The Impact of Serum Zinc Levels on Abdominal Fat Mass in Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Blood Sampling and Laboratory Examinations
2.4. Measurements of Abdominal Muscle and Fat Areas Using Computed Tomography
2.5. Scoring System by Charlson Comorbidity Index
2.6. Statistical Analysis
3. Results
3.1. Clinical Profiles
3.2. Correlations Between AMA/height, ASFA/height, and AVFA/height and Clinical Parameters
3.3. Determinants of Abdominal Fat Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prasad, A.S. Recognition of zinc-deficiency syndrome. Nutrition 2001, 17, 67–69. [Google Scholar] [CrossRef]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Kiziltas, H.; Ekin, S.; Erkoc, R. Trace element status of chronic renal patients undergoing hemodialysis. Biol. Trace Elem. Res. 2008, 124, 103–109. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Hemmelgarn, B.; Klarenbach, S.; Field, C.; Manns, B.; Thadhani, R.; Gill, J.; Alberta Kidney Disease, N. Trace elements in hemodialysis patients: A systematic review and meta-analysis. BMC Med. 2009, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Liuzzi, J.P.; Lichten, L.A.; Rivera, S.; Blanchard, R.K.; Aydemir, T.B.; Knutson, M.D.; Ganz, T.; Cousins, R.J. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA 2005, 102, 6843–6848. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, J. Nutrition and mortality in hemodialysis. J. Am. Soc. Nephrol. 1995, 6, 1329–1341. [Google Scholar]
- Koppe, L.; Fouque, D.; Kalantar-Zadeh, K. Kidney cachexia or protein-energy wasting in chronic kidney disease: Facts and numbers. J. Cachexia Sarcopenia Muscle 2019, 10, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Kopple, J.D.; Zhu, X.; Lew, N.L.; Lowrie, E.G. Body weight-for-height relationships predict mortality in maintenance hemodialysis patients. Kidney. Int. 1999, 56, 1136–1148. [Google Scholar] [CrossRef] [Green Version]
- Calle, E.E.; Thun, M.J.; Petrelli, J.M.; Rodriguez, C.; Heath, C.W., Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N. Engl. J. Med. 1999, 341, 1097–1105. [Google Scholar] [CrossRef]
- Gonzalez-Muniesa, P.; Martinez-Gonzalez, M.A.; Hu, F.B.; Despres, J.P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [Google Scholar] [CrossRef]
- Leavey, S.F.; McCullough, K.; Hecking, E.; Goodkin, D.; Port, F.K.; Young, E.W. Body mass index and mortality in ‘healthier’ as compared with ‘sicker’ haemodialysis patients: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant. 2001, 16, 2386–2394. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Rodriguez, I.; Carrero, J.J.; Zoccali, C.; Qureshi, A.R.; Ketteler, M.; Floege, J.; London, G.; Locatelli, F.; Gorriz, J.L.; Rutkowski, B.; et al. Influence of body mass index on the association of weight changes with mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2013, 8, 1725–1733. [Google Scholar] [CrossRef] [Green Version]
- Depner, T.A.; Daugirdas, J.T. Equations for normalized protein catabolic rate based on two-point modeling of hemodialysis urea kinetics. J. Am. Soc. Nephrol. 1996, 7, 780–785. [Google Scholar]
