Development and Validation of Surveys to Estimate Food Additive Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Development of IBD-Specific Food-Additive Database and Estimate of Annual Food-Additive Exposure
2.3. Development of Food Additive lists
2.4. Draft Questions to Assess Food Additive Intake
2.5. Translations
2.6. Pilot Testing
2.7. Statistical Analyses
2.8. Ethics Approval and Consent to Participate
3. Results
3.1. Litreature Review
3.2. Construct IBD-Specific Food-Additive-Database
3.3. Estimation Additive Exposure and Develop Food Additive Lists
3.4. Draft Questions to Assess Food Additive Intake
3.5. Translations
3.6. Pilot Testing
3.7. Statistical Validation
3.8. Scoring System
3.9. Using the Database to Estimate Food Additive Intake from Food Diaries
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Codex Alimentarius: General Standard for Food Additives; Report No.: 9250069634; WHO: Geneva, Switzerland, 2011.
- FAO/WHO. Safety Evaluation of Certain Food Additives and Contaminants; WHO: Geneva, Switzerland, 2011.
- Fennema, O.R. Food additives—An unending controversy. Am. J. Clin. Nutr. 1987, 46, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; de Deus Mendonça, R.; de la Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Hann, H.J.; Hong, S.N.; Kim, K.H.; Ahn, I.M.; Song, J.Y.; Lee, S.H.; Ahn, H.S. Incidence and natural course of inflammatory bowel disease in Korea, 2006–2012: A nationwide population-based study. Inflamm. Bowel Dis. 2015, 21, 623–630. [Google Scholar] [CrossRef]
- Mahmud, N.; Weir, D.G. The urban diet and Crohn’s disease: Is there a relationship? J. Eur. J. Gastroenterol. Hepatol. 2001, 13, 93–95. [Google Scholar] [CrossRef]
- Laudisi, F.; Stolfi, C.; Monteleone, G. Impact of Food Additives on Gut Homeostasis. Nutrients 2019, 11, 2334. [Google Scholar] [CrossRef] [Green Version]
- Marion-Letellier, R.; Amamou, A.; Savoye, G.; Ghosh, S. Inflammatory Bowel Diseases and Food Additives: To Add Fuel on the Flames! Nutrients 2019, 11, 1111. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.C.; Bernstein, C.N.; Vatn, M.H.; Lakatos, P.L.; Loftus, E.V.; Tysk, C.; O’Morain, C.; Moum, B.; Colombel, J.-F.; IOIBD. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 2013, 62, 630–649. [Google Scholar] [CrossRef]
- Schreiner, P.; Martinho-Grueber, M.; Studerus, D.; Vavricka, S.R.; Tilg, H.; Biedermann, L. Nutrition in Inflammatory Bowel Disease. Digestion 2020, 1–16. [Google Scholar] [CrossRef]
- Gröschel, C.; Prinz-Wohlgenannt, M.; Mesteri, I.; Karuthedom George, S.; Trawnicek, L.; Heiden, D.; Aggarwal, A.; Tennakoon, S.; Baumgartner, M.; Gasche, C.; et al. Switching to a Healthy Diet Prevents the Detrimental Effects of Western Diet in a Colitis-Associated Colorectal Cancer Model. Nutrients 2020, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Bilotta, A.J.; Cong, Y. Gut microbiota metabolite regulation of host defenses at mucosal surfaces: Implication in precision medicine. Precis. Clin. Med. 2019, 2, 110–119. [Google Scholar] [CrossRef]
- Chassaing, B.; Van de Wiele, T.; De Bodt, J.; Marzorati, M.; Gewirtz, A.T.J.G. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017, 66, 1414–1427. [Google Scholar] [CrossRef]
- Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015, 519, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, K.P.; McDonald, C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS ONE 2012, 7, e52132. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Chi, L.; Gao, B.; Tu, P.; Ru, H.; Lu, K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE 2017, 12, e0178426. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Zuo, T.; Kamm, M.A.; Colombel, J.-F.; Ng, S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 440. [Google Scholar] [CrossRef]
