Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria
2.2. Measurement of Optical Density of Bacterial Suspension: Calibration
2.3. Model Medium for Experiments
2.4. Preparation of Acrylamide “Stock” Solution
2.5. Preliminary Assessment of Acrylamide Impact on Lactobacillus Growth
- ++++ very intense growth (colonies cover the whole surface, creating lawn plates)
- +++ intense growth (too many colonies to count, but they are distinguishable)
- ++ good growth (30–300 colonies/plate)
- + only a few colonies (<30 colonies/plate)
- − no growth
2.6. Determination of Cell Concentration and Viability by Flow Cytometry
2.7. Statistical Analysis
3. Results
3.1. Impact of Acrylamide on LAB Growth on Solid Medium
3.2. Impact of AA on Lactic Acid Bacteria Concentration in Medium
3.3. Acrylamide Impact on LAB Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IARC. Acrylamide. In Some Industrial Chemicals. IARC Monographs on Evaluation of Carcinogenic Risks to Humans; World Health Organization, International Agency for Research on Cancer: Lyon, France, 1994; Volume 60, pp. 389–433. [Google Scholar]
- Duda-Chodak, A.; Wajda, Ł.; Tarko, T.; Sroka, P.; Satora, P. A review of the interactions between acrylamide, microorganisms and food components. Food Funct. 2016, 7, 1282–1295. [Google Scholar] [CrossRef] [PubMed]
- Shipp, A.; Lawrence, G.; Gentry, R.; McDonald, T.; Bartow, H.; Bounds, J.; Macdonald, N.; Clewell, H.; Allen, B.; Van Landingham, C. Acrylamide: Review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit. Rev. Toxicol. 2006, 36, 481–608. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Li, J.; Li, X.; Zhang, L.; Shi, F. Reproductive toxicity in acrylamide-treated female mice. Reprod. Toxicol. 2014, 46, 121–128. [Google Scholar] [CrossRef]
- Parzefall, W. Minireview on the toxicity of dietary acrylamide. Food Chem. Toxicol. 2008, 46, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Erkekoglu, P.; Baydar, T. Acrylamide neurotoxicity. Nutr. Neurosci 2014, 17, 49–57. [Google Scholar] [CrossRef]
- Besaratinia, A.; Pfeifer, G.P. DNA adduction and mutagenic properties of acrylamide. Mutat. Res. 2005, 580, 31–40. [Google Scholar] [CrossRef]
- Wang, R.S.; McDaniel, L.P.; Manjanatha, M.G.; Shelton, S.D.; Doerge, D.R.; Mei, N. Mutagenicity of acrylamide and glycidamide in the testes of big blue mice. Toxicol. Sci. 2010, 117, 72–80. [Google Scholar] [CrossRef]
- Virk-Baker, M.K.; Nagy, T.R.; Barnes, S.; Groopman, J. Dietary acrylamide and human cancer: A systematic review of literature. Nutr. Cancer 2014, 66, 774–790. [Google Scholar] [CrossRef] [Green Version]
- Al Karim, S.; El Assouli, S.; Ali, S.; Ayuob, N.; El Assouli, Z. Effects of low dose acrylamide on the rat reproductive organs structure, fertility and gene integrity. Asian Pac. J. Reprod. 2015, 4, 179–187. [Google Scholar] [CrossRef]
- Von Tungeln, L.S.; Churchwell, M.I.; Doerge, D.R.; Shaddock, J.G.; McGarrity, L.J.; Heflich, R.H.; Gamboa da Costa, G.; Marques, M.M.; Beland, F.A. DNA adduct formation and induction of micronuclei and mutations in B6C3F1/Tk mice treated neonatally with acrylamide or glycidamide. Int. J. Cancer 2009, 124, 2006–2015. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Tanii, H. Mutagenicity of acrylamide and its analogues in Salmonella typhimurium. Mutat. Res. 1985, 158, 129–133. [Google Scholar] [CrossRef]
- Tsuda, H.; Shimizu, C.S.; Taketomi, M.K.; Hasegawa, M.M.; Hamada, A.; Kawata, K.M.; Inui, N. Acrylamide; induction of DNA damage, chromosomal aberrations and cell transformation without gene mutations. Mutagenesis 1993, 8, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Starostina, N.G.; Lusta, K.A.; Fikhte, B.A. Morphological and physiological changes in bacterial cells treated with acrylamide. Eur. J. Appl. Microbiol. Biotechnol. 1983, 18, 264–270. [Google Scholar] [CrossRef]
