Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach
Abstract
:1. Introduction
2. Intradialytic Nutrition: A Bit of History
3. From the “Skeleton Man” to the Obese Sarcopenic Patient
4. Intradialytic Nutrition: Pros and Cons
5. The Context and The Concept: A Tailored Approach to Dialysis Prescription
6. Concept and Context: A Special Case, Incremental Hemodialysis
7. The “Ladder Approach” to Intradialytic Nutrition
8. Eating “Normal” Food During Dialysis
9. Oral Nutritional Supplements
10. The “Case” of Ketoacid and Amino Acid Supplementation
11. Intravenous Formulations
12. Albumin (And Blood Transfusions)
13. Are We Doing All We Can? The Role of Intradialytic Exercise
14. What This Review Did Not Address
15. Final Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- St-Jules, D.E.; Woolf, K.; Pompeii, M.L.; Sevick, M.A. Exploring Problems in Following the Hemodialysis Diet and Their Relation to Energy and Nutrient Intakes: The BalanceWise Study. J. Ren. Nutr. 2016, 26, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Moio, M.R.; Fois, A.; Sofronie, A.; Gendrot, L.; Cabiddu, G.; D’Alessandro, C.; Cupisti, A. The Diet and Hemodialysis Dyad: Three Eras, Four Open Questions and Four Paradoxes. A Narrative Review, Towards a Personalized, Patient-Centered Approach. Nutrients 2017, 9, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertonsello-Catto, V.R.; Lucca, L.J.; da Costa, J.A.C. Phosphorus Counting Table for the control of serum phosphorus levels without phosphate binders in hemodialysis patients. Clin. Nutr. ESPEN 2019, 32, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Brauer, A.; Waheed, S.; Singh, T.; Maursetter, L. Improvement in Hyperphosphatemia Using Phosphate Education and Planning Talks. J. Ren. Nutr. 2019, 29, 156–162. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Piccoli, G.B.; Cupisti, A. The “phosphorus pyramid”: A visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015, 16, 9. [Google Scholar] [CrossRef]
- Cupisti, A.; Brunori, G.; Di Iorio, B.R.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Morey, B.; Walker, R.; Davenport, A. More dietetic time, better outcome? A randomized prospective study investigating the effect of more dietetic time on phosphate control in end-stage kidney failure hemodialysis patients. Nephron Clin. Pract. 2008, 109, 173–180. [Google Scholar] [CrossRef]
- Hutchison, A.J.; Wald, R.; Hiemstra, T.F. Hyperphosphataemia in 2019: Have we made progress? Curr. Opin. Nephrol. Hypertens. 2019, 28, 441–447. [Google Scholar] [CrossRef]
- St-Jules, D.E.; Goldfarb, D.S.; Pompeii, M.L.; Liebman, S.E.; Sherman, R.A. Assessment and misassessment of potassium, phosphorus, and protein in the hemodialysis diet. Semin. Dial. 2018, 31, 479–486. [Google Scholar] [CrossRef]
- Avesani, C.M.; Teta, D.; Carrero, J.J. Liberalizing the diet of patients undergoing dialysis: Are we ready? Nephrol. Dial. Transpl. 2019, 34, 180–183. [Google Scholar] [CrossRef]
- Weiner, D.E.; Kapoian, T.; Johnson, D.S. Nutrition, vitamin D, and health outcomes in hemodialysis: Time for a feeding frenzy? Curr. Opin. Nephrol. Hypertens. 2015, 24, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Tortorici, A.R.; Chen, J.L.; Kamgar, M.; Lau, W.L.; Moradi, H.; Rhee, C.M.; Streja, E.; Kovesdy, C.P. Dietary restrictions in dialysis patients: Is there anything left to eat? Semin. Dial. 2015, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Clark-Cutaia, M.N.; Sommers, M.S.; Anderson, E.; Townsend, R.R. Design of a randomized controlled clinical trial assessing dietary sodium restriction and hemodialysis-related symptom profiles. Contemp. Clin. Trials Commun. 2016, 3, 70–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues Telini, L.S.; de Carvalho Beduschi, G.; Caramori, J.C.; Castro, J.H.; Martin, L.C.; Barretti, P. Effect of dietary sodium restriction on body water, blood pressure, and inflammation in hemodialysis patients: A prospective randomized controlled study. Int. Urol. Nephrol. 2014, 46, 91–97. [Google Scholar] [CrossRef]
- Pani, A.; Floris, M.; Rosner, M.H.; Ronco, C. Hyperkalemia in hemodialysis patients. Semin. Dial. 2014, 27, 571–576. [Google Scholar] [CrossRef]
- Picard, K. Potassium Additives and Bioavailability: Are We Missing Something in Hyperkalemia Management? J. Ren. Nutr. 2019, 29, 350–353. [Google Scholar] [CrossRef]
- Cupisti, A.; Moriconi, D.; D’Alessandro, C.; Verde, F.; Marchini, M.; Saba, A.; Egidi, M.F. The extra-phosphate intestinal load from medications: Is it a real concern? J. Nephrol. 2016, 29, 857–862. [Google Scholar] [CrossRef]
- Calvo, M.S.; Sherman, R.A.; Uribarri, J. Dietary Phosphate and the Forgotten Kidney Patient: A Critical Need for FDA Regulatory Action. Am. J. Kidney Dis. 2019, 73, 542–551. [Google Scholar] [CrossRef]
- Sherman, R.A.; Mehta, O. Phosphorus and potassium content of enhanced meat and poultry products: Implications for patients who receive dialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 1370–1373. [Google Scholar] [CrossRef]
- St-Jules, D.E.; Goldfarb, D.S.; Sevick, M.A. Nutrient Non-equivalence: Does Restricting High-Potassium Plant Foods Help to Prevent Hyperkalemia in Hemodialysis Patients? J. Ren. Nutr. 2016, 26, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Gedney, N.; Kalantar-Zadeh, K. Dialysis Patient-Centeredness and Precision Medicine: Focus on Incremental Home Hemodialysis and Preserving Residual Kidney Function. Semin. Nephrol. 2018, 38, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.T.; Fishbane, S.; Obi, Y.; Kalantar-Zadeh, K. Preservation of residual kidney function in hemodialysis patients: Reviving an old concept. Kidney Int. 2016, 90, 262–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, C.; Borrelli, S.; De Stefano, T.; Provenzano, M.; Andreucci, M.; Cabiddu, G.; La Milia, V.; Vizzardi, V.; Sandrini, M.; Cancarini, G.; et al. Incremental dialysis in ESRD: Systematic review and meta-analysis. J. Nephrol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Schorr, M.; Manns, B.J.; Culleton, B.; Walsh, M.; Klarenbach, S.; Tonelli, M.; Sauve, L.; Chin, R.; Barnieh, L.; Hemmelgarn, B.R. Alberta Kidney Disease Network. The effect of nocturnal and conventional hemodialysis on markers of nutritional status: Results from a randomized trial. J. Ren. Nutr. 2011, 21, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Copland, M.; Komenda, P.; Weinhandl, E.D.; McCullough, P.A.; Morfin, J.A. Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use. Am. J. Kidney Dis. 2016, 68, S24–S32. [Google Scholar] [CrossRef] [Green Version]
- Rocco, M.V. Does more frequent hemodialysis provide dietary freedom? J. Ren. Nutr. 2013, 23, 259–262. [Google Scholar] [CrossRef]
