Hemoglobin A1c Levels Modify Associations between Dietary Acid Load and Breast Cancer Recurrence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dietary Assessment
2.3. Assessment of Study Outcome
2.4. Measurement of HbA1c
2.5. Other Assessments
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics by Quartiles of PRAL Score in the Entire Cohort
3.2. Baseline Characteristics by Quartiles of PRAL Score in Different HbA1c Strata
3.3. Dietary Acid Load and Risk of Breast Cancer Recurrence
3.4. Stratification by Hemoglobin HbA1c Levels
4. Discussion
5. Conclusions.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Estimates for PRAL | Estimates for each food | |||||||||||
Independent | Independent | |||||||||||
variable | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p for trend | variable | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p for trend | |
Ref | HR (95%CI) | HR (95%CI) | HR (95%CI) | Ref | HR (95%CI) | HR (95%CI) | HR (95%CI) | |||||
Base model * | PRAL | Ref | 1.38 (0.85–2.17) | 1.86 (1.19–2.93) | 2.15 (1.34–3.48) | 0.0005 | Fresh red meat | Ref | 0.88 (0.51–1.54) | 1.14 (0.66–1.96) | 1.47 (0.87–2.47) | 0.16 |
Processed red meat | Ref | 1.38 (0.75–2.54) | 1.75 (0.98–3.13) | 1.52 (0.84–2.75) | 0.37 | |||||||
Cruciferous vegetables | Ref | 1.09 (0.71–1.69) | 1.01 (0.63–1.61) | 0.82 (0.47–1.36) | 0.02 | |||||||
Allium vegetables | Ref | 1.51 (0.95–2.38) | 1.93 (1.23–3.03) | 0.78 (0.45–1.38) | 0.34 | |||||||
Other vegetables # | Ref | 0.84 (0.55–1.26) | 0.63 (0.40–0.98) | 0.82 (0.50–1.33) | 0.27 | |||||||
Legumes | Ref | 1.04 (0.62–1.75) | 0.69 (0.49–1.01) | 0.64 (0.43–0.96) | 0.01 | |||||||
Soy legumes * | Ref | 1.01 (0.65–1.55) | 1.375(0.93–1.95) | NA | 0.21 | |||||||
Mutually adjusted model ^ | PRAL | Ref | 1.41 (0.86–2.30) | 1.83 (1.11–3.03) | 1.96 (1.14–3.34) | 0.0006 | Fresh red meat | Ref | 0.87 (0.50–1.51) | 1.09 (0.64–1.88) | 1.38 (0.82–2.32) | 0.17 |
Processed red meat | Ref | 1.33 (0.72–2.45) | 1.67 (0.94–2.99) | 1.45 (0.80–2.63) | 0.36 | |||||||
Cruciferous vegetables | Ref | 1.12 (0.72–1.72) | 1.02 (0.64–1.62) | 0.82 (0.48–1.40) | 0.02 | |||||||
Allium vegetables | Ref | 1.44 (0.91–2.28) | 1.90 (1.21–2.98) | 0.77 (0.44–1.35) | 0.27 | |||||||
Other vegetables | Ref | 0.88 (0.58–1.33) | 0.68 (0.43–1.07) | 0.98 (0.59–1.62) | 0.87 | |||||||
Legumes | Ref | 1.09 (0.65–1.82) | 0.71 (0.49–1.02) | 0.66 (0.44–0.99) | 0.02 | |||||||
Soy legumes | Ref | 0.99 (0.64–1.53) | 1.37 (0.95–1.98) | NA | 0.16 |
References
- Cheng, L.; Swartz, M.D.; Zhao, H.; Kapadia, A.S.; Lai, D.; Rowan, P.J.; Buchholz, T.A.; Giordano, S.H. Hazard of recurrence among women after primary breast cancer treatment—A 10-year follow-up using data from SEER-Medicare. Cancer Epidemiol. Biomark. Prev. 2012, 21, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Jochems, S.H.J.; Van Osch, F.H.M.; Bryan, R.T.; Wesselius, A.; van Schooten, F.J.; Cheng, K.K.; Zeegers, M.P. Impact of dietary patterns and the main food groups on mortality and recurrence in cancer survivors: A systematic review of current epidemiological literature. BMJ Open 2018, 8, e014530. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.J.; Darwis, N.D.M.; Mackay, D.F.; Celis-Morales, C.A.; Lyall, D.M.; Sattar, N.; Gill, J.M.R.; Pell, J.P. Red and processed meat consumption and breast cancer: UK Biobank cohort study and meta-analysis. Eur. J. Cancer 2018, 90, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Chan, D.S.; Vieira, A.R.; Rosenblatt, D.A.; Vieira, R.; Greenwood, D.C.; Norat, T. Fruits, vegetables and breast cancer risk: A systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012, 134, 479–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes-Soares, H.; Raveh-Sadka, T.; Azulay, S.; Ben-Shlomo, Y.; Cohen, Y.; Ofek, T.; Stevens, J.; Bachrach, D.; Kashyap, P.; Segal, L.; et al. Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am. J. Clin. Nutr. 2019, 110, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Dorajoo, R.; Sun, Y.; Han, Y.; Wang, L.; Khor, C.C.; Sim, X.; Tai, E.S.; Liu, J.; Yuan, J.M.; et al. Gene-diet interaction effects on BMI levels in the Singapore Chinese population. Nutr. J. 2018, 17, 31. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Follis, J.L.; Ngwa, J.S.; Smith, C.E.; Ahmad, S.; Tanaka, T.; Wojczynski, M.K.; Voortman, T.; Lemaitre, R.N.; Kristiansson, K.; et al. Gene x dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 2015, 24, 4728–4738. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Sonoda, S.; Liu, H. Unprocessed red meat intakes are associated with increased inflammation, triglycerides and HDL cholesterol in past smokers. Nutr. Diet. 2019. [Google Scholar] [CrossRef]
- Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Justus, C.R.; Dong, L.; Yang, L.V. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front. Physiol. 2013, 4, 354. [Google Scholar] [CrossRef] [Green Version]
- Rofstad, E.K.; Mathiesen, B.; Kindem, K.; Galappathi, K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006, 66, 6699–6707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Tang, Y.; Peng, X.; Cai, X.; Wa, Q.; Ren, D.; Li, Q.; Luo, J.; Li, L.; Zou, X.; et al. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncol. Rep. 2016, 36, 2025–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirali, A.C. Electrolyte and Acid–Base Disorders in Malignancy. JASN. Available online: https://www.asn-online.org/education/distancelearning/curricula/onco/Chapter5.pdf (accessed on 25 October 2019).
- Hashemi-Sadraei, N.; Machicado, J.D.; Gupta, R.; Huapaya, J.A. Lactic acidosis in gastric cancer. J Gastrointest Cancer 2014, 45, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Seaver, P.; Lemus, H.; Hollenbach, K.; Wang, E.; Pierce, J.P. Associations between Dietary Acid Load and Biomarkers of Inflammation and Hyperglycemia in Breast Cancer Survivors. Nutrients 2019, 11, 1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.K.; Maurer, H.; Reed, K.; Selagamsetty, R. Diabetes and cancer: Two diseases with obesity as a common risk factor. Diabetes Obes. Metab. 2014, 16, 97–110. [Google Scholar] [CrossRef]