- Kwolek-Mirek, M.; Zadrag-Tęcza, R.; Bednarska, S.; Bartosz, G. Yeast Saccharomyces cerevisiae devoid of Cu, Zn-superoxide dismutase as a cellular model to study acrylamide toxicity. Toxicol. In Vitro 2010, 25, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sharma, N.N.; Bhalla, T.C. Amidases: Versatile enzymes in nature. Rev. Environ. Sci. Biotechnol. 2009, 8, 343–366. [Google Scholar] [CrossRef]
- Wang, C.C.; Lee, C.-M. Isolation of the acrylamide denitrifying bacteria from a wastewater treatment system manufactured with polyacrylonitrile fiber. Curr. Microbiol. 2007, 55, 339–343. [Google Scholar] [CrossRef]
- Ciskanik, L.M.; Wilczek, J.M.; Fallon, R.D. Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Appl. Environ. Microbiol. 1995, 61, 998–1003. [Google Scholar] [CrossRef] [Green Version]
- Buranasilp, K.; Charoenpanich, J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. J. Environ. Sci. (China) 2011, 23, 396–403. [Google Scholar] [CrossRef]
- Sathesh-Prabu, C.; Thatheyus, A.J. Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. Int. Biodeterior. Biodegrad. 2007, 60, 69–73. [Google Scholar] [CrossRef]
- Clamens, T.; Rosay, T.; Crépin, A.; Grandjean, T.; Kentache, T.; Hardouin, J.; Bortolotti, P.; Neidig, A.; Mooij, M.; Hillion, M.; et al. The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence. Sci. Rep. 2017, 7, 41178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukor, M.Y.; Gusmanizar, N.; Azmi, N.A.; Hamid, M.; Ramli, J.; Shamaan, N.A.; Syed, M.A. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J. Environ. Biol. 2009, 30, 57–64. [Google Scholar] [PubMed]
- Nawaz, M.S.; Khan, A.A.; Seng, J.E.; Leakey, J.E.; Siitonen, P.H.; Cerniglia, E. Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Appl. Environ. Microbiol. 1994, 60, 3343–3348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, M.S.; Khan, A.A.; Bhattacharayya, D.; Siitonen, P.H.; Cerniglia, C.E. Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J. Bacteriol. 1996, 178, 2397–2401. [Google Scholar] [CrossRef] [Green Version]
- Syed, S.A.; Ahmad, S.A.; Kusnin, N.; Shukor, M.Y. Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR.Y27. Afr. J. Biotechol. 2012, 11, 329–336. [Google Scholar] [CrossRef]
- Corthésy-Theulaz, I.; Porta, N.; Pringault, E.; Racine, L.; Bogdanova, A.; Kraehenbuhl, J.-P.; Blum, A.L.; Michetti, P. Adhesion of Helicobacter pylori to polarized T84 human intestinal cell monolayers is pH dependent. Infect. Immun. 1996, 64, 3827–3832. [Google Scholar] [CrossRef] [Green Version]
- Lippolis, R.; Siciliano, R.A.; Mazzeo, M.F.; Abbrescia, A.; Gnoni, A.; Sardanelli, A.M.; Papa, S. Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains. Proteome Sci. 2013, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Mesnage, S.; Chau, F.; Dubost, L.; Arthur, M. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism. J. Biol. Chem. 2008, 283, 19845–19853. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, A.H.; Stoof, J.; Poppelaars, S.W.; Bereswill, S.; Homuth, G.; Kist, M.; Kuipers, E.J.; Kusters, J.G. Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori Fur repressor. J. Biol. Chem. 2003, 278, 9052–9057. [Google Scholar] [CrossRef] [Green Version]
- Bury-Moné, S.; Skouloubris, S.; Dauga, C.; Thiberge, J.M.; Dailidiene, D.; Berg, D.E.; Labigne, A.; De Reuse, H. Presence of active aliphatic amidases in Helicobacter species able to colonize the stomach. Infect. Immun. 2003, 71, 5613–5622. [Google Scholar] [CrossRef] [Green Version]