- Ohkawa, S.; Kaizu, Y.; Odamaki, M.; Ikegaya, N.; Hibi, I.; Miyaji, K.; Kumagai, H. Optimum dietary protein requirement in nondiabetic maintenance hemodialysis patients. Am. J. Kidney Dis. 2004, 43, 454–463. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Maeda, T.; Watanabe, S.; Hanai, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Increased visceral fat volume raises the risk for recurrence of hepatocellular carcinoma after curative treatment. Oncotarget 2018, 9, 14058–14067. [Google Scholar] [CrossRef] [Green Version]
- Fukasawa, H.; Kaneko, M.; Niwa, H.; Matsuyama, T.; Yasuda, H.; Kumagai, H.; Furuya, R. Circulating 20S proteasome is independently associated with abdominal muscle mass in hemodialysis patients. PLoS ONE 2015, 10, e0121352. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Degoulet, P.; Legrain, M.; Reach, I.; Aime, F.; Devries, C.; Rojas, P.; Jacobs, C. Mortality risk factors in patients treated by chronic hemodialysis. Report of the Diaphane collaborative study. Nephron 1982, 31, 103–110. [Google Scholar] [CrossRef]
- Fleischmann, E.H.; Bower, J.D.; Salahudeen, A.K. Risk factor paradox in hemodialysis: Better nutrition as a partial explanation. ASAIO J. 2001, 47, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Block, G.; Humphreys, M.H.; Kopple, J.D. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003, 63, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Beddhu, S.; Pappas, L.M.; Ramkumar, N.; Samore, M. Effects of body size and body composition on survival in hemodialysis patients. J. Am. Soc. Nephrol. 2003, 14, 2366–2372. [Google Scholar] [CrossRef] [Green Version]
- Caetano, C.; Valente, A.; Oliveira, T.; Garagarza, C. Body Composition and Mortality Predictors in Hemodialysis Patients. J. Ren. Nutr. 2016, 26, 81–86. [Google Scholar] [CrossRef]
- Ghosh, C.; Yang, S.H.; Kim, J.G.; Jeon, T.I.; Yoon, B.H.; Lee, J.Y.; Lee, E.Y.; Choi, S.G.; Hwang, S.G. Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells. Asian Austtralas. J. Anim. Sci. 2013, 26, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Jiang, D.; Zhu, Y.; Fang, Z.; Che, L.; Lin, Y.; Xu, S.; Li, J.; Huang, C.; Zou, Y.; et al. Chronic High Dose Zinc Supplementation Induces Visceral Adipose Tissue Hypertrophy without Altering Body Weight in Mice. Nutrients 2017, 9, 1138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.B.; Wang, M.S.; Wang, Z.S.; Zhou, A.M.; Zhang, X.M.; Dong, X.W.; Peng, Q.H. Supplementation dietary zinc levels on growth performance, carcass traits, and intramuscular fat deposition in weaned piglets. Biol. Trace Elem. Res. 2014, 161, 69–77. [Google Scholar] [CrossRef]
- Chen, M.D.; Lin, P.Y.; Cheng, V.; Lin, W.H. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice. Biol. Trace Elem. Res. 1996, 52, 125–132. [Google Scholar] [CrossRef]