- Vega, A.; Quiroga, B.; Abad, S.; Aragoncillo, I.; Arroyo, D.; Panizo, N.; López-Gómez, J.M. Albumin leakage in online hemodiafiltration, more convective transport, more losses? Ther. Apher. Dial. 2015, 19, 267–271. [Google Scholar] [CrossRef]
- Fournier, A.; Birmelé, B.; François, M.; Prat, L.; Halimi, J.M. Factors associated with albumin loss in post-dilution hemodiafiltration and nutritional consequences. Int. J. Artif. Organs 2015, 38, 76–82. [Google Scholar] [CrossRef]
- Masakane, I.; Sakurai, K. Current approaches to middle molecule removal: Room for innovation. Nephrol. Dial. Transpl. 2018, 33, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Nielsen, L.; Gendrot, L.; Fois, A.; Cataldo, E.; Cabiddu, G. Prescribing Hemodialysis or Hemodiafiltration: When One Size Does Not Fit All the Proposal of a Personalized Approach Based on Comorbidity and Nutritional Status. J. Clin. Med. 2018, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Cabiddu, G.; Moio, M.R.; Fois, A.; Cao, R.; Molfino, I.; Kaniassi, A.; Lippi, F.; Froger, L.; Pani, A.; et al. Efficiency and nutritional parameters in an elderly high risk population on hemodialysis and hemodiafiltration in Italy and France: Different treatments with similar names? BMC Nephrol. 2018, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.H.; Hsu, C.W.; Hu, C.C.; Yen, T.H.; Huang, W.H. Association Between Hemodiafiltration and Hypoalbuminemia in Middle-Age Hemodialysis Patients. Medicine 2016, 95, e3334. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Beck, W.; Bernardo, A.A.; Alves, F.C.; Stenvinkel, P.; Lindholm, B. Hypoalbuminemia: A price worth paying for improved dialytic removal of middle-molecular-weight uremic toxins? Nephrol. Dial. Transpl. 2019, 34, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.A.; Zheng, R.; Carter, C.E.; Mak, R.H. Cachexia/Protein energy wasting syndrome in CKD: Causation and treatment. Semin. Dial. 2019. [Google Scholar] [CrossRef]
- Teraoka, S.I.; Toma, H.; Nihei, H.; Ota, K.; Babazono, T.; Ishikawa, I.; Shinoda, A.; Maeda, K.; Koshikawa, S.; Takahashi, T.; et al. Current status of renal replacement therapy in Japan. Am. J. Kidney Dis. 1995, 25, 151–164. [Google Scholar] [CrossRef]
- Piccoli, G.; Bonello, F.; Massara, C.; Salomone, M.; Maffei, S.; Iadarola, G.M.; Stramignoni, E.; Rosati, C.; Borca, M.; Belardi, P. Death in conditions of cachexia: The price for the dialysis treatment of the elderly? Kidney Int. Suppl. 1993, 41, S282–S286. [Google Scholar]
- Marcelli, D.; Spotti, D.; Conte, F.; Limido, A.; Lonati, F.; Malberti, F.; Locatelli, F. Prognosis of diabetic patients on dialysis: Analysis of Lombardy Registry data. Nephrol. Dial. Transpl. 1995, 10, 1895–1900. [Google Scholar]
- Mak, R.H.; Cheung, W.W.; Zhan, J.Y.; Shen, Q.; Foster, B.J. Cachexia and protein-energy wasting in children with chronic kidney disease. Pediatr. Nephrol. 2012, 27, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Obi, Y.; Qader, H.; Kovesdy, C.P.; Kalantar-Zadeh, K. Latest consensus and update on protein-energy wasting in chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 254–262. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Beddhu, S.; Pappas, L.M.; Ramkumar, N.; Samore, M.H. Malnutrition and atherosclerosis in dialysis patients. J. Am. Soc. Nephrol. 2004, 15, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P. Inflammatory and atherosclerotic interactions in the depleted uremic patient. Blood Purif. 2001, 19, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Pecoits-Filho, R.; Lindholm, B.; Stenvinkel, P. The malnutrition, inflammation, and atherosclerosis (MIA) syndrome—the heart of the matter. Nephrol. Dial. Transpl. 2002, 17, 28–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Q.; Lindholm, B.; Stenvinkel, P. Inflammation as a cause of malnutrition, atherosclerotic cardiovascular disease, and poor outcome in hemodialysis patients. Hemodial. Int. 2004, 8, 118–129. [Google Scholar] [CrossRef]
- Maraj, M.; Kuśnierz-Cabala, B.; Dumnicka, P.; Gala-Błądzińska, A.; Gawlik, K.; Pawlica-Gosiewska, D.; Ząbek-Adamska, A.; Mazur-Laskowska, M.; Ceranowicz, P.; Kuźniewski, M. Malnutrition, Inflammation, Atherosclerosis Syndrome (MIA) and Diet Recommendations among End-Stage Renal Disease Patients Treated with Maintenance Hemodialysis. Nutrients 2018, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Koppe, L.; Fouque, D.; Kalantar-Zadeh, K. Kidney cachexia or protein-energy wasting in chronic kidney disease: Facts and numbers. J. Cachexia Sarcopenia Muscle 2019, 10, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.; et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Antón-Pérez, G.; Santana-Del-Pino, Á.; Henríquez-Palop, F.; Monzón, T.; Sánchez, A.Y.; Valga, F.; Morales-Umpierrez, A.; García-Cantón, C.; Rodríguez-Pérez, J.C.; Carrero, J.J. Diagnostic Usefulness of the Protein Energy Wasting Score in Prevalent Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 428–434. [Google Scholar] [CrossRef]
- Johansson, L.; Fouque, D.; Bellizzi, V.; Chauveau, P.; Kolko, A.; Molina, P.; Sezer, S.; Ter Wee, P.M.; Teta, D.; Carrero, J.J. European Renal Nutrition (ERN) Working Group of the European Renal Association–European Dialysis Transplant Association (ERA-EDTA). As we grow old: Nutritional considerations for older patients on dialysis. Nephrol. Dial. Transpl. 2017, 32, 1127–1136. [Google Scholar]
- Khor, B.H.; Narayanan, S.S.; Sahathevan, S.; Gafor, A.H.A.; Daud, Z.A.M.; Khosla, P.; Sabatino, A.; Fiaccadori, E.; Chinna, K.; Karupaiah, T. Efficacy of Nutritional Interventions on Inflammatory Markers in Hemodialysis Patients: A Systematic Review and Limited Meta-Analysis. Nutrients 2018, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.J.; Ma, F.; Wang, Q.Y.; He, S.L. The effects of oral nutritional supplements in patients with maintenance dialysis therapy: A systematic review and meta-analysis of randomized clinical trials. PLoS ONE 2018, 13, e0203706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.; Porter, J. Dietary mobile apps and their effect on nutritional indicators in chronic renal disease: A systematic review. Nephrology 2015, 20, 744–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigrist, M.K.; Levin, A.; Tejani, A.M. Systematic review of evidence for the use of intradialytic parenteral nutrition in malnourished hemodialysis patients. J. Ren. Nutr. 2010, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mechanical Kidney Saves Wife’s Life. 1964. Available online: http://www.britishpathe.com/video/mechanical-kidney-saves-wifes-life (accessed on 10 August 2019).