- Vermassen, A.; Leroy, S.; Talon, R.; Provot, C.; Popowska, M.; Desvaux, M. Cell wall hydrolases in bacteria: Insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol. 2019, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Krajmalnik-Brown, R.; Ilhan, Z.E.; Kang, D.W.; DiBaise, J.K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 2012, 27, 201–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ongol, M.P. Lactic acid bacteria in health and disease. Rwanda J. Health Sci. 2012, 1, 39–50. [Google Scholar]
- George, F.; Daniel, C.; Thomas, M.; Singer, E.; Guilbaud, A.; Tessier, F.J.; Revol-Junelles, A.M.; Borges, F.; Foligné, B. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Front. Microbiol. 2018, 27, 2899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.A. Beneficial role of lactic acid bacteria in food preservation and human health: A review. Res. J. Microbiol. 2010, 5, 1213–1221. [Google Scholar] [CrossRef]
- Masood, M.I.; Qadir, M.I.; Shirazi, J.H.; Khan, I.U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 2011, 37, 91–98. [Google Scholar] [CrossRef]
- Colombo, M.; Castilho, N.P.A.; Todorov, S.D.; Nero, L.A. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol. 2018, 18, 219. [Google Scholar] [CrossRef]
- Najjari, A.; Amairi, H.; Chaillou, S.; Mora, D.; Boudabous, A.; Zagorec, M.; Ouzari, H. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei. J. Adv. Res. 2016, 7, 155–163. [Google Scholar] [CrossRef]
- García-Cano, I.; Rocha-Mendoza, D.; Ortega-Anaya, J.; Wang, K.; Kosmerl, E.; Jiménez-Flores, R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl. Microbiol. Biotechnol. 2019, 103, 5243–5257. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Niño, J.C.; Cavazos-Garduño, A.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Hernández-Mendoza, A.; García, H.S. In vitro study of the potential protective role of Lactobacillus strains by acrylamide binding. J. Food Saf. 2014, 34, 62–68. [Google Scholar] [CrossRef]
- Serrano-Niño, J.C.; Cavazos-Garduño, A.; Cantú-Cornelio, F.; González-Córdova, A.F.; Vallejo-Córdoba, B.; Hernández-Mendoza, A.; García, H.S. In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from Lactobacillus strains. LWT Food Sci. Technol. 2015, 64, 1334–1341. [Google Scholar] [CrossRef]
- Rivas-Jimenez, L.; Ramírez-Ortiz, K.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Garcia, H.S.; Hernandez-Mendoza, A. Evaluation of acrylamide-removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system. Microbiol. Res. 2016, 190, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Schabacker, J.; Schwend, T.; Wink, M. Reduction of acrylamide uptake by dietary proteins in a Caco-2 gut model. J. Agric. Food Chem. 2004, 52, 4021–4025. [Google Scholar] [CrossRef]
- Hamzalıoğlu, A.; Gökmen, V. Investigation of the reactions of acrylamide during in vitro multistep enzymatic digestion of thermally processed foods. Food Funct. 2015, 6, 108–113. [Google Scholar] [CrossRef]
- Keramat, J.; LeBail, A.; Prost, C.; Soltanizadeh, N. Acrylamide in foods: Chemistry and analysis. A Review. Food Bioprocess Technol. 2011, 4, 340–363. [Google Scholar] [CrossRef]
- Mojska, H.; Gielecińska, I.; Szponar, L.; Ołtarzewski, M. Estimation of the dietary acrylamide exposure of the Polish population. Food Chem. Toxicol. 2010, 48, 2090–2096. [Google Scholar] [CrossRef]
- FDA Survey 2015. Survey Data on Acrylamide in Food. Available online: https://www.fda.gov/food/chemicals/survey-data-acrylamide-food (accessed on 19 March 2020).