- Hiuge-Shimizu, A.; Kishida, K.; Funahashi, T.; Ishizaka, Y.; Oka, R.; Okada, M.; Suzuki, S.; Takaya, N.; Nakagawa, T.; Fukui, T.; et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann. Med. 2012, 44, 82–92. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Yajima, T.; Yajima, K.; Takahashi, H.; Yasuda, K. The Impact of Abdominal Fat Levels on All-Cause Mortality Risk in Patients Undergoing Hemodialysis. Nutrients 2018, 10, 480. [Google Scholar] [CrossRef] [Green Version]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [CrossRef]
Total (n = 87) | Men (n = 59) | Women (n = 28) | |
---|---|---|---|
Age, years | 68.0 (60.0 to 71.5) | 69.0 (62.0 to 73.0) | 62.0 (56.5 to 70.0) |
Dialysis vintage, months | 69.0 (37.0 to 221.5) | 64.0 (35.0 to 212.0) | 106.5 (46.5 to 259.8) |
Height, m | 1.61 ± 0.09 | 1.65 ± 0.07 | 1.52 ± 0.06 c |
Dry weight, kg | 53.0 ± 11.5 | 56.1 ± 11.5 | 46.3 ± 8.3 c |
BMI, kg/m2 | 20.4 ± 3.6 | 20.6 ± 3.6 | 19.9 ± 3.5 |
Charlson comobidity index | 4.1 ± 1.7 | 4.3 ± 1.7 | 3.8 ± 1.8 |
Hemoglobin, g/dL | 11.5 ± 1.7 | 11.6 ± 1.2 | 11.3 ± 0.9 |
Total protein, g/dL | 7.4 ± 0.7 | 7.4 ± 0.6 | 7.4 ± 0.7 |
Serum albumin, g/dL | 4.2 ± 0.4 | 4.2 ± 0.4 | 4.1 ± 0.5 |
Total cholesterol, mg/dL | 146.5 ± 32.5 | 137.1 ± 29.2 | 166.2 ± 30.6 c |
LDL choresterol, mg/dL | 74.3 ± 22.6 | 68.9 ± 21.1 | 85.7 ± 21.8 b |
Blood urea nitrogen, mg/dL | 60.8 ± 15.0 | 61.9 ± 15.1 | 58.7 ± 14.7 |
Serum creatinine, mg/dL | 10.9 ± 2.6 | 11.5 ± 2.6 | 9.5 ± 2.1 c |
Calcium, mg/dL | 8.9 ± 0.4 | 8.8 ± 0.4 | 9.0 ± 0.4 |
Phosphate, mg/dL | 5.6 ± 1.2 | 5.6 ± 1.1 | 5.8 ± 1.4 |
Intact PTH, pg/mL | 109.9 ± 97.9 | 107.6 ± 101.6 | 114.9 ± 91.2 |
b2-microglobulin, mg/L | 27.6 ± 5.3 | 27.8 ± 5.4 | 27.2 ± 5.0 |
Kt/V urea | 1.6 ± 0.3 | 1.5 ± 0.2 | 1.8 ± 0.3 c |
nPCR, g/kg/ideal body weight/day | 0.93 ± 0.20 | 0.93 ± 0.20 | 0.93 ± 0.20 |
CRP, mg/dL | 0.00 (0.00 to 0.24) | 0.13 (0.00 to 0.37) | 0.00 (0.00 to 0.11) b |
Zinc, mg/dL | 64.0 (59.0 to 71.5) | 64.0 (59.0 to 71.0) | 65.0 (59.0 to 71.3) |
AMA, cm2 | 80.3 (68.9 to 100.2) | 90.8 (76.0 to 107.7) | 68.8 (62.3 to 74.8) c |
AMA standardized for height | 51.2 (44.0 to 59.8) | 54.7 (47.2 to 65.3) | 44.9 (40.4 to 49.6) c |
ASFA, cm2 | 57.7 (29.6 to 99.6) | 51.9 (22.2 to 99.3) | 64.0 (32.9 to 98.8) |
ASFA standardized for height | 36.6 (18.4 to 61.1) | 33.4 (13.5 to 60.9) | 41.0 (23.0 to 63.4) |
AVFA, cm2 | 59.2 (25.5 to 134.6) | 81.9 (27.7 to 147.6) | 33.1 (24.5 to 47.6) b |
AVFA standardized for height | 38.5 (16.4 to 82.3) | 48.9 (17.6 to 86.8) | 21.5 (15.3 to 32.5) b |
AMA/Height | ASFA/Height | AVFA/Height | ||||
---|---|---|---|---|---|---|
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Age | −0.156 | 0.149 | −0.064 | 0.559 | 0.200 | 0.064 |
Dialysis vintage | −0.191 | 0.077 | −0.361 | <0.01 | −0.248 | <0.05 |
Height | 0.458 | <0.001 | −0.039 | 0.720 | 0.183 | 0.089 |
Dry weight | 0.640 | <0.001 | 0.558 | <0.001 | 0.692 | <0.001 |
BMI | 0.531 | <0.001 | 0.725 | <0.001 | 0.752 | <0.001 |
Charlson comorbidity index | 0.045 | 0.676 | 0.069 | 0.525 | 0.113 | 0.298 |
Hemoglobin | 0.008 | 0.943 | 0.105 | 0.334 | 0.204 | 0.058 |
Total protein | 0.155 | 0.153 | 0.210 | 0.051 | 0.194 | 0.072 |
Serum albumin | 0.087 | 0.422 | 0.232 | <0.05 | 0.103 | 0.342 |