- Lipscombe, L.L.; Chan, W.W.; Yun, L.; Austin, P.C.; Anderson, G.M.; Rochon, P.A. Incidence of diabetes among postmenopausal breast cancer survivors. Diabetologia 2013, 56, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Halperin, F.A.; Cheema-Dhadli, S.; Chen, C.B.; Halperin, M.L. Alkali therapy extends the period of survival during hypoxia: Studies in rats. Am. J. Physiol. 1996, 271, R381–R387. [Google Scholar] [CrossRef]
- Pierce, J.P.; Natarajan, L.; Caan, B.J.; Parker, B.A.; Greenberg, E.R.; Flatt, S.W.; Rock, C.L.; Kealey, S.; Al-Delaimy, W.K.; Bardwell, W.A.; et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 2007, 298, 289–298. [Google Scholar] [CrossRef]
- Pierce, J.P.; Faerber, S.; Wright, F.A.; Rock, C.L.; Newman, V.; Flatt, S.W.; Kealey, S.; Jones, V.E.; Caan, B.J.; Gold, E.B.; et al. A randomized trial of the effect of a plant-based dietary pattern on additional breast cancer events and survival: The Women’s Healthy Eating and Living (WHEL) Study. Control. Clin. Trials 2002, 23, 728–756. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engberink, M.F.; Bakker, S.J.; Brink, E.J.; van Baak, M.A.; van Rooij, F.J.; Hofman, A.; Witteman, J.C.; Geleijnse, J.M. Dietary acid load and risk of hypertension: The Rotterdam Study. Am. J. Clin. Nutr. 2012, 95, 1438–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassetto, L.A.; Morris, R.C., Jr.; Sebastian, A. A practical approach to the balance between acid production and renal acid excretion in humans. J. Nephrol. 2006, 19 (Suppl. 9), S33–S40. [Google Scholar]
- Johnson-Kozlow, M.; Rock, C.L.; Gilpin, E.A.; Hollenbach, K.A.; Pierce, J.P. Validation of the WHI brief physical activity questionnaire among women diagnosed with breast cancer. Am. J. Health Behav. 2007, 31, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Bardwell, W.A.; Natarajan, L.; Flatt, S.W.; Rock, C.L.; Newman, V.A.; Madlensky, L.; Mills, P.J.; Dimsdale, J.E.; Thomson, C.A.; et al. Correlates of physical activity level in breast cancer survivors participating in the Women’s Healthy Eating and Living (WHEL) Study. Breast Cancer Res. Treat. 2007, 101, 225–232. [Google Scholar] [CrossRef]
- Fagherazzi, G.; Vilier, A.; Bonnet, F.; Lajous, M.; Balkau, B. Boutron-Rualt MC, and Clavel-Chapelon F. Dietary acid load and risk of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia 2014, 57, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Beckner, M.E.; Stracke, M.L.; Liotta, L.A.; Schiffmann, E. Glycolysis as primary energy source in tumor cell chemotaxis. J. Natl. Cancer Inst. 1990, 82, 1836–1840. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; Lopez-Ojen, M.; Funcasta-Calderon, R.; Ameneiros-Rodriguez, E.; Donapetry-Garcia, C.; Vila-Altesor, M.; Rodriguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef]