- “Who Shall Live?” 1965 NBC Documentary about Rationing of Dialysis Treatment, Narrated by Edwin Newman, Describing the Seattle Experience. Available online: https://www.youtube.com/watch?v=FMay5zw1loA (accessed on 10 August 2019).
- Eating during Dialysis: Ask Our Experts Dr. John Agar, Nephrologist. Available online: https://forums.homedialysis.org/t/eating-during-dialysis/2646 (accessed on 10 August 2019).
- Kurella, M.; Covinsky, K.E.; Collins, A.J.; Chertow, G.M. Octogenarians and nonagenarians starting dialysis in the United States. Ann. Intern. Med. 2007, 146, 177–183. [Google Scholar] [CrossRef]
- Muthalagappan, S.; Johansson, L.; Kong, W.M.; Brown, E.A. Dialysis or conservative care for frail older patients: Ethics of shared decision-making. Nephrol. Dial. Transpl. 2013, 28, 2717–2722. [Google Scholar] [CrossRef] [Green Version]
- Durand, A.C.; Jouve, E.; Delarozière, J.C.; Boucekine, M.; Izaaryene, G.; Crémades, A.; Mazoué, F.; Devictor, B.; Kakar, A.; Sambuc, R.; et al. End-stage renal disease treated in Provence-Alpes Côte d’Azur: 12-years follow-up and forecast to the year 2030. BMC Nephrol. 2018, 19, 141. [Google Scholar] [CrossRef]
- Bossola, M.; Marino, C.; Di Napoli, A.; Agabiti, N.; Tazza, L.; Davoli, M. Dialysis and Transplant Lazio Region Registry Scientific Committee. Functional impairment and risk of mortality in patients on chronic hemodialysis: Results of the Lazio Dialysis Registry. J. Nephrol. 2018, 31, 593–602. [Google Scholar] [CrossRef]
- Kurella Tamura, M.; Thomas, I.C.; Montez-Rath, M.E.; Kapphahn, K.; Desai, M.; Gale, R.C.; Asch, S.M. Dialysis Initiation and Mortality Among Older Veterans With Kidney Failure Treated in Medicare vs the Department of Veterans Affairs. JAMA Intern. Med. 2018, 178, 657–664. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Sofronie, A.C.; Coindre, J.P. The strange case of Mr. H. Starting dialysis at 90 years of age: Clinical choices impact on ethical decisions. BMC Med. Ethics 2017, 18, 61. [Google Scholar] [CrossRef] [Green Version]
- De, D.; Xiang Ai, A.T. Standardising hemodialysis care by restricting nutrition during dialysis: Introducing a quality improvement initiative for renal outpatients. Contemp. Nurse 2015, 50, 206–213. [Google Scholar] [CrossRef]
- Agarwal, R.; Georgianos, P. Feeding during dialysis-risks and uncertainties. Nephrol. Dial. Transpl. 2018, 33, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Benner, D.; Burgess, M.; Stasios, M.; Brosch, B.; Wilund, K.; Shen, S.; Kistler, B. In-Center Nutrition Practices of Clinics within a Large Hemodialysis Provider in the United States. Clin. J. Am. Soc. Nephrol. 2016, 11, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Ikizler, T.A. Let them eat during dialysis: An overlooked opportunity to improve outcomes in maintenance hemodialysis patients. J. Ren. Nutr. 2013, 23, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kistler, B.M.; Benner, D.; Burrowes, J.D.; Campbell, K.L.; Fouque, D.; Garibotto, G.; Kopple, J.D.; Kovesdy, C.P.; Rhee, C.M.; Steiber, A.; et al. Eating During Hemodialysis Treatment: A Consensus Statement From the International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2018, 28, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinstein, E.I.; Kopple, J.D. Severe wasting and malnutrition in a patient undergoing maintenance dialysis. Am. J. Nephrol. 1985, 5, 398–405. [Google Scholar] [CrossRef]
- Ikizler, T.A. A patient with CKD and poor nutritional status. Clin. J. Am. Soc. Nephrol. 2013, 8, 2174–2182. [Google Scholar] [CrossRef] [Green Version]
- Chertow, G.M.; Bullard, A.; Lazarus, J.M. Nutrition and the dialysis prescription. Am. J. Nephrol. 1996, 16, 79–89. [Google Scholar] [CrossRef]
- Santoro, A.; Mancini, E. Hemodialysis and the elderly patient: Complications and concerns. J. Nephrol. 2010, 23, S80–S89. [Google Scholar]
- Brown, E.A.; Johansson, L. Epidemiology and management of end-stage renal disease in the elderly. Nat. Rev. Nephrol. 2011, 7, 591–598. [Google Scholar] [CrossRef]
- Abdulan, I.M.; Onofriescu, M.; Stefaniu, R.; Mastaleru, A.; Mocanu, V.; Alexa, I.D.; Covic, A. The predictive value of malnutrition for functional and cognitive status in elderly hemodialysis patients. Int. Urol. Nephrol. 2019, 51, 155–162. [Google Scholar] [CrossRef]
- Gencer, F.; Yıldıran, H.; Erten, Y. Association of Malnutrition Inflammation Score With Anthropometric Parameters, Depression, and Quality of Life in Hemodialysis Patients. J. Am. Coll. Nutr. 2019, 38, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Johansen, K.L.; Lew, N.; Lazarus, J.M.; Lowrie, E.G. Vintage, nutritional status, and survival in hemodialysis patients. Kidney Int. 2000, 57, 1176–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, G.B.; Mezza, E.; Anania, P.; Iadarola, A.M.; Vischi, M.; Torazza, M.C.; Fop, F.; Guarena, C.; Martina, G.; Messina, M.; et al. Patients on renal replacement therapy for 20 or more years: A clinical profile. Nephrol. Dial. Transpl. 2002, 17, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Okechukwu, C.N.; Lopes, A.A.; Stack, A.G.; Feng, S.; Wolfe, R.A.; Port, F.K. Impact of years of dialysis therapy on mortality risk and the characteristics of longer term dialysis survivors. Am. J. Kidney Dis. 2002, 39, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Kazama, J.J.; Maruyama, H.; Nishi, S.; Narita, I.; Gejyo, F. Patients undergoing dialysis therapy for 30 years or more survive with serious osteoarticular disorders. Clin. Nephrol. 2008, 70, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Heaf, J.; Nielsen, A.H.; Hansen, H.P. Long-term hemodialysis survival. Clin. Kidney J. 2012, 5, 168–169. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Yamagata, K.; Iseki, K.; Tsubakihara, Y. Different impact of hemodialysis vintage on cause-specific mortality in long-term hemodialysis patients. Nephrol. Dial. Transpl. 2016, 31, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Kittiskulnam, P.; Chertow, G.M.; Carrero, J.J.; Delgado, C.; Kaysen, G.A.; Johansen, K.L. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int. 2017, 92, 238–247. [Google Scholar] [CrossRef]