- Swidsinski, A.; Ung, V.; Sydora, B.C.; Loening-Baucke, V.; Doerffel, Y.; Verstraelen, H.; Fedorak, R.N. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm. Bowel Dis. 2008, 15, 359–364. [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, J.; Park, S.-H.; Do, K.H.; Yang, H.; Moon, Y.J.T.L. Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells. Toxicol. Lett. 2012, 211, 289–295. [Google Scholar] [CrossRef]
- Olendzki, B.C.; Silverstein, T.D.; Persuitte, G.M.; Ma, Y.; Baldwin, K.R.; Cave, D. An anti-inflammatory diet as treatment for inflammatory bowel disease: A case series report. Nutr. J. 2014, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Moslehi, N.; Morshedzadeh, N.; Shivappa, N.; Hébert, J.R.; Farsi, F.; Daryani, N.E. Does the inflammatory potential of diet affect disease activity in patients with inflammatory bowel disease? Nutr. J. 2019, 18, 65. [Google Scholar] [CrossRef] [Green Version]
- Sabino, J.; Lewis, J.; Colombel, J.-F. Treating Inflammatory Bowel Disease with Diet: A Taste Test. Gastroenterology 2019, 157, 295–297. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.C.; Ananthakrishnan, A.N. New approaches along the IBD course: Diet, tight control and stem cells. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 82. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Iheozor-Ejiofor, Z.; Gjuladin-Hellon, T.; Parian, A.; Matarese, L.E.; Bracewell, K.; MacDonald, J.K.; Gordon, M.; Mullin, G.E. Dietary interventions for induction and maintenance of remission in inflammatory bowel disease. Cochrane Database Syst. Rev. 2019, 2, CD012839. [Google Scholar] [CrossRef]
- Gibney, M.; Lambe, J. Estimation of food additive intake: Methodology overview. J. Food Addit. 1996, 13, 405–410. [Google Scholar] [CrossRef]
- Lee, D.; Swan, C.K.; Suskind, D.; Wahbeh, G.; Vanamala, J.; Baldassano, R.N.; Leonard, M.B.; Lampe, J.W. Children with Crohn’s disease frequently consume select food additives. Dig. Dis. Sci. 2018, 63, 2722–2728. [Google Scholar] [CrossRef]
- Arrieta, M.-C.; Stiemsma, L.T.; Amenyogbe, N.; Brown, E.M.; Finlay, B. The intestinal microbiome in early life: Health and disease. Front. Immunol. 2014, 5, 427. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, P.A.; Morón, B.; Becker, H.M.; Lang, S.; Atrott, K.; Spalinger, M.R.; Scharl, M.; Wojtal, K.A.; Fischbeck-Terhalle, A.; Frey-Wagner, I.; et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: Role of the NLRP3 inflammasome. Gut 2017, 66, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Feddersen, R.L.; Thorp, S.N. Sodium Carboxymethylcellulose; Industrial gums; Elsevier: Amsterdam, The Netherlands, 1993; pp. 537–578. [Google Scholar]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C.W. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J. Clin. Epidemiol. 2010, 63, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef]
- Zhang, M.; Binns, C.; Lee, A. A Quantitative Food Frequency Questionnaire for Women in Southeast China: Development and Reproducibility. Asia Pac. J. Public Health 2005, 17, 29–35. [Google Scholar] [CrossRef]