- Friedman, M.; Levin, C.E. Review of methods for the reduction of dietary content and toxicity of acrylamide. J. Agric. Food Chem. 2008, 56, 6113–6140. [Google Scholar] [CrossRef]
- Dominici, L.; Moretti, M.; Villarini, M.; Vannini, S.; Cenci, G.; Zampino, C.; Traina, G. In vivo antigenotoxic properties of a commercial prebiotic supplement containing bifidobacterial. Int. J. Probiotics Prebiotics 2011, 6, 179–186. [Google Scholar]
- Blom, H.; Baardseth, P.; Sundt, T.W.; Slinde, E. Lactic acid fermentation reduces acrylamide formed during production of fried potato products. Asp. Appl. Biol. 2009, 97, 67–74. [Google Scholar]
- Nachi, I.; Fhoula, I.; Smida, I.; Ben Taher, I.; Chouaibi, M.; Jaunbergs, J.; Bartkevics, V.; Hassouna, M. Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT 2018, 92, 435–441. [Google Scholar] [CrossRef]
- Rul, F. Yogurt. Microbiology, Organoleptic Properties and Probiotic Potential. In Fermented Foods, Part II: Technological Interventions, 1st ed.; Ray, R.C., Montet, D., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 418–450. [Google Scholar]
- Liu, M.; Bayjanov, J.R.; Renckens, B.; Nauta, A.; Siezen, R.J. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genomics 2010, 11, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalca, S.H.; Şimşek, Ö.; Gursoy, O.; Yilmaz, Y. Selection of autolytic lactic acid bacteria as potential adjunct cultures to accelerate ripening of white-brined cheeses. Mljekarstvo 2018, 68, 320–330. [Google Scholar] [CrossRef]
- Pang, X.-Y.; Cui, W.-M.; Liu, L.; Zhang, S.-W.; Lv, J.-P. Gene knockout and overexpression analysis revealed the role of N-acetylmuramidase in autolysis of Lactobacillus delbrueckii subsp. bulgaricus Ljj-6. PLoS ONE 2014, 9, e104829. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.; Schneewind, O. Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: Repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J. 1998, 17, 4639–4646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.C.; Tan, K.; Joachimiak, A.; Bernhardt, T.G. A conformational switch controls cell wall remodelling enzymes required for bacterial cell division. Mol. Microbiol. 2012, 85, 768–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Puelles, J.M.; Sanz, J.M.; García, J.L.; García, E. Cloning and expression of gene fragments encoding the cholinebinding domain of pneumococcal murein hydrolases. Gene 1990, 89, 69–75. [Google Scholar] [CrossRef]
- Joris, B.; Englebert, S.; Chu, C.P.; Kariyama, R.; Daneo-Moore, L.; Shockman, G.D.; Ghuysen, J.M. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett. 1992, 70, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Schleifer, K.H.; Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 1972, 36, 407–477. [Google Scholar] [CrossRef] [Green Version]
- Shockman, G.D.; Höltje, J.-V. Microbial peptidoglycan (murein) hydrolases. New Compr. Biochem. 1994, 27, 131–166. [Google Scholar] [CrossRef]