- Goodwin, P.J.; Ennis, M.; Bahl, M.; Fantus, I.G.; Pritchard, K.I.; Trudeau, M.E.; Koo, J.; Hood, N. High insulin levels in newly diagnosed breast cancer patients reflect underlying insulin resistance and are associated with components of the insulin resistance syndrome. Breast Cancer Res. Treat. 2009, 114, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.L.; Duggan, C.; Wang, C.Y.; Smith, A.W.; McTiernan, A.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Ballard-Barbash, R. Fasting C-peptide levels and death resulting from all causes and breast cancer: The health, eating, activity, and lifestyle study. J. Clin. Oncol. 2011, 29, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Verheus, M.; Peeters, P.H.; Rinaldi, S.; Dossus, L.; Biessy, C.; Olsen, A.; Tjonneland, A.; Overvad, K.; Jeppesen, M.; Clavel-Chapelon, F.; et al. Serum C-peptide levels and breast cancer risk: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 2006, 119, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, M.; Yamatani, K.; Fukase, N.; Daimon, M.; Ohnuma, H.; Ogawa, A.; Tominaga, M.; Sasaki, H. Effect of acidosis on insulin binding and glucose uptake in isolated rat adipocytes. Tohoku J. Exp. Med. 1993, 169, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wu, H.; Dai, C.; Pan, Q.; Ding, Z.; Hu, D.; Ji, B.; Luo, Y.; Hu, X. Beyond Warburg effect--dual metabolic nature of cancer cells. Sci. Rep. 2014, 4, 4927. [Google Scholar] [CrossRef] [Green Version]
- Joshu, C.E.; Prizment, A.E.; Dluzniewski, P.J.; Menke, A.; Folsom, A.R.; Coresh, J.; Yeh, H.C.; Brancati, F.L.; Platz, E.A.; Selvin, E. Glycated hemoglobin and cancer incidence and mortality in the Atherosclerosis in Communities (ARIC) Study, 1990–2006. Int. J. Cancer 2012, 131, 1667–1677. [Google Scholar] [CrossRef] [Green Version]
- Cust, A.E.; Stocks, T.; Lukanova, A.; Lundin, E.; Hallmans, G.; Kaaks, R.; Jonsson, H.; Stattin, P. The influence of overweight and insulin resistance on breast cancer risk and tumour stage at diagnosis: A prospective study. Breast Cancer Res. Treat. 2009, 113, 567–576. [Google Scholar] [CrossRef]
- Erickson, K.; Patterson, R.E.; Flatt, S.W.; Natarajan, L.; Parker, B.A.; Heath, D.D.; Laughlin, G.A.; Saquib, N.; Rock, C.L.; Pierce, J.P. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J. Clin. Oncol. 2011, 29, 54–60. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
HR (95% CI) | ||||
---|---|---|---|---|
PRAL (mEq/day) | ||||
Range | No. events/person-years | Age-adjusted | Multivariable-adjusted | |
Quartile 1 | <-19.50 | 62/3149 | 1 | 1 |
Quartile 2 | -19.50 to <-6.94 | 139/5590 | 0.99 (0.78–1.28) | 1.06 (0.83–1.36) |
Quartile 3 | -6.94 to <3.22 | 153/6319 | 1.10 (0.86–1.41) | 1.12 (0.87–1.44) |
Quartile 4 | ≥3.22 | 163/5925 | 1.16 (0.91–1.48) | 1.16 (0.89–1.50) |
p for trend | 0.19 | 0.41 | ||
NEAP (mEq/day) | ||||