- Hebden, L.; Kostan, E.; O’Leary, F.; Hodge, A.; Allman-Farinelli, M. Validity and Reproducibility of a Food Frequency Questionnaire as a Measure of Recent Dietary Intake in Young Adults. PLoS ONE 2013, 8, e75156. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Laudisi, F.; Di Fusco, D.; Dinallo, V.; Stolfi, C.; Di Grazia, A.; Marafini, I.; Colantoni, A.; Ortenzi, A.; Alteri, C.; Guerrier, F.; et al. The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress-Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Watt, J.; Marcus, R. Carrageenan-induced ulceration of the large intestine in the guinea pig. Gut 1971, 12, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Frankenfeld, C.L.; Sikaroodi, M.; Lamb, E.; Shoemaker, S.; Gillevet, P.M. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann. Epidemiol. 2015, 25, 736–742.e4. [Google Scholar] [CrossRef]
- Qin, X.F. Impaired inactivation of digestive proteases by deconjugated bilirubin: The possible mechanism for inflammatory bowel disease. Med. Hypotheses 2002, 59, 159–163. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Harding, A.; Menghini, P.; Himmelman, C.; Retuerto, M.; Nickerson, K.P.; Lam, M.; Croniger, C.M.; McLean, M.H.; Durum, S.K.; et al. The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease–like ileitis. Inflamm. Bowel Dis. 2018, 24, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S. Hypothesis revisited: Toothpaste and the cause of Crohn’s disease. Lancet 1990, 336, 1096–1097. [Google Scholar] [CrossRef]
- Ogimoto, M.; Suzuki, K.; Haneishi, N.; Kikuchi, Y.; Takanashi, M.; Tomioka, N.; Uematsu, Y.; Monma, K. Aluminium content of foods originating from aluminium-containing food additives. Food Addit. Contam. Part B 2016, 9, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Carbonero, F.; Benefiel, A.; Alizadeh-Ghamsari, A.; Gaskins, H.R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 2012, 3, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenkranz, R.R. Impacting the Home Environment Toward the Prevention of Childhood Obesity. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2008. [Google Scholar]
- Hankin, J.H.; Wilkens, L.R. Development and validation of dietary assessment methods for culturally diverse populations. Am. J. Clin. Nutr. 1994, 59, 198S–200S. [Google Scholar] [CrossRef]
- Chambers Iv, E.; Godwin, S.L.; Vecchio, F.A. Cognitive Strategies for Reporting Portion Sizes Using Dietary Recall Procedures. J. Am. Diet. Assoc. 2000, 100, 891–897. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Ho, S.C. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac. J. Clin. Nutr. 2009, 18, 240. [Google Scholar]
- Schoeller, D.A. Limitations in the assessment of dietary energy intake by self-report. Metabolism 1995, 44, 18–22. [Google Scholar] [CrossRef]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31, 38–45. [Google Scholar]
- Baranowski, T.; Sprague, D.; Baranowski, J.H.; Harrison, J.J.J. Accuracy of maternal dietary recall for preschool children. J. Am. Diet. Assoc. 1991, 91, 669–674. [Google Scholar]
- Berney, L.R.; Blane, D.B. Collecting retrospective data: Accuracy of recall after 50 years judged against historical records. Soc. Sci. Med. 1997, 45, 1519–1525. [Google Scholar] [CrossRef]
- Friedenreich, C.M. Improving long-term recall in epidemiologic studies. Epidemiology 1994, 5, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, J.; Robinson, C.; Danhof, H.; Knetsch, C.; Van Leeuwen, H.; Lawley, T.; Auchtung, J.M.; Britton, R.A. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 2018, 553, 291–294. [Google Scholar] [CrossRef] [PubMed]
Step one: Literature review Step two: Develop IBD-specific food-additive-database and estimate annual food additive exposure Step three: Develop food additive lists Step four: Draft questions to assess food additive intake Step five: Translations Step six: Pilot testing Step seven: Statistical validation |