- Sánchez-Puelles, J.M.; Ronda, C.; García, J.L.; García, P.; López, R.; García, E. Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur. J. Biochem. 1986, 158, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Schirner, K.; Marles-Wright, J.; Lewis, R.J.; Errington, J. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J. 2009, 28, 830–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapot-Chartier, M.; Kulakauskas, S. Cell wall structure and function in lactic acid bacteria. Microb. Cell Fact. 2014, 13, S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Liu, W.; Li, L.; Zhao, H.-Y.; Sun, H.-Y.; Meng, M.-H.; Zhang, S.; Shao, M.-L. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 271–277. [Google Scholar] [CrossRef]
- Bernard, E.; Rolain, T.; Courtin, P.; Guillot, A.; Langella, P.; Hols, P.; Chapot-Chartier, M.P. Characterization of O-acetylation of N-acetylglucosamine: A novel structural variation of bacterial peptidoglycan. J. Biol. Chem. 2011, 286, 23950–23958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, E.; Rolain, T.; Courtin, P.; Hols, P.; Chapot-Chartier, M.P. Identification of the amidotransferase AsnB1 as being responsible for meso-diaminopimelic acid amidation in Lactobacillus plantarum peptidoglycan. J. Bacteriol. 2011, 193, 6323–6330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef] [PubMed]
- Vergères, P.; Blaser, J. Amikacin, ceftazidime, and flucloxacillin against suspended and adherent Pseudomonas aeruginosa and Staphylococcus epidermidis in an in vitro model of infection. J. Infect. Dis. 1992, 165, 281–289. [Google Scholar] [CrossRef]
- Gómez, N.C.; Ramiro, J.M.; Quecan, B.X.; de Melo Franco, B.D. Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation. Front. Microbiol. 2016, 7, 863. [Google Scholar] [CrossRef] [Green Version]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; Gómez de Cadiñanos, L.P.; Requena, T.; Peláez, C.; Martínez-Cuesta, M.C. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. Int. 2014, 57, 44–50. [Google Scholar] [CrossRef]
Bacteria Strain | AA Concentration (μg/mL) | Growth Evaluation (Mean of 5 Replicates) |
---|---|---|
Lactobacillus plantarum | Control | ++ |
10 | ++ | |
50 | ++ | |
100 | ++ | |
250 | ++ | |
500 | ++ | |
1000 | +++ | |
Lactobacillus brevis | Control | ++ |
10 | ++ | |
50 | ++ | |
100 | ++ | |
250 | ++ | |
500 | +++ | |
1000 | +++ | |
Lactobacillus lactis sp. lactis | Control | ++ |
10 | ++ | |
50 | ++ | |
100 | ++ | |
250 | ++ | |
500 | +++ | |
1000 | +++ | |
Lactobacillus casei | Control | ++ |
10 | ++ | |
50 | ++ | |
100 | ++ | |
250 | ++ | |
500 | ++ | |
1000 | ++ | |
Lactobacillus acidophilus LA-5 | Control | ++ |
10 | ++ | |
50 | ++ | |
100 | ++ | |
250 | ++ | |
500 | ++ | |
1000 | +++ | |
Lactobacillus casei LC-01 | Control | ++ |
10 | ++ | |