Range | No. events/person-years | Age-adjusted | Multivariable-adjusted | |
Quartile 1 | <28.44 | 63/3233 | 1 | 1 |
Quartile 2 | 28.44 to <37.25 | 131/5601 | 1.10 (0.86–1.41) | 1.08 (0.84–1.40) |
Quartile 3 | 37.25 to <46.90 | 160/6411 | 1.05 (0.81–1.35) | 1.01 (0.77–1.32) |
Quartile 4 | ≥46.90 | 163/5739 | 1.26 (0.99–1.60) | 1.19 (0.91–1.55) |
p for trend | 0.08 | 0.25 |
PRAL score quartiles (mEq/day) | ||||
---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |
<−13.7 (n = 771) | −13.7 to <−3.7 (n = 769) | −3.7 to <4.7 (n = 771) | ≥4.7 (n = 770) | |
NEAL (mEq/day)a | 27.4 (23.9–30.8) | 36.4 (33.7–38.5) | 43.7 (41.1–46.3) | 55.5 (50.9–61.5) |
Basic | ||||
Age at diagnosis (years) | 52.0 (47.0–58.0) | 51.0 (46.0–58.0) | 50.0 (45.0–57.0) | 48.0 (42.0–55.0) |
White (%) | 89.8 | 88.9 | 84.2 | 78.2 |
Normal weight (%) | 56.7 | 46.7 | 36.7 | 32.6 |
Overweight and obese (%) | 43.4 | 53.3 | 63.3 | 67.4 |
Education, at or above college (%) | 63.7 | 55.7 | 51.9 | 45.8 |
Postmenopausal women (%) | 84.3 | 80.6 | 79.2 | 73.0 |
Past smoker (%) | 43.2 | 41.1 | 41.9 | 40.7 |
Never smoker (%) | 53.7 | 54.5 | 53.2 | 53.8 |
Alcohol abstainer (%) | 31.7 | 30.2 | 33.2 | 31.8 |
Physical activity (MET/week) | 810 (300–1500) | 615 (225–1305) | 480 (150–1050) | 398 (45–1080) |
Chemotherapy (%) | 65.9 | 68.7 | 71.7 | 73.4 |
Radiation (%) | 63.6 | 61.0 | 59.1 | 62.2 |
ER+/PR+ (%) | 63.3 | 63.5 | 62.4 | 58.2 |
ER-/PR- (%) | 16.5 | 18.6 | 21.9 | 23.3 |
Cancer stage at diagnosis (%) | ||||
I | 39.2 | 37.3 | 38.3 | 39.5 |
II | 55.1 | 59.2 | 57.1 | 54.4 |
IIIa | 5.7 | 3.5 | 4.7 | 6.1 |
Tamoxifen use (%) | 71.5 | 67.4 | 63.0 | 62.0 |
Hemoglobin A1c | 5.60 (5.30–5.80) | 5.60 (5.30–5.90) | 5.60 (5.30–5.80) | 5.60 (5.30–5.90) |
Nutrient intakes | ||||
Energy (KJ/day) | 1667.0 (1455.0–1955.0) | 1652.0 (1391.0–1902.0) | 1638.0 (1387.0–1951.0) | 1798.0 (1512.0–2124.0) |
Carbohydrate (% of energy) | 61.9 (56.9–67.1) | 57.6 (52.4–61.9) | 53.9 (49.1–59.0) | 50.4 (45.4–53.7) |
Fat (% of energy) | 24.6 (20.4–29.0) | 27.3 (23.3–31.8) | 29.7 (25.3–34.5) | 32.6 (28.1–36.7) |
Protein (% of e nergy) | 15.2 (13.2–17.1) | 15.8 (13.9–18.2) | 16.1 (14.1–18.4) | 17.2 (15.1–19.7) |
Calcium (mg/day) | 821.0 (638.0–1104.0) | 739.0 (567.0–967.0) | 701.0 (534.0–901.0) | 717.0 (550.0–920.0) |
Phosphorus (mg/day) | 1132.0 (934.0–1343.0) | 1082.0 (878.0–1288.0) | 1062.0 (867.0–1252.0) | 1171.0 (959.0–1380.0) |
Potassium (mg/day) | 3559.0 (3090.0–4111.0) | 2956.0 (2531.0–3392.0) | 2584.0 (2198.0–3024.0) | 2412.0 (2019.0–2932.0) |
Magnesium (mg/day) | 359.0 (299.0–420.0) | 301.0 (256.0–355.0) | 277.0 (233.0–330.0) | 270.0 (218.0–324.0) |
HbA1 | HbA1 | |||
<5.6% (n = 1447) | ≥5.6% (n = 1556) | |||
PRAL score quartiles (mEq/day) | PRAL score quartiles (mEq/day) | |||
Quartile 1 | Quartile 4 | Quartile 1 | Quartile 4 | |
<−13.7 (n = 771) | ≥4.7 (n = 770) | <−13.7 (n = 771) | ≥4.7 (n = 770) | |