Annual exposure = additive food concentration (mg/kg) a/1000 × food amount per day (g) b × 365 = mg/year
|
Codex Category Number | Codex Food Category Description | Additive MPL (mg/kg) | Serve Size (g) | Estimated Additive (mg) | Serves/day | Estimated Yearly Exposure (mg) |
---|---|---|---|---|---|---|
01.8.2 | Dried whey and whey products | 1140 | 30 | 34.2 | 1 | 12483 |
12.5.2 | Mixes for soups and broths | 570 | 50 | 28.5 | 1 | 10402.5 |
12.6.3 | Mixes for sauces and gravies | 570 | 50 | 28.5 | 1 | 10402.5 |
01.5.2 | Milk and cream powder analogues | 570 | 30 | 17.1 | 1 | 6241.5 |
12.1.1 | Salt | 1000 | 2.3 | 2.3 | 1 | 839.5 |
5.3 | Chewing gum | 100 | 2.8 | 0.28 | 1 | 102.2 |
01.3.2 | Beverage whiteners—lowest level in analysed foods | 3 | 12 | 0.036 | 1 | 13.14 |
12.2.2 | Seasonings and condiments | 1000 | 5 | 0.005 | 1 | 0 |
Question | Percent Agreement | Kappa Coefficient | p2 |
---|---|---|---|
Breast fed | 98.3 | 0.959 | <0.001 |
Food at infancy | 77.6 | 0.311 | <0.05 |
Home grown produce | |||
3a. 4 month-1 year | 86.2 | 0.566 | <0.001 |
3b. 1–5 years | 91.4 | 0.536 | <0.001 |
3c. 5–10 years | 89.7 | 0.659 | <0.001 |
3d. 10–18 years. | 89.7 | 0.760 | <0.001 |
Place of shopping | 98.3 | 0.701 | <0.001 |
Processed dairy consumption | |||
5a. 4 month-1 year | 89.7 | 0.703 | <0.001 |
5b. 1–5 years | 75.9 | 0.421 | <0.001 |
5c. 5–10 years | 72.4 | 0.377 | <0.05 |
5d. 10–18 years. | 77.6 | 0.470 | <0.001 |
Processed meat consumption | |||
6a. 4 month-1 year | 93.1 | Could not calculate | |
6b. 1–5 years | 81.0 | 0.504 | <0.001 |
6c. 5–10 years | 77.6 | 0.502 | <0.001 |
6d. 10–18 years. | 81.0 | 0.611 | <0.001 |
Processed grain consumption | |||
7a. 4 month-1 year | 84.5 | 0.439 | <0.001 |
7b. 1–5 years | 93.1 | 0.661 | <0.001 |
7c. 5–10 years | 91.4 | 0.685 | <0.001 |
7d. 10–18 years. | 93.6 | 0.570 | <0.001 |
Processed fruits consumption | |||
8a. 4 month-1 year | 84.5 | 0.298 | <0.001 |
8b. 1–5 years | 93.1 | 0.552 | <0.001 |
8c. 5–10 years | 98.3 | 0.746 | <0.001 |
8d. 10–18 years. | 84.5 | Could not calculate | |
Processed vegetables consumption | |||
9a. 4 month-1 year | 84.5 | 0.499 | <0.001 |
9b. 1–5 years | 82.8 | 0.552 | <0.001 |
9c. 5–10 years | 77.6 | 0.520 | <0.001 |
9d. 10–18 years. | 81.0 | 0.595 | <0.001 |
Fast food consumption | |||
10a. 4 month-1 year | 100 | Could not calculate | |
10b. 1–5 years | 84.5 | 0.512 | <0.001 |
10c. 5–10 years | 84.5 | 0.679 | <0.001 |
10d. 10–18 years. | 87.9 | 0.757 | <0.001 |
Soft drinks consumption | |||
11a. 4 month-1 year | 94.8 | 0.374 | <0.001 |
11b. 1–5 years | 89.7 | 0.731 | <0.001 |
11c. 5–10 years | 86.2 | 0.724 | <0.001 |
11d. 10–18 years. | 87.9 | 0.736 | <0.001 |
Snacks consumption | |||
12a. 4 month-1 year | 81.0 | 0.580 | <0.001 |
12b. 1–5 years | 77.6 | 0.533 | <0.001 |
12c. 5–10 years | 81.0 | 0.417 | <0.001 |
12d. 10–18 years. | 86.2 | 0.583 | <0.001 |
Food List | ICC | p2 |
---|---|---|
1. Store-bought pasta, pasta salad, or noodles (e.g., packet spaghetti, pre-made ravioli, pre-made pasta salad) | 0.30 | <0.001 |
2. Supermarket bread (e.g., packaged sliced bread, packaged wraps) | 0.50 | <0.001 |
3.. Crackers (e.g., rice-cakes, savory crackers) | 0.73 | <0.001 |
4.Packaged soup (e.g., Cup-of Soup, broth in a can, soup mixes by Heinz or Campbell) | 0.97 | <0.001 |
5. Processed meats and products (e.g., deli meat, sausages, burgers, chicken nuggets) | 0.48 | <0.001 |