50 | ++ | |
100 | ++ | |
250 | ++ | |
500 | ++ | |
1000 | ++ |
Bacteria Strain | % of Cells | Time | F | p | ||
---|---|---|---|---|---|---|
0 h | 24 h | 48 h | ||||
Lactobacillus acidophilus LA-5 | alive | 99.6 ± 0.35 a | 91.92 ± 2.08 b | 93.04 ± 3.43 c | 761.35 | <0.001 |
injured | 0.39 ± 0.35 a | 6.60 ± 1.85 b | 5.34 ± 2.57 c | 937.62 | <0.001 | |
dead | 0.02 ± 0.02 a | 1.48 ± 0.48 b | 1.63 ± 0.93 b | 183.83 | <0.001 | |
Lactobacillus brevis | alive | 98.76 ± 0.27 a | 99.51 ± 0.25 b | 99.54 ± 0.10 b | 107.44 | <0.001 |
injured | 0.89 ± 0.26 a | 0.16 ± 0.06 b | 0.14 ± 0.03 b | 227.62 | <0.001 | |
dead | 0.35 ± 0.03 | 0.33 ± 0.20 | 0.32 ± 0.08 | 0.47 | 0.630 | |
Lactobacillus plantarum | alive | 97.42 ± 0.51 a | 97.62 ± 0.89 a | 95.09 ± 1.23 b | 143.33 | <0.001 |
injured | 1.00 ± 0.17 a | 1.20 ± 0.36 b | 3.70 ± 1.33 c | 851.52 | <0.001 | |
dead | 1.58 ± 0.43 a | 1.18 ± 0.62 b | 1.21 ± 0.61 b | 7.59 | 0.002 | |
Morphology Lactobacillus plantarum | bacillus | 95.09 ± 2.35 a | 98.15 ± 0.50 b | 73.46 ± 15.96 c | 3358.82 | <0.001 |
diplobacillus | 4.91 ± 2.35 a | 1.77 ± 0.50 b | 24.03 ± 13.47 c | 2909.62 | <0.001 | |
streptobacillus | 0 ± 0.01 a | 0.08 ± 0.02 b | 2.52 ± 3.18 c | 1078.97 | <0.001 |
Bacteria Strain | % of Cells | Acrylamide Concentration (μg/mL) | F | p | ||||
---|---|---|---|---|---|---|---|---|
0 | 7.5 | 15 | 30 | 100 | ||||
Lactobacillus acidophilus LA-5 | alive | 93.86 (0.34) a | 94.79 (0.68) a | 93.48 (0.93) a | 97.18 (0.10) b | 94.95 (0.43) a | 31.67 | <0.001 |
injured | 5.02 (0.27) a | 4.34 (0.54) a | 4.99 (0.57) a | 2.11 (0.03) b | 4.07 (0.44) b | 39.50 | <0.001 | |
dead | 1.12 (0.07) a | 0.86 (0.23) a | 1.54 (0.44) a | 0.71 (0.09) a | 0.97 (0.06) a | 9.62 | <0.001 | |
Lactobacillus brevis | alive | 99.15 (0.02) | 99.33 (0.04) | 99.30 (0.16) | 99.23 (0.19) | 99.33 (0.04) | 2.43 | 0.081 |
injured | 0.47 (0.01) | 0.34 (0.03) | 0.34 (0.03) | 0.46 (0.18) | 0.38 (0.01) | 2.79 | 0.054 | |
dead | 0.39 (0.01) | 0.32 (0.03) | 0.36 (0.13) | 0.31 (0.02) | 0.28 (0.04) | 2.12 | 0.115 | |
Lactobacillus plantarum | alive | 97.81 (0.08) a | 96.76 (0.18) b | 95.84 (0.57) c | 96.51 (0.28) b | 96.64 (0.42) b | 19.95 | <0.001 |
injured | 1.14 (0.04) a | 1.92 (0.09) b | 2.71 (0.17) c | 2.33 (0.13) d | 1.72 (0.19) b | 98.90 | <0.001 | |
dead | 1.05 (0.06) a | 1.32 (0.15) a | 1.45 (0.42) a | 1.16 (0.18) a | 1.64 (0.26) b | 4.50 | 0.009 | |
Morphology Lactobacillus plantarum | bacillus | 96.77 (1.03) a | 86.73 (0.51) b | 90.17 (0.29) c | 82.25 (0.38) d | 88.57 (0.71) b | 341.41 | <0.001 |
diplobacillus | 3.17 (1.03) a | 12.21 (0.39) | 9.51 (0.28) | 14.95 (0.25) | 11.36 (0.7) a | 263.77 | <0.001 | |
streptobacillus | 0.06 (0.01) a | 1.06 (0.13) b | 0.33 (0.04) c | 2.80 (0.24) d | 0.08 (0.01) a | 420.58 | <0.001 |
Bacteria Strain | AA Concentration (μg/mL) | % of Cells * | |||||
---|---|---|---|---|---|---|---|