Total cholesterol | −0.138 | 0.232 | 0.041 | 0.725 | −0.130 | 0.259 |
LDL cholesterol | 0.020 | 0.854 | 0.331 | <0.01 | 0.178 | 0.105 |
Blood urea nitrogen | 0.119 | 0.273 | −0.054 | 0.620 | 0.025 | 0.820 |
Serum creatinine | 0.440 | <0.001 | 0.145 | 0.181 | 0.226 | <0.05 |
Calcium | −0.114 | 0.292 | 0.091 | 0.402 | −0.032 | 0.770 |
Phosphate | 0.129 | 0.234 | 0.090 | 0.406 | 0.345 | <0.01 |
Intact PTH | 0.073 | 0.501 | 0.043 | 0.695 | 0.061 | 0.597 |
2-microglobulin | −0.007 | 0.951 | −0.073 | 0.507 | 0.232 | <0.05 |
Kt/V urea | −0.624 | <0.001 | −0.145 | 0.182 | −0.351 | <0.01 |
nPCR | 0.011 | 0.920 | −0.035 | 0.746 | 0.014 | 0.900 |
CRP | 0.039 | 0.72 | −0.077 | 0.478 | 0.134 | 0.216 |
Zinc | 0.196 | 0.069 | 0.299 | <0.01 | 0.298 | <0.01 |
AMA | 0.978 | <0.001 | 0.178 | 0.100 | 0.330 | <0.01 |
AMA/height | - | - | 0.226 | <0.05 | 0.348 | <0.01 |
ASFA | 0.259 | <0.05 | 0.998 | <0.001 | 0.757 | <0.001 |
ASFA/height | 0.226 | <0.05 | - | - | 0.746 | <0.001 |
AVFA | 0.357 | <0.01 | 0.739 | <0.001 | 0.998 | <0.001 |
AVFA/height | 0.348 | <0.01 | 0.746 | <0.001 | - | - |
Model 1 | Model 2 | |||
---|---|---|---|---|
β | p | β | p | |
Dependent variable: ASFA standardized for height | ||||
Zinc, mg/dL | 0.263 | <0.01 | 0.031 | 0.631 |
Age, years | 0.065 | 0.520 | 0.080 | 0.202 |
Gender, male | −0.250 | <0.05 | −0.245 | <0.001 |
Dialysis vintage, months | −0.346 | <0.01 | −0.171 | <0.01 |
Charlson comorbidity index | - | - | −0.034 | 0.597 |
BMI, kg/m2 | - | - | 0.766 | <0.001 |
LDL choresterol, mg/dL | - | - | 0.073 | 0.277 |
CRP, mg/dL | - | - | −0.005 | 0.944 |
Dependent variable: AVFA standardized for height | ||||
Zinc, mg/dL | 0.375 | <0.001 | 0.198 | <0.01 |
Age, years | 0.094 | 0.352 | 0.115 | 0.085 |
Gender, male | 0.204 | <0.05 | 0.164 | <0.05 |
Dialysis vintage, months | −0.173 | 0.083 | −0.033 | 0.629 |
Charlson comorbidity index | - | - | −0.058 | 0.397 |
BMI, kg/m2 | - | - | 0.675 | <0.001 |
LDL choresterol, mg/dL | - | - | 0.075 | 0.294 |
CRP, mg/dL | - | - | −0.058 | <0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukasawa, H.; Niwa, H.; Ishibuchi, K.; Kaneko, M.; Iwakura, T.; Yasuda, H.; Furuya, R. The Impact of Serum Zinc Levels on Abdominal Fat Mass in Hemodialysis Patients. Nutrients 2020, 12, 656. https://doi.org/10.3390/nu12030656
Fukasawa H, Niwa H, Ishibuchi K, Kaneko M, Iwakura T, Yasuda H, Furuya R. The Impact of Serum Zinc Levels on Abdominal Fat Mass in Hemodialysis Patients. Nutrients. 2020; 12(3):656. https://doi.org/10.3390/nu12030656
Chicago/Turabian StyleFukasawa, Hirotaka, Hiroki Niwa, Kento Ishibuchi, Mai Kaneko, Takamasa Iwakura, Hideo Yasuda, and Ryuichi Furuya. 2020. "The Impact of Serum Zinc Levels on Abdominal Fat Mass in Hemodialysis Patients" Nutrients 12, no. 3: 656. https://doi.org/10.3390/nu12030656
APA StyleFukasawa, H., Niwa, H., Ishibuchi, K., Kaneko, M., Iwakura, T., Yasuda, H., & Furuya, R. (2020). The Impact of Serum Zinc Levels on Abdominal Fat Mass in Hemodialysis Patients. Nutrients, 12(3), 656. https://doi.org/10.3390/nu12030656