- Malhotra, R.; Deger, S.M.; Salat, H.; Bian, A.; Stewart, T.G.; Booker, C.; Vincz, A.; Pouliot, B.; Ikizler, T.A. Sarcopenic Obesity Definitions by Body Composition and Mortality in the Hemodialysis Patients. J. Ren. Nutr. 2017, 27, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Kittiskulnam, P.; Carrero, J.J.; Chertow, G.M.; Kaysen, G.A.; Delgado, C.; Johansen, K.L. Sarcopenia among patients receiving hemodialysis: Weighing the evidence. J. Cachexia Sarcopenia Muscle 2017, 8, 57–68. [Google Scholar] [CrossRef]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bàràny, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, H.; Kaneko, M.; Niwa, H.; Matsuyama, T.; Yasuda, H.; Kumagai, H.; Furuya, R. Lower thigh muscle mass is associated with all-cause and cardiovascular mortality in elderly hemodialysis patients. Eur. J. Clin. Nutr. 2017, 71, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Tseng, S.F.; Wang, W.J.; Chen, H.J.; Lee, L.C. Association between obesity with low muscle mass and dialysis mortality. Intern. Med. J. 2017, 47, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Mehrotra, R.; Rhee, C.M.; Molnar, M.Z.; Lukowsky, L.R.; Patel, S.S.; Nissenson, A.R.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in peritoneal dialysis patients. Nephrol. Dial. Transpl. 2013, 28, 2146–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzawa, R.; Hoshi, K.; Yoneki, K.; Harada, M.; Watanabe, T.; Shimoda, T.; Yamamoto, S.; Matsunaga, A. Exercise Training in Elderly People Undergoing Hemodialysis: A Systematic Review and Meta-analysis. Kidney Int. Rep. 2017, 2, 1096–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, K. Intradialytic Exercise is Medicine for Hemodialysis Patients. Curr. Sports Med. Rep. 2016, 15, 269–275. [Google Scholar] [PubMed]
- Sheng, K.; Zhang, P.; Chen, L.; Cheng, J.; Wu, C.; Chen, J. Intradialytic exercise in hemodialysis patients: A systematic review and meta-analysis. Am. J. Nephrol. 2014, 40, 478–490. [Google Scholar] [CrossRef]
- Cooke, A.B.; Ta, V.; Iqbal, S.; Gomez, Y.H.; Mavrakanas, T.; Barré, P.; Vasilevsky, M.; Rahme, E.; Daskalopoulou, S.S. The Impact of Intradialytic Pedaling Exercise on Arterial Stiffness: A Pilot Randomized Controlled Trial in a Hemodialysis Population. Am. J. Hypertens. 2018, 31, 458–466. [Google Scholar] [CrossRef]
- March, D.S.; Graham-Brown, M.P.; Young, H.M.; Greenwood, S.A.; Burton, J.O. There is nothing more deceptive than an obvious fact’: More evidence for the prescription of exercise during hemodialysis (intradialytic exercise) is still required. Br. J. Sports Med. 2017, 51, 1379. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; de Alba, A.; Pedrero-Chamizo, R.; Morales, J.S.; Cobo, F.; Botella, A.; González-Gross, M.; Pérez, M.; Lucia, A.; Marín-López, M.T. Intradialytic Exercise: One Size Doesn’t Fit All. Front. Physiol. 2018, 9, 844. [Google Scholar] [CrossRef] [Green Version]
- Cooper, B.A.; Branley, P.; Bulfone, L.; Collins, J.F.; Craig, J.C.; Fraenkel, M.B.; Harris, A.; Johnson, D.W.; Kesselhut, J.; Li, J.J.; et al. IDEAL Study. A randomized, controlled trial of early versus late initiation of dialysis. N. Engl. J. Med. 2010, 363, 609–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivara, M.B.; Mehrotra, R. Timing of Dialysis Initiation: What Has Changed Since IDEAL? Semin. Nephrol. 2017, 37, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrotra, R.; Rivara, M.; Himmelfarb, J. Initiation of dialysis should be timely: Neither early nor late. Semin. Dial. 2013, 26, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Crews, D.C.; Scialla, J.J.; Boulware, L.E.; Navaneethan, S.D.; Nally JVJr Liu, X.; Arrigain, S.; Schold, J.D.; Ephraim, P.L.; Jolly, S.E.; Sozio, S.M.; et al. DEcIDE Network Patient Outcomes in End Stage Renal Disease Study Investigators. Comparative effectiveness of early versus conventional timing of dialysis initiation in advanced CKD. Am. J. Kidney Dis. 2014, 63, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, T.W.; Garg, A.X.; Sood, M.M.; Rigatto, C.; Chau, E.; Komenda, P.; Naimark, D.; Nesrallah, G.E.; Soroka, S.D.; Beaulieu, M.; et al. Association Between the Publication of the Initiating Dialysis Early and Late Trial and the Timing of Dialysis Initiation in Canada. JAMA Intern. Med. 2019, 179, 934–941. [Google Scholar] [CrossRef]
- Hazara, A.M.; Bhandari, S. Can incremental hemodialysis reduce early mortality rates in patients starting maintenance hemodialysis? Curr. Opin. Nephrol. Hypertens. 2019. [Google Scholar] [CrossRef]
- Wolley, M.J.; Hawley, C.M.; Johnson, D.W.; Marshall, M.R.; Roberts, M.A. Incremental and twice weekly hemodialysis in Australia and New Zealand. Nephrology 2019. [Google Scholar] [CrossRef]
- Chin, A.I.; Appasamy, S.; Carey, R.J.; Madan, N. Feasibility of Incremental 2-Times Weekly Hemodialysis in Incident Patients with Residual Kidney Function. Kidney Int. Rep. 2017, 2, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Ghahremani-Ghajar, M.; Rojas-Bautista, V.; Lau, W.L.; Pahl, M.; Hernandez, M.; Jin, A.; Reddy, U.; Chou, J.; Obi, Y.; Kalantar-Zadeh, K.; et al. Incremental Hemodialysis: The University of California Irvine Experience. Semin. Dial. 2017, 30, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Bolasco, P.; Cupisti, A.; Locatelli, F.; Caria, S.; Kalantar-Zadeh, K. Dietary Management of Incremental Transition to Dialysis Therapy: Once-Weekly Hemodialysis Combined With Low-Protein Diet. J. Ren. Nutr. 2016, 26, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.T.; Obi, Y.; Rhee, C.M.; Chou, J.A.; Kalantar-Zadeh, K. Incremental dialysis for preserving residual kidney function-Does one size fit all when initiating dialysis? Semin. Dial. 2018, 31, 343–352. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Piccoli, G.B.; Calella, P.; Brunori, G.; Pasticci, F.; Egidi, M.F.; Capizzi, I.; Bellizzi, V.; Cupisti, A. “Dietaly”: Practical issues for the nutritional management of CKD patients in Italy. BMC Nephrol. 2016, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hou, G.; Sun, X.; Chen, A.; Chai, Y. A Low-Cost, Intradialytic, Protein-Rich Meal Improves the Nutritional Status in Chinese Hemodialysis Patients. J. Ren. Nutr. 2020, 30, e27–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caetano, C.; Valente, A.; Silva, F.J.; Antunes, J.; Garagarza, C. Effect of an intradialytic protein-rich meal intake in nutritional and body composition parameters on hemodialysis patients. Clin. Nutr. ESPEN 2017, 20, 29–33. [Google Scholar] [CrossRef]
