Dehydration Impairs Physical Growth and Cognitive Development in Young Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Water Restriction
2.3. Behavioral Assessment
- An adaptation phase—on the first day, animals were allowed to become accustomed to the experimental environment and task. They were placed into a cylindrical transparent start chamber in the middle of the maze, and after 10 s, were guided to the escape hole and allowed 3 min to freely enter the escape cage through the escape hole;
- A learning phase—next, mice were subjected to four consecutive days of training (comprised of two training trials/day, with a 15 min interval) to assess their spatial reference learning ability. Animals were placed into an opaque start chamber for 10 s and allowed to explore the maze for 3 min. If a mouse failed to find the escape hole within this time, it was guided to the hole.
- A test trial—on the final test day, mice were allowed only a single trial to find the escape hole.
2.4. Physical Growth Assessment
2.5. Plasma Biochemical Assay
2.6. Hippocampal Transcriptome Analysis
2.6.1. RNA Extraction and Next-Generation RNA Sequencing (RNA-seq)
2.6.2. Bioinformatic Analysis of RNA-seq Data
2.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Long-term Dehydration Induces Growth Retardation in Young Mice
3.2. Dehydration Markedly Impacts Spatial-Learning Behavior in Young Mice
3.3. Dehydration Alters Gene Networks Associated with Glucose Metabolism and LTP Signal Transduction
3.4. Dehydration Modulates Hippocampal Bdnf Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Masento, N.A.; Golightly, M.; Field, D.T.; Butler, L.T.; van Reekum, C.M. Effects of hydration status on cognitive performance and mood. Br. J. Nutr. 2014, 111, 1841–1852. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Ganio, M.S.; Casa, D.J.; Lee, E.C.; McDermott, B.P.; Klau, J.F.; Jimenez, L.; Le Bellego, L.; Chevillotte, E.; Lieberman, H.R. Mild dehydration affects mood in healthy young women. J. Nutr. 2012, 142, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R. Hydration and cognition: A critical review and recommendations for future research. J. Am. Coll. Nutr. 2007, 26, 555S–561S. [Google Scholar] [CrossRef]
- Armstrong, L.E. Challenges of linking chronic dehydration and fluid consumption to health outcomes. Nutr. Rev. 2012, 70, S121–S127. [Google Scholar] [CrossRef]
- Bar-David, Y.; Urkin, J.; Kozminsky, E. The effect of voluntary dehydration on cognitive functions of elementary school children. Acta Paediatr. 2005, 94, 1667–1673. [Google Scholar] [CrossRef]
- Gopinathan, P.; Pichan, G.; Sharma, V. Role of dehydration in heat stress-induced variations in mental performance. Arch. Environ. Health Int. J. 1988, 43, 15–17. [Google Scholar] [CrossRef]
- Gibson-Moore, H. Hydration and health. Nutr. Bull. 2014, 39, 4–8. [Google Scholar] [CrossRef]
- Edmonds, C.J.; Burford, D. Should children drink more water? The effects of drinking water on cognition in children. Appetite 2009, 52, 776–779. [Google Scholar] [CrossRef]
- Kim, C.-S.; Shin, D.-M. Improper hydration induces global gene expression changes associated with renal development in infant mice. Genes Nutr. 2016, 11, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprecht, R.; LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 2004, 5, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Pang, P.T.; Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 2005, 6, 603–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Poo, M.-M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A simple role for BDNF in learning and memory? Front. Mol. Neurosci. 2010, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef]
- Kovalchuk, Y.; Hanse, E.; Kafitz, K.W.; Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science 2002, 295, 1729–1734. [Google Scholar] [CrossRef]