NEAL (mEq/day) a | 27.0 (23.3–30.3) | 54.4 (50.4–60.6) | 28.3 (24.5–31.4) | 56.2 (51.4–61.7) |
Basic | ||||
Age at diagnosis (years) | 50.0 (45.0–55.0) | 46.0 (40.0–52.0) | 54.0 (49.0–61.0) | 50.0 (45.0–58.0) |
White (%) | 91.3 | 79.8 | 87.1 | 75.8 |
Normal weight (%) | 62.8 | 41.7 | 45.8 | 19.1 |
Overweight and obese (%) | 37.4 | 58.3 | 54.2 | 80.9 |
Education, at or above college (%) | 64.1 | 52.6 | 62.9 | 35.8 |
Postmenopausal women (%) | 79.4 | 66.5 | 92.7 | 82.6 |
Past smoker (%) | 40.8 | 39.9 | 47.2 | 41.9 |
Never smoker (%) | 56.3 | 55.3 | 49.3 | 51.6 |
Alcohol abstainer (%) | 28.9 | 29.6 | 36.4 | 35.2 |
Physical activity (MET/week) | 780 (300–1480) | 500 (113–1200) | 860 (315–1500) | 255 (30–840) |
Chemotherapy (%) | 72.7 | 75.2 | 54.2 | 70.7 |
Radiation (%) | 64.3 | 62.0 | 62.2 | 62.6 |
ER+/PR+ (%) | 62.5 | 59.1 | 64.7 | 56.8 |
ER-/PR- (%) | 18.0 | 23.0 | 13.6 | 23.6 |
Cancer stage at diagnosis (%) | ||||
I | 37.1 | 9.7 | 42.7 | 39.7 |
II | 58.1 | 13.5 | 50.0 | 54.2 |
IIIa | 4.7 | 1.5 | 7.3 | 6.1 |
Tamoxifen use (%) | 65.3 | 60.2 | 78.7 | 62.3 |
Hemoglobin A1c | 5.30 (5.10–5.40) | 5.30 (5.10–5.40) | 5.90 (5.80–6.00) | 6.00 (5.80–6.40) |
Nutrient intakes | ||||
Energy (KJ/day) | 1677.5 (1471.0–1979.5) | 1811.0 (1527.0–2092.0) | 1620.0 (1424.0–1920.0) | 1796.0 (1486.0–2125.0) |
Carbohydrate (% of energy) | 62.9 (57.8–67.9) | 51.1 (46.3–55.8) | 60.1 (56.7–66.2) | 48.7 (44.0–53.4) |
Fat (% of energy) | 24.2 (20.1–28.6) | 31.1 (26.8–35.6) | 25.1 (21.1–29.8) | 34.2 (29.9–38.3) |
Protein (% of e nergy) | 14.7 (12.9–16.7) | 17.1 (15.0–19.6) | 15.7 (13.7–17.7) | 17.3 (15.3–19.8) |
Calcium (mg/day) | 824.5 (630.0–1080.0) | 727.0 (551.0–926.0) | 817.5 (650.0–1114.0) | 708.5 (528.0–889.0) |
Phosphorus (mg/day) | 1180.0 (930.5–1327.0) | 1204.5 (956.0–1392.0) | 1132.0 (924.0–1356.0) | 1158.5 (962.0–1351.0) |
Potassium (mg/day) | 3531.5 (3093.5–4087.0) | 2463.5 (2027.0–3008.0) | 3254.0 (3053.0–4142.0) | 2389.0 (2019.0–2863.0) |
Magnesium (mg/day) | 358.5 (301.5–423.5) | 275.0 (221.0–337.0) | 349.0 (294.0–413.0) | 263.0 (218.0–309.0) |
PRAL (mEq/day) | A1c < 5.3% (< 25%) | 5.3% ≤ A1c < 5.6% (25%-< median) | 5.6% ≤ A1c < 5.7% (median- <prediabetic) | A1c ≥ 5.7% (≥prediabetic range) | ||||
---|---|---|---|---|---|---|---|---|
Range | No. events/person-years | HR (95%CI) | No. events/person-years | HR (95%CI) | No. events/person-years | HR (95%CI) | No. events/person-years | HR (95%CI) |
<−15.04 | 33/964 | 1 | 34/2038 | 1 | 8/448 | 1 | 23/1372 | 1 |
−15.04 to < −0.71 | 52/1615 | 0.80 (0.52–1.24) | 77/3193 | 0.90(0.64–1.27) | 17/640 | 2.87 (1.23–6.72) | 53/2525 | 1.27 (0.80–2.02) |
≥−0.71 | 49/1666 | 0.79 (0.51–1.22) | 83/3148 | 0.76 (0.52–1.09) | 16/729 | 2.48 (1.00–6.22) | 72/2644 | 1.95 (1.27–3.00) |
p for trend | 0.31 | 0.14 | 0.05 | 0.001 | ||||
p for interaction | 0.01 | |||||||
NEAP (mEq/day) | A1c < 5.3% (<25%) | 5.3% ≤ A1c <5.6% (25%-<median) | 5.6% ≤ A1c < 5.7% (median- <prediabetic) | A1c ≥ 5.7% (≥prediabetic range) | ||||
