24–1.32 | 1.25 1.21–1.29 | 1.24 1.20–1.28 | 0.4049 | 1.01 0.98–1.05 | 1.05 1.02–1.09 | 1.13 1.09–1.17 | <0.0001 |
Copper with supplementation/1000 kcal (mg), mean, CI | 0.54 0.53–0.55 | 0.56 0.55–0.57 | 0.60 0.58–0.61 | <0.0001 | 0.61 0.59–0.63 | 0.66 0.65–0.68 | 0.71 0.69–0.73 | <0.0001 |
Manganese with supplementation (mg), mean, CI | 4.72 4.55–4.89 | 4.78 4.61–4.95 | 4.60 4.42–4.78 | 0.3548 | 3.89 3.76–4.02 | 3.98 3.85–411 | 4.21 4.07–4.35 | 0.0035 |
Manganese with supplementation/1000 kcal (mg), mean, CI | 2.07 1.99–2.15 | 2.21 2.13–2.28 | 2.27 2.19–2.35 | 0.0023 | 2.43 2.33–2.52 | 2.58 2.49–2.66 | 2.74 2.65–2.84 | <0.0001 |
Main Food Sources of FRAP [mmol (%)] | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
SES | p | SES | p | |||||
Low (1–8) | Medium (9–18) | High (19–63) | Low (1–8) | Medium (9–18) | High (19–63) | |||
Coffee | 3.71 (30.06%) | 3.64 (28.87%) | 3.74 (29.92%) | 0.0533 | 3.82 (33.32%) | 4.35 (35.14%) | 4.78 (36.10%) | 0.0002 |
Tea | 2.90 (23.53%) | 2.64 (20.93%) | 2.41 (19.25%) | <0.0001 | 2.73 (23.79%) | 2.40 (19.34%) | 2.40 (18.14%) | <0.0001 |
Vegetables | 2.20 (17.83%) | 2.28 (18.13%) | 2.17 (17.33%) | 0.4891 | 1.83 (15.93%) | 1.84 (14.86%) | 1.68 (12.66%) | 0.0253 |
Fruits | 1.66 (13.44%) | 1.74 (13.78%) | 1.69 (13.51%) | 0.5307 | 1.85 (16.10%) | 2.19 (17.67%) | 2.17 (16.36%) | 0.3002 |
Cereals | 0.60 (4.83%) | 0.61 (4.83%) | 0.57 (4.52%) | 0.0195 | 0.42 (3.65%) | 0.42 (3.37%) | 0.42 (3.14%) | 0.6230 |
Nuts and seeds | 0.36 (2.94%) | 0.59 (4.65%) | 0.59 (4.70%) | 0.0237 | 0.16 (1.38%) | 0.36 (2.89%) | 0.80 (6.02%) | 0.0001 |
Chocolate and cocoa | 0.22 (1.74%) | 0.32 (2.52%) | 0.51 (4.07%) | 0.0003 | 0.19 (1.70%) | 0.31 (2.53%) | 0.41 (3.12%) | 0.0004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zujko, M.E.; Waśkiewicz, A.; Drygas, W.; Cicha-Mikołajczyk, A.; Zujko, K.; Szcześniewska, D.; Kozakiewicz, K.; Witkowska, A.M. Dietary Habits and Dietary Antioxidant Intake Are Related to Socioeconomic Status in Polish Adults: A Nationwide Study. Nutrients 2020, 12, 518. https://doi.org/10.3390/nu12020518
Zujko ME, Waśkiewicz A, Drygas W, Cicha-Mikołajczyk A, Zujko K, Szcześniewska D, Kozakiewicz K, Witkowska AM. Dietary Habits and Dietary Antioxidant Intake Are Related to Socioeconomic Status in Polish Adults: A Nationwide Study. Nutrients. 2020; 12(2):518. https://doi.org/10.3390/nu12020518
Chicago/Turabian StyleZujko, Małgorzata Elżbieta, Anna Waśkiewicz, Wojciech Drygas, Alicja Cicha-Mikołajczyk, Kinga Zujko, Danuta Szcześniewska, Krystyna Kozakiewicz, and Anna Maria Witkowska. 2020. "Dietary Habits and Dietary Antioxidant Intake Are Related to Socioeconomic Status in Polish Adults: A Nationwide Study" Nutrients 12, no. 2: 518. https://doi.org/10.3390/nu12020518
APA StyleZujko, M. E., Waśkiewicz, A., Drygas, W., Cicha-Mikołajczyk, A., Zujko, K., Szcześniewska, D., Kozakiewicz, K., & Witkowska, A. M. (2020). Dietary Habits and Dietary Antioxidant Intake Are Related to Socioeconomic Status in Polish Adults: A Nationwide Study. Nutrients, 12(2), 518. https://doi.org/10.3390/nu12020518