- Attar, A.; Liu, T.; Chan, W.-T.C.; Hayes, J.; Nejad, M.; Lei, K.; Bitan, G. A shortened Barnes maze protocol reveals memory deficits at 4-months of age in the triple-transgenic mouse model of Alzheimer’s disease. PLoS ONE 2013, 8, e80355. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Park, M.-N.; Kim, C.-S.; Lee, Y.-K.; Choi, E.Y.; Chun, W.Y.; Shin, D.-M. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain. Sci. Rep. 2017, 7, 45693. [Google Scholar] [CrossRef] [PubMed]
- Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis (ipa). Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Rhees, B.K.; Atchley, W.R. Body weight and tail length divergence in mice selected for rate of development. J. Exp. Zool. 2000, 288, 151–164. [Google Scholar] [CrossRef]
- Kleiner, S.M. Water: An essential but overlooked nutrient. J. Am. Diet. Assoc. 1999, 99, 200–206. [Google Scholar] [CrossRef]
- D’Anci, K.E.; Constant, F.; Rosenberg, I.H. Hydration and cognitive function in children. Nutr. Rev. 2006, 64, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Faraco, G.; Wijasa, T.S.; Park, L.; Moore, J.; Anrather, J.; Iadecola, C. Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J. Cereb. Blood Flow Metab. 2014, 34, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Zelenak, C.; Völkl, J.; Eichenmüller, M.; Regel, I.; Fröhlich, H.; Kempe, D.; Jimenez, L.; Le Bellego, L.; Vergne, S. Hydration-sensitive gene expression in brain. Cell. Physiol. Biochem. 2011, 27, 757–768. [Google Scholar] [CrossRef]
- Cian, C.; Barraud, P.; Melin, B.; Raphel, C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int. J. Psychophysiol. 2001, 42, 243–251. [Google Scholar] [CrossRef]
- Goulet, E.D. Effect of exercise-induced dehydration on time-trial exercise performance: A meta-analysis. Br. J. Sports Med. 2011, 45, 1149–1156. [Google Scholar] [CrossRef]
- Fields, D.A.; Demerath, E.W. Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition. Pediatric Obes. 2012, 7, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Merson, S.J.; Fraser, S.M.; Archer, D.T. The effects of fluid restriction on hydration status and subjective feelings in man. Br. J. Nutr. 2004, 91, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.L.; Grover, L.M.; Schwartzkroin, P.A.; Bothwell, M. Neurotrophin expression in rat hippocampal slices: A stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 1992, 9, 1081–1088. [Google Scholar] [CrossRef]
- Levine, E.S.; Crozier, R.A.; Black, I.B.; Plummer, M.R. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl. Acad. Sci. USA 1998, 95, 10235–10239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poo, M.-M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2001, 2, 24–32. [Google Scholar] [CrossRef]
- Akhtar, A. The Flaws and Human Harms of Animal Experimentation. Camb. Q. Healthc. Ethics 2015, 24, 407–419. [Google Scholar] [CrossRef] [Green Version]
CON | DEH | p Value | |
---|---|---|---|
Lean mass, g | 20.89 ± 0.26 | 19.07 ± 0.63 | 0.03 |
Fat, % | 13.93 ± 1.09 | 9.98 ± 0.38 | 0.06 |
Area, cm2 | 3.90 ± 0.31 | 3.59 ± 0.48 | 0.57 |
BMC, g | 0.44 ± 0.04 | 0.38 ± 0.04 | 0.32 |
BMD, g/cm2 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.22 |
Relative tail length | 22.63 ± 0.77 | 20.16 ± 0.38 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-S.; Chun, W.Y.; Shin, D.-M. Dehydration Impairs Physical Growth and Cognitive Development in Young Mice. Nutrients 2020, 12, 670. https://doi.org/10.3390/nu12030670
Kim C-S, Chun WY, Shin D-M. Dehydration Impairs Physical Growth and Cognitive Development in Young Mice. Nutrients. 2020; 12(3):670. https://doi.org/10.3390/nu12030670
Chicago/Turabian StyleKim, Chong-Su, Woo Young Chun, and Dong-Mi Shin. 2020. "Dehydration Impairs Physical Growth and Cognitive Development in Young Mice" Nutrients 12, no. 3: 670. https://doi.org/10.3390/nu12030670
APA StyleKim, C. -S., Chun, W. Y., & Shin, D. -M. (2020). Dehydration Impairs Physical Growth and Cognitive Development in Young Mice. Nutrients, 12(3), 670. https://doi.org/10.3390/nu12030670