- Rhee, C.M.; You, A.S.; Koontz Parsons, T.; Tortorici, A.R.; Bross, R.; St-Jules, D.E.; Jing, J.; Lee, M.L.; Benner, D.; Kovesdy, C.P.; et al. Effect of high-protein meals during hemodialysis combined with lanthanum carbonate in hypoalbuminemic dialysis patients: Findings from the FrEDI randomized controlled trial. Nephrol. Dial. Transpl. 2017, 32, 1233–1243. [Google Scholar] [CrossRef]
- Maduro, I.P.; Nonino, C.B.; Sakamoto, L.M.; Meirelles, M.G.; Cardeal Da Costa, J.A.; Marchini, J.S. Red meat snacks for chronic hemodialysis patients: Effect on inflammatory activity (a pilot study). Ren. Fail. 2013, 35, 830–834. [Google Scholar] [CrossRef]
- Locatelli, F.; Del Vecchio, L. Hemodialysis: Intradialytic meals: Addressing a neglected problem. Nat. Rev. Nephrol. 2017, 13, 6–8. [Google Scholar] [CrossRef]
- Sezer, S.; Bal, Z.; Tutal, E.; Uyar, M.E.; Acar, N.O. Long-term oral nutrition supplementation improves outcomes in malnourished patients with chronic kidney disease on hemodialysis. JPEN J. Parenter. Enteral Nutr. 2014, 38, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Lacson, E., Jr.; Wang, W.; Zebrowski, B.; Wingard, R.; Hakim, R.M. Outcomes associated with intradialytic oral nutritional supplements in patients undergoing maintenance hemodialysis: A quality improvement report. Am. J. Kidney Dis. 2012, 60, 591–600. [Google Scholar] [CrossRef]
- Weiner, D.E.; Tighiouart, H.; Ladik, V.; Meyer, K.B.; Zager, P.G.; Johnson, D.S. Oral intradialytic nutritional supplement use and mortality in hemodialysis patients. Am. J. Kidney Dis. 2014, 63, 276–285. [Google Scholar] [CrossRef]
- Leonberg-Yoo, A.K.; Wang, W.; Weiner, D.E.; Lacson, E.J. Oral nutritional supplements and 30-day readmission rate in hypoalbuminemic maintenance hemodialysis patients. Hemodial. Int. 2019, 23, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afaghi, E.; Tayebi, A.; Ebadi, A.; Sobhani, V.; Einollahi, B.; Tayebi, M. The Effect of BCAA and ISO-WHEY Oral Nutritional Supplements on Dialysis Adequacy. Nephrourol. Mon. 2016, 8, e34993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benner, D.; Brunelli, S.M.; Brosch, B.; Wheeler, J.; Nissenson, A.R. Effects of Oral Nutritional Supplements on Mortality, Missed Dialysis Treatments, and Nutritional Markers in Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Małgorzewicz, S.; Gałęzowska, G.; Cieszyńska-Semenowicz, M.; Ratajczyk, J.; Wolska, L.; Rutkowski, P.; Jankowska, M.; Rutkowski, B.; Dębska-Ślizień, A. Amino acid profile after oral nutritional supplementation in hemodialysis patients with protein-energy wasting. Nutrition 2019, 57, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Murtas, S.; Aquilani, R.; Deiana, M.L.; Iadarola, P.; Secci, R.; Cadeddu, M.; Salis, S.; Serpi, D.; Bolasco, P. Differences in Amino Acid Loss Between High-Efficiency Hemodialysis and Postdilution and Predilution Hemodiafiltration Using High Convection Volume Exchange-A New Metabolic Scenario? A Pilot Study. J. Ren. Nutr. 2019, 29, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, T.; Matsubara, T.; Akashi, Y.; Kondo, M.; Yanagita, M. Annual Iron Loss Associated with Hemodialysis. Am. J. Nephrol. 2016, 43, 32–38. [Google Scholar] [CrossRef]
- Stegmayr, B. Dialysis Procedures Alter Metabolic Conditions. Nutrients 2017, 9, 548. [Google Scholar] [CrossRef]
- Bolasco, P.; Aquilani, R.; Murtas, S.R. Amino acid profile after oral nutritional supplementation in hemodialysis patients with protein-energy wasting. Nutrition 2019, 62, 211–212. [Google Scholar] [CrossRef]
- Dong, J.; Li, Y.J.; Xu, R.; Ikizler, T.A.; Wang, H.Y. Ketoacid Supplementation Partially Improves Metabolic Parameters in Patients on Peritoneal Dialysis. Perit. Dial. Int. 2015, 35, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Qian, J.; Sun, W.; Lin, A.; Cao, L.; Wang, Q.; Ni, Z.; Wan, Y.; Linholm, B.; Axelsson, J.; et al. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: A prospective, randomized trial. Nephrol. Dial. Transpl. 2009, 24, 2551–2558. [Google Scholar] [CrossRef] [Green Version]
- Zakar, G. Hungarian Ketosteril Cohort Study. The effect of a keto acid supplement on the course of chronic renal failure and nutritional parameters in predialysis patients and patients on regular hemodialysis therapy: The Hungarian Ketosteril Cohort Study. Wien. Klin. Wochenschr. 2001, 113, 688–694. [Google Scholar] [PubMed]
- Walser, M.; Hill, S.B.; Ward, L.; Magder, L. A crossover comparison of progression of chronic renal failure: Ketoacids versus amino acids. Kidney Int. 1993, 43, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.; Peterson, K.; Bourne, D.; Boundy, E. Effectiveness of Intradialytic Parenteral Nutrition in Treating Protein-Energy Wasting in Hemodialysis: A Rapid Systematic Review. J. Ren. Nutr. 2019, 29, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Dukkipati, R.; Kalantar-Zadeh, K.; Kopple, J.D. Is there a role for intradialytic parenteral nutrition? A review of the evidence. Am. J. Kidney Dis. 2010, 55, 352–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarav, M.; Friedman, A.N. Use of Intradialytic Parenteral Nutrition in Patients Undergoing Hemodialysis. Nutr. Clin. Pract. 2018, 33, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Peterson, K.; Bourne, D.; Boundy, E. Evidence Brief: Use of Intradialytic Parenteral Nutrition (IDPN) to Treat Malnutrition in Hemodialysis Patients. Available online: https://www.researchgate.net/publication/323839986_Evidence_Brief_Use_of_Intradialytic_Parenteral_Nutrition_IDPN_to_Treat_Malnutrition_in_Hemodialysis_Patients (accessed on 15 March 2020).