Range | No. events/person-years | HR (95%CI) | No. events/person-years | HR (95%CI) | No. events/person-years | HR (95%CI) | No. events/person-years | HR (95%CI) |
<31.5 | 36/994 | 1 | 34/2058 | 1 | 10/460 | 1 | 19/1372 | 1 |
31.5 to < 43.4 | 47/1599 | 0.84 (0.52–1.24) | 80/3343 | 0.80(0.56–1.13) | 15/638 | 1.28 (0.58–2.82) | 58/2652 | 1.85 (1.16–2.95) |
≥43.4 | 51/1652 | 0.86 (0.51–1.22) | 80/2979 | 0.89 (0.62–1.27) | 16/719 | 1.31(0.54–3.18) | 71/2518 | 2.16 (1.36–3.42) |
p for trend | 0.56 | 0.16 | 0.35 | 0.001 | ||||
p for interaction | 0.05 |
A1c < 5.6% | A1c ≥ 5.6% | ||||||
---|---|---|---|---|---|---|---|
PRAL (mEq/day) | HR (95%CI) | HR (95%CI) | |||||
Range | No. events/person-years | Age-adjusted | Mutivariable-adjusted | No. events/person-years | Age-adjusted | Mutivariable-adjusted | |
Quartile 1 | <−19.50 | 44/2017 | 1 | 1 | 18/1132 | 1 | 1 |
Quartile 2 | −19.50 to <–6.94 | 92/3349 | 0.91 (0.68-1.23) | 0.88 (0.65–1.19) | 47/2241 | 1.31 (0.83–2.08) | 1.38 (0.85–2.17) |
Quartile 3 | −6.94 to <3.22 | 96/3742 | 0.90 (0.66–1.22) | 1.12 (0.64–1.19) | 57/2577 | 1.69 (1.08–2.62) | 1.86 (1.19–2.93) |
Quartile 4 | ≥3.22 | 96/3516 | 0.89 (0.66–1.22) | 1.16 (0.59–1.13) | 67/2409 | 1.93 (1.25–2.96) | 2.15 (1.34–3.48) |
p for trend | 0.44 | 0.22 | 0.001 | 0.0005 | |||
p for interaction | 0.01 | ||||||
NEAP (mEq/day) | |||||||
Range | No. events/person-years | Age-adjusted | Mutivariable-adjusted | No. events/person-years | Age-adjusted | Mutivariable-adjusted | |
Quartile 1 | <28.44 | 51/2099 | 1 | 1 | 12/1134 | 1 | 1 |
Quartile 2 | 28.44 to <37.25 | 80/3099 | 0.98 (0.73–1.31) | 0.96 (0.73–1.29) | 51/2202 | 1.49 (0.93–2.37) | 1.50 (0.95–2.44) |
Quartile 3 | 37.25 to <46.90 | 99/3727 | 0.78 (0.57–1.09) | 0.74 (0.53–1.02) | 61/2684 | 1.84 (1.17–2.89) | 1.97 (1.22–3.19) |
Quartile 4 | ≥46.90 | 98/3400 | 0.99 (0.73–1.33) | 0.92 (0.67–1.25) | 65/2339 | 2.09 (1.34–3.23) | 2.31 (1.42–3.74) |
p for trend | 0.71 | 0.39 | 0.0007 | 0.0004 | |||
p for interaction | 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Hsu, F.-C.; Wang, S.; Luong, D.; Pierce, J.P. Hemoglobin A1c Levels Modify Associations between Dietary Acid Load and Breast Cancer Recurrence. Nutrients 2020, 12, 578. https://doi.org/10.3390/nu12020578
Wu T, Hsu F-C, Wang S, Luong D, Pierce JP. Hemoglobin A1c Levels Modify Associations between Dietary Acid Load and Breast Cancer Recurrence. Nutrients. 2020; 12(2):578. https://doi.org/10.3390/nu12020578
Chicago/Turabian StyleWu, Tianying, Fang-Chi Hsu, Shunran Wang, David Luong, and John P. Pierce. 2020. "Hemoglobin A1c Levels Modify Associations between Dietary Acid Load and Breast Cancer Recurrence" Nutrients 12, no. 2: 578. https://doi.org/10.3390/nu12020578
APA StyleWu, T., Hsu, F. -C., Wang, S., Luong, D., & Pierce, J. P. (2020). Hemoglobin A1c Levels Modify Associations between Dietary Acid Load and Breast Cancer Recurrence. Nutrients, 12(2), 578. https://doi.org/10.3390/nu12020578