6. Processed seafood and products (e.g., canned clams, canned salmon, fish fingers, fried seafood, crab cakes) | 0.77 | <0.001 |
7. Processed vegetables (e.g., canned vegetables, pickled vegetables, fermented vegetables, vegetable juice | 0.64 | <0.001 |
8. Processed fruits and products (e.g., dried fruit, canned fruit, fruit compote, jam, fruit juice) | 0.69 | <0.001 |
9. Flavored milk (e.g., Moo™ chocolate milk, Dare™ iced coffee) | 0.41 | <0.001 |
10. Processed cream products (e.g., sour cream, sour milk, kefir, pouring cream, whipped cream) | 0.67 | <0.001 |
11. Milky desserts (e.g., chocolate mousse, vanilla pudding, flavored yoghurt) | 0.70 | <0.001 |
12. Sugars and syrups (e.g., golden syrup, maple syrup, sugar toppings) | 0.12 | <0.05 |
13. Chewing gum (e.g., Extra™) | 0.69 | <0.001 |
14. Sweet baked foods (e.g., cakes, biscuits, muesli bars, gluten-free cake) | 0.75 | <0.001 |
15. Bottled Tea | 0.58 | <0.001 |
16. Coffee and coffee substitutes (e.g., instant coffee, espresso coffee, Echo™) | 0.45 | <0.001 |
17. Sports Drinks (e.g., Powerade™, Gatorade™) | 0.54 | <0.001 |
18. Diet drinks or sugar substitutes (e.g., Diet Coke™, Pepsi-max™, diet iced-tea, drinks sweetened with Equal™, Splenda™, Sweet ‘n’ Low™) | 0.82 | <0.001 |
19. Alcoholic drinks (e.g., beer, wine, cider, spirits) | 0.94 | <0.001 |
20. Vitamin pills (e.g., fish oil capsules, multivitamin pills) | 0.59 | <0.001 |
21. Whey proteins and products (e.g., protein bar, protein powder) | 0.52 | <0.001 |
22. Egg-based desserts (e.g., custard) | 0.48 | <0.001 |
23. Milk powder (e.g., instant dry milk) | 0.67 | <0.001 |
24. Salad dressing (e.g., mayonnaise, tartar sauce, Thousand Island dressing) | 0.77 | <0.05 |
25. Sweets and lollies (e.g., liquorice, mints, skittles, marshmallows, chocolates) | 0.83 | <0.001 |
26. Coffee-whitener (e.g., Coffee-mate™) | 0.92 | <0.001 |
Food List | CODEX Category (number) | Participants Intake | IBD Additives (mg/kg) | Estimated Intake (mg) |
---|---|---|---|---|
Sport drink | Sport drinks (14.1.4) | 1200 mL per month | Sulfites (70) Aspartame (400) Sucralose (600) | 1008 5760 8640 |
Food (g) | CODEX Category (number) | IBD-Food Additive (E number) | Additive MPL (mg/kg) | Consumed (mg) |
---|---|---|---|---|
Praise deli-style dijonaise (20) | Emulsified sauces and dips (12.6.1) | (1) Sulphites (E223) | 350 | 7 |
| 7500 No MPL; used at concentrations of 0.1–0.5% | 150 10 (based on 0.5% w/v) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trakman, G.L.; Lin, W.; Wilson-O’Brien, A.L.; Stanley, A.; Hamilton, A.L.; Tang, W.; Or, L.; Ching, J.; Morrison, M.; Yu, J.; et al. Development and Validation of Surveys to Estimate Food Additive Intake. Nutrients 2020, 12, 812. https://doi.org/10.3390/nu12030812
Trakman GL, Lin W, Wilson-O’Brien AL, Stanley A, Hamilton AL, Tang W, Or L, Ching J, Morrison M, Yu J, et al. Development and Validation of Surveys to Estimate Food Additive Intake. Nutrients. 2020; 12(3):812. https://doi.org/10.3390/nu12030812
Chicago/Turabian StyleTrakman, Gina L., Winnie Lin, Amy L. Wilson-O’Brien, Annalise Stanley, Amy L. Hamilton, Whitney Tang, Leo Or, Jessica Ching, Mark Morrison, Jun Yu, and et al. 2020. "Development and Validation of Surveys to Estimate Food Additive Intake" Nutrients 12, no. 3: 812. https://doi.org/10.3390/nu12030812
APA StyleTrakman, G. L., Lin, W., Wilson-O’Brien, A. L., Stanley, A., Hamilton, A. L., Tang, W., Or, L., Ching, J., Morrison, M., Yu, J., Ng, S. C., & Kamm, M. A. (2020). Development and Validation of Surveys to Estimate Food Additive Intake. Nutrients, 12(3), 812. https://doi.org/10.3390/nu12030812