- Françoise Gachon, A.M.; Mallet, J.; Tridon, A.; Deteix, P. Analysis of proteins eluted from hemodialysis membranes. J. Biomater. Sci. Polym. Ed. 1991, 2, 263–276. [Google Scholar] [CrossRef]
- Borrelli, S.; Minutolo, R.; De Nicola, L.; Zamboli, P.; Iodice, C.; De Paola, A.; De Simone, E.; Zito, B.; Guastaferro, P.; Nigro, F.; et al. Intradialytic changes of plasma amino acid levels: Effect of hemodiafiltration with endogenous reinfusion versus acetate-free biofiltration. Blood Purif. 2010, 30, 166–171. [Google Scholar] [CrossRef]
- Bello, A.K.; Ribic, C.M.; Cournoyer, S.H.; Kiaii, M.; LeBlanc, M.; Poulin-Costello, M.; Churchill, D.N.; Muirhead, N. Transfusion Management of Incident Dialysis Patients in Canada: A Prospective Observational Study. Can. J. Kidney Health Dis. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Joki, N.; Tanaka, Y.; Iwasaki, M.; Kubo, S.; Matsukane, A.; Takahashi, Y.; Imamura, Y.; Hirahata, K.; Hase, H. Resistance to Erythropoiesis-Stimulating Agents in Pre-Dialysis and Post-Dialysis Mortality in Japanese Incident Hemodialysis Patients. Blood Purif. 2019, 47, 31–37. [Google Scholar] [CrossRef]
- Sibbel, S.P.; Koro, C.E.; Brunelli, S.M.; Cobitz, A.R. Characterization of chronic and acute ESA hyporesponse: A retrospective cohort study of hemodialysis patients. BMC Nephrol. 2015, 16, 144. [Google Scholar] [CrossRef] [Green Version]
- Rattanasompattikul, M.; Molnar, M.Z.; Zaritsky, J.J.; Hatamizadeh, P.; Jing, J.; Norris, K.C.; Kovesdy, C.P.; Kalantar-Zadeh, K. Association of malnutrition-inflammation complex and responsiveness to erythropoiesis-stimulating agents in long-term hemodialysis patients. Nephrol. Dial. Transpl. 2013, 28, 1936–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostoker, G.; Griuncelli, M.; Loridon, C.; Bourlet, T.; Illouz, E.; Benmaadi, A. A pilot study of routine colloid infusion in hypotension-prone dialysis patients unresponsive to preventive measures. J. Nephrol. 2011, 24, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Rostoker, G.; Griuncelli, M.; Loridon, C.; Bourlet, T.; Illouz, E.; Benmaadi, A. Modulation of oxidative stress and microinflammatory status by colloids in refractory dialytic hypotension. BMC Nephrol. 2011, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Fortin, P.M.; Bassett, K.; Musini, V.M. Human albumin for intradialytic hypotension in hemodialysis patients. Cochrane Database Syst. Rev. 2010, 11, CD006758. [Google Scholar]
- Naciri Bennani, H.; Jouve, T.; Boudjemaa, S.; Gil, H.; Rostaing, L. Hemodialysis coupled with rheopheresis in calciphylaxis: A winning combination. J. Clin. Apher. 2019, 34, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Robert, T.; Lionet, A.; Bataille, S.; Seret, G. Rheopheresis: A new therapeutic approach in severe calciphylaxis. Nephrology 2019. [Google Scholar] [CrossRef] [PubMed]
- Bouderlique, E.; Provot, F.; Lionet, A. Rheopheresis for Adjuvant Treatment in Resistant Calciphylaxis. Ther. Apher. Dial. 2018, 22, 413–414. [Google Scholar] [CrossRef]
- Cupisti, A.; D’Alessandro, C.; Fumagalli, G.; Vigo, V.; Meola, M.; Cianchi, C.; Egidi, M.F. Nutrition and physical activity in CKD patients. Kidney Blood Press. Res. 2014, 39, 107–113. [Google Scholar] [CrossRef]
- Salhab, N.; Karavetian, M.; Kooman, J.; Fiaccadori, E.; El Khoury, C.F. Effects of intradialytic aerobic exercise on hemodialysis patients: A systematic review and meta-analysis. J. Nephrol. 2019, 32, 549–566. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, F.K.; Smeets, J.S.J.; van der Sande, F.M.; Kooman, J.P.; van Loon, L.J.C. Dietary Protein and Physical Activity Interventions to Support Muscle Maintenance in End-Stage Renal Disease Patients on Hemodialysis. Nutrients 2019, 11, 2972. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Li, Y.; Shen, H.; Juan, J.; He, Q. Physical activity and somatic symptoms among hemodialysis patients: A multi-center study in Zhejiang, China. BMC Nephrol. 2019, 20, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calella, P.; Hernández-Sánchez, S.; Garofalo, C.; Ruiz, J.R.; Carrero, J.J.; Bellizzi, V. Exercise training in kidney transplant recipients: A systematic review. J. Nephrol. 2019, 32, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Intiso, D. The rehabilitation role in chronic kidney and end stage renal disease. Kidney Blood Press. Res. 2014, 39, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Helal, L.; Dipp, T.; Soares, D.; Soldatelli, Â.; Mills, A.L.; Paz, C.; Tenório, M.C.C.; Motta, M.T.; Barcellos, F.C.; et al. Intradialytic training in patients with end-stage renal disease: A systematic review and meta-analysis of randomized clinical trials assessing the effects of five different training interventions. J. Nephrol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Zhao, X.J.; Zeng, W.; Xu, M.C.; Ma, Y.C.; Wang, M. Effect of Intradialytic Exercise on Physical Performance and Cardiovascular Risk Factors in Patients Receiving Maintenance Hemodialysis: A Pilot and Feasibility Study. Blood Purif. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.Y.; Burrows, B.T.; King, A.C.; Wilund, K.R. A Comparison of Intradialytic versus Out-of-Clinic Exercise Training Programs for Hemodialysis Patients. Blood Purif. 2020, 49, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.P.; Rezende, P.S.; Ferreira, T.S.; Borba, G.C.; Müller, A.M.; Rovedder, P.M.E. Effects of intradialytic exercise on cardiopulmonary capacity in chronic kidney disease: Systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 2019, 9, 18470. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, B.B.; Bunæs-Næss, H.; Edvardsen, E.; Stenehjem, A.E. High-intensity interval training in hemodialysis patients: A pilot randomised controlled trial. BMJ Open Sport Exerc. Med. 2019, 5, e000617. [Google Scholar] [CrossRef] [Green Version]
- Salhab, N.; Alrukhaimi, M.; Kooman, J.; Fiaccadori, E.; Aljubori, H.; Rizk, R.; Karavetian, M. Effect of Intradialytic Exercise on Hyperphosphatemia and Malnutrition. Nutrients 2019, 11, 2464. [Google Scholar] [CrossRef] [Green Version]
- Dias, E.C.; Orcy, R.; Antunes, M.F.; Kohn, R.; Rombaldi, A.J.; Ribeiro, L.; Oses, J.P.; Ferreira, G.D.; Araújo, A.M.; Boff, I.F.; et al. Intradialytic exercise with blood flow restriction: Something to add to hemodialysis adequacy? Findings from a crossover study. Hemodial. Int. 2020, 24, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, F.; Mallamaci, F.; D’Arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino, D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 28, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A. Intradialytic nutrition and exercise: Convenience versus efficacy. Kidney Int. 2019, 96, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Riella, M.C. Nutritional evaluation of patients receiving dialysis for the management of protein-energy wasting: What is old and what is new? J. Ren. Nutr. 2013, 23, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.; Santin, F.; Brito, F.D.S.B.; Lindholm, B.; Stenvinkel, P.; Avesani, C.M. Nutritional status of older patients on hemodialysis: Which nutritional markers can best predict clinical outcomes? Nutrition 2019, 65, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Ash, S.; Campbell, K.L.; Bogard, J.; Millichamp, A. Nutrition prescription to achieve positive outcomes in chronic kidney disease: A systematic review. Nutrients 2014, 6, 416. [Google Scholar] [CrossRef] [Green Version]
- Blake, P.G. Growth hormone and malnutrition in dialysis patients. Perit. Dial. Int. 1995, 15, 210–216. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Wingard, R.L.; Hakim, R.M. Interventions to treat malnutrition in dialysis patients: The role of the dose of dialysis, intradialytic parenteral nutrition, and growth hormone. Am. J. Kidney Dis. 1995, 26, 256–265. [Google Scholar] [CrossRef]
- Moledina, D.G.; Perry Wilson, F. Pharmacologic Treatment of Common Symptoms in Dialysis Patients: A Narrative Review. Semin. Dial. 2015, 28, 377–383. [Google Scholar] [CrossRef]
- Dong, J.; Ikizler, T.A. New insights into the role of anabolic interventions in dialysis patients with protein energy wasting. Curr. Opin. Nephrol. Hypertens. 2009, 18, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Fouque, D.; Guebre-Egziabher, F.; Laville, M. Advances in anabolic interventions for malnourished dialysis patients. J. Ren. Nutr. 2003, 13, 161–165. [Google Scholar] [CrossRef]
- Oktaviana, J.; Zanker, J.; Vogrin, S.; Duque, G. The Effect of β-hydroxy-β-methylbutyrate (HMB) on Sarcopenia and Functional Frailty in Older Persons: A Systematic Review. J. Nutr. Health Aging 2019, 23, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Fitschen, P.J.; Biruete, A.; Jeong, J.; Wilund, K.R. Efficacy of beta-hydroxy-beta- methylbutyrate supplementation in maintenance hemodialysis patients. Hemodial. Int. 2017, 21, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Wallimann, T.; Riek, U.; Möddel, M. Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients. Med. Hypotheses 2017, 99, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Cobo, G.; Lindholm, B.; Stenvinkel, P. Inflammation and Protein-Energy Wasting in the Uremic Milieu. Contrib. Nephrol. 2017, 191, 58–71. [Google Scholar]
Rationale | Pros | Cons | Controversial and Unclear Issues | |
---|---|---|---|---|
Salt (and water) | Limits weight gain, improves hypertension control and dialysis tolerance. | Low sodium intake is feasible and associated with better blood pressure control and dialysis management. | Limiting salt may reduce palatability and induce anorexia; it may not be an option for patients living in retirement homes, or receiving cooked meals at home. | How to manage Na and water restriction (if any) in patients with residual kidney function. |
Potassium | Limits the risks of hyperkalemia. | Potassium is derived from diet, and its reduction in the diet can reduce the risk of hyperkalemia. | K restriction is commonly interpreted as reduced consumption of fruit and vegetables, which are associated with better cardiovascular outcomes. | The missing factor is potassium absorption, which may be enhanced in the case of slow intestinal transit, enhanced by a diet poor in fibers and use of potassium binders. |
Phosphate | Counterbalances CKD-related metabolic bone disease. | Phosphate levels are associated with vascular calcifications; a high phosphate level is cardiotoxic and is a stimulus for PTH secretion. | Phosphate content is higher in protein-rich food; therefore, too strict a reduction can be incompatible with high protein content. | The issue of phosphate added to food is only partially known. The role of additives may be more important than previously appreciated. |
Lipids | Counterbalances cardiovascular risk and accelerated atherosclerosis in dialysis patients. | Dyslipidemia is a common finding in dialysis patients; nutritional interventions should always come first. | Lipids are important sources of energy. Restriction should be balanced against the indication for high energy intake. | The role for statins in dialysis patients is controversial; physical activity may be an important non pharmacologic aid to control dyslipidemia. |
Carbo-hydrates | Counterbalances carbohydrate intolerance of uremic patients. | In several dialysis settings, more than half of the patients are diabetic; carbohydrate intolerance is commonly associated with worse outcomes. | Carbohydrates are important sources of energy. Restriction should be balanced against the indication for high energy intake in dialysis patients. | Physical activity may be an important non pharmacologic aid to improve the overall metabolic balance. |
Definitions | Advantages | Limits |
---|---|---|
Malnutrition | Intuitive and comprehensive; replaces the obsolete term “denutrition”, highlighting the importance not only of quantity of food but also of its distribution and quality. | The definition has changed over time, and the term is usually employed to describe a combination of muscle wasting, low nutrient intake, and low nutritional markers. Its meaning in the context of “poor quality nutrition” is often lost. Generic, too often based on albumin levels, now recognized as only one of the markers of malnutrition in dialysis patients (interference with mode of dialysis and inflammation). Focuses attention on intake, and less on causes of wasting (see below) |
Wasting | Proposed in 1983 by the World Health Organization to define an involuntary loss of weight of more than 10% in absence of specific diseases such as opportunistic infection, cancer, or chronic diarrhea. | Generic, the time of development is not univocally defined. Probably more able to describe rapid changes, which are not the most frequent in dialysis patients, in which the process is often long. Focuses attention on intake, which may be the result and not the cause of an underlying process. |
PEW: Protein-Energy Wasting | Widely used. proposed by the International Society of Renal Nutrition and Metabolism. Focuses attention on the relationship between malnutrition and metabolic background. | Often only considers albumin and cholesterol; may be biased in hyperlipidemia patients and does not account for the causes of low albumin levels. Includes BMI, but obese sarcopenia may be overlooked. |
MIA: Malnutrition Inflammation Atherosclerosis syndrome | Focuses attention on the relationship between malnutrition, inflammation, and comorbidity. It is a dynamic index and is sensitive to variations in clinical status. | Relies, among other indexes, on subjective evaluations, which may be operator-dependent. Includes BMI, but obese sarcopenia may be overlooked. |
Cachexia | According to the Society on Sarcopenia, Cachexia and Wasting Disorders (2008), cachexia is a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle, with or without loss of fat. According to the International Society of Renal Nutrition and Metabolism (2008), cachexia is the last stage of PEW. | The different definitions make systematic use of this term difficult. The Society on Sarcopenia, Cachexia and Wasting Disorders has introduced the concept of fatigue, which may be misleading in severe chronic diseases and in elderly patients. |
Pros | Cons- Unclear | |
---|---|---|
Interference with depuration | Concomitant dialysis may make it possible to reduce the risk of fluid overload; if meals or snacks are given at the start of treatment, excess phosphate or potassium can be removed during the dialysis session. | We lack data on interference with dialysis efficiency. Low tolerance (hypotension) can lead to shortened dialysis time, or reduced blood flow and dialysis efficiency. |
Long-term effects | Small studies report good results in selected patients. | Long-term advantages are not clear in pooled data, possibly due to the heterogeneity of indications and populations. |
Tolerance | Good, unless the patient develops hypotension during or immediately after the meal. | Old studies suggest withholding food during dialysis. However, high- protein, high-fat meals were often supplied, and weight loss was often considerable. |
Losses during dialysis | Probably minimal. | No clear contraindication. |
Additives and preservation agents | Widely used in industrial food processing to reduce contaminations and enhance duration. | Very little studied; while phosphate and potassium containing additives are usually avoided less is known about other substances and trace elements. This is a question that needs further study. |
Pros | Cons- Unclear | |
---|---|---|
Interference with depuration | Concomitant dialysis makes it possible to reduce the risk of fluid overload. | We lack data on interference with dialysis efficiency. Low tolerance may lead to shortened dialysis time. |
Tolerance - contraindications | Tolerance can be regulated by management. | Tolerance may be low (hyperosmolar media). Dyslipidemia is a reported contraindication, but few studies select for this item. |
Losses during dialysis | The metabolic balance is positive in clinical studies. | The quantity lost is not clear; the use of parenteral nutrition mainly in the last hour(s) of dialysis can reduce loss, but interaction with the dialysis membranes is not clear. |
Prescription modalities | Different products are available, potentially allowing personalization of treatment. | Experience with “nonconventional dialysis” is minimal. Re-feeding can be a life-threatening problem in dialysis patients. |
Short-term effects | Small trials report good results in selected patients. These have not been confirmed in large meta-analyses. | The metabolic machinery needs to be at least partially preserved to make it possible to exploit the anabolic potential of the substrates. This may not be the case for patients with acute problems or severe inflammation, in which excess non-metabolized proteins may increase acidosis and urea levels. |
Long-term effects | Small trials report good results in selected patients. These have not been confirmed in large meta-analyses. | Long-term effects are not clear in pooled data, possibly due to the heterogeneity of indications and populations. Some studies report an even higher mortality rate in patients treated with intradialytic nutrition. |
Suggested Frequency | Advantages | Limits | |
---|---|---|---|
Anthropometry | |||
| Each treatment Monthly Monthly Monthly Monthly | Non-invasive, provides immediate results, easily compared in different settings. | Precise measurements need a skilled operator and are relatively demanding in terms of time. |
Body composition | |||
| Monthly for body composition up to each treatment to evaluate fluid overload. | Non-invasive, provides immediate results, easily compared in different settings. | BIA should be performed at least 15 min after the end of the dialysis; patients may be reluctant to wait; the cost of the electrodes is relatively high. Difficult to standardize in patients with amputation or skin problems. Has to be interpreted with caution in obese of anorectic patients. |
Biochemical data | |||
| Monthly | Valuable tools to assess effective dietary intake and adherence to dietary prescriptions | All the main nutritional markers are affected not only by the nutritional status but also by dialysis efficiency, type of dialysis (hemodialysis vs. hemodiafiltration) and by the inflammatory status. Interpretation may be difficult, particularly in patients at high comorbidity. |
Evaluation scales | |||
| Quarterly Quarterly | Widely used assessment tools for dialysis patients, useful to compare different series. | SGA is very sensible to rapid changes, may be less sensitive to chronic changes. MIS is a mixed marker, taking into account comorbidity and inflammation, The specific weight of nutrition may be difficult to enucleate. |
Dietary habits | |||
| At least monthly | The evaluation of dietary habits is the first step to evaluate nutritional intervention as gives qualitative and quantitative information to target nutritional counseling | The recall may be biased or difficult in patients with cognitive impairment. Compliance to dietary journals may be difficult. Food frequency questionnaires are often very sensitive to the cultural context and may be difficult to adapt to a multiethnic population. |
Functional Tests | |||
| Quarterly Quarterly | Highlight the effect of nutritional status on functional abilities | Indirectly evaluation of nutritional status. Sensitive to the burden of comorbidity. |
Performance Tests | |||
| Quarterly Quarterly Quarterly | Useful to monitor the effects of a nutritional intervention; hand-grip test is increasingly used to evaluate force as an indirect measure of muscle mass. | The tests are reliable only in experienced hands. Hand grip tests may be performed in different ways, and may be affected by the presence of an arterio-venous fistula or graft. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccoli, G.B.; Lippi, F.; Fois, A.; Gendrot, L.; Nielsen, L.; Vigreux, J.; Chatrenet, A.; D’Alessandro, C.; Cabiddu, G.; Cupisti, A. Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach. Nutrients 2020, 12, 785. https://doi.org/10.3390/nu12030785
Piccoli GB, Lippi F, Fois A, Gendrot L, Nielsen L, Vigreux J, Chatrenet A, D’Alessandro C, Cabiddu G, Cupisti A. Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach. Nutrients. 2020; 12(3):785. https://doi.org/10.3390/nu12030785
Chicago/Turabian StylePiccoli, Giorgina Barbara, Francoise Lippi, Antioco Fois, Lurlynis Gendrot, Louise Nielsen, Jerome Vigreux, Antoine Chatrenet, Claudia D’Alessandro, Gianfranca Cabiddu, and Adamasco Cupisti. 2020. "Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach" Nutrients 12, no. 3: 785. https://doi.org/10.3390/nu12030785
APA StylePiccoli, G. B., Lippi, F., Fois, A., Gendrot, L., Nielsen, L., Vigreux, J., Chatrenet, A., D’Alessandro, C., Cabiddu, G., & Cupisti, A. (2020). Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach. Nutrients, 12(3), 785. https://doi.org/10.3390/nu12030785