Alive/Bacillus | Injured/Diplobacillus | Dead/Streptobacillus | |||||
Difference between Means | p | Difference between Means | p | Difference between Means | p | ||
Lactobacillus acidophilus LA-5 | 0 vs. 7.5 | −0.93 | 0.182 | 0.68 | 0.197 | 0.26 | 0.898 |
0 vs. 15 | 0.38 | 1.000 | 0.03 | 1.000 | −0.42 | 0.093 | |
0 vs. 30 | −3.32 | <0.001 | 2.91 | <0.001 | 0.42 | 0.093 | |
0 vs. 100 | −1.10 | 0.067 | 0.95 | 0.020 | 0.15 | 1.000 | |
Lactobacillus brevis | 0 vs. 7.5 | −0.19 | 0.187 | 0.12 | 0.332 | 0.06 | 1.000 |
0 vs. 15 | −0.16 | 0.460 | 0.13 | 0.223 | 0.02 | 1.000 | |
0 vs. 30 | −0.09 | 1.000 | 0.01 | 1.000 | 0.08 | 0.724 | |
0 vs. 100 | −0.19 | 0.180 | 0.08 | 1.000 | 0.10 | 0.197 | |
Lactobacillus plantarum | 0 vs. 7.5 | 1.05 | 0.002 | −0.78 | <0.001 | −0.27 | 1.000 |
0 vs. 15 | 1.97 | <0.001 | −1.57 | <0.001 | −0.40 | 0.186 | |
0 vs. 30 | 1.30 | <0.001 | −1.19 | <0.001 | −0.11 | 1.000 | |
0 vs. 100 | 1.17 | <0.001 | −0.58 | <0.001 | −0.59 | 0.012 | |
morphology Lactobacillus plantarum | 0 vs. 7.5 | 10.04 | <0.001 | −9.05 | <0.001 | −1.00 | <0.001 |
0 vs. 15 | 6.60 | <0.001 | −6.34 | <0.001 | −0.27 | 0.034 | |
0 vs. 30 | 14.52 | <0.001 | −11.78 | <0.001 | −2.74 | <0.001 | |
0 vs. 100 | 8.20 | <0.001 | −8.19 | <0.001 | −0.01 | 1.000 |
Incubation Time (h) | AA Concentration (μg/mL) | % of Cells | |||||
---|---|---|---|---|---|---|---|
Alive | Injured | Dead | |||||
Difference between Means | p | Difference between Means | p | Difference between Means | p | ||
0 | 0 vs. 7.5 | −0.10 | <0.001 | 0.08 | 0.001 | 0.02 | 1.000 |
0 vs. 15 | 0.01 | 1.000 | −0.02 | 1.000 | 0.01 | 1.000 | |
0 vs. 30 | −0.02 | 0.334 | 0.01 | 1.000 | 0.01 | 1.000 | |
0 vs. 100 | 0.83 | <0.001 | −0.83 | <0.001 | 0 | 1.000 | |
24 | 0 vs. 7.5 | 0.58 | 1.000 | −0.38 | 1.000 | −0.20 | 1.000 |
0 vs. 15 | −2.15 | 0.149 | 2.23 | 0.015 | −0.08 | 1.000 | |
0 vs. 30 | −3.89 | 0.001 | 3.83 | <0.001 | 0.06 | 1.000 | |
0 vs. 100 | 0.02 | 1.000 | 0.27 | 1.000 | −0.29 | 1.000 | |
48 | 0 vs. 7.5 | −3.28 | <0.001 | 2.33 | <0.001 | 0.96 | 0.003 |
0 vs. 15 | 3.29 | <0.001 | −2.12 | <0.001 | −1.17 | <0.001 | |
0 vs. 30 | −6.06 | <0.001 | 4.88 | <0.001 | 1.18 | <0.001 | |
0 vs. 100 | −4.13 | <0.001 | 3.40 | <0.001 | 0.73 | 0.029 |
Incubation Time (h) | AA Concentration (μg/mL) | % of Cells | |||||
---|---|---|---|---|---|---|---|
Alive | Injured | Dead | |||||
Difference between Means | p | Difference between Means | p | Difference between Means | p | ||
0 | 0 vs. 7.5 | −0.11 | 1.000 | 0.15 | 1.000 | −0.04 | 0.365 |
0 vs. 15 | −0.20 | 1.000 | 0.21 | 1.000 | −0.01 | 1.000 | |
0 vs. 30 | 0.19 | 1.000 | −0.15 | 1.000 | −0.04 | 0.561 | |
0 vs. 100 | −0.06 | 1.000 | 0.06 | 1.000 | 0.00 | 1.000 | |
24 | 0 vs. 7.5 | −0.32 | 0.435 | 0.15 | <0.001 | 0.16 | 1.000 |
0 vs. 15 | −0.17 | 1.000 | 0.12 | 0.001 | 0.05 | 1.000 | |
0 vs. 30 | −0.29 | 0.633 | 0.12 | 0.001 | 0.17 | 1.000 | |
0 vs. 100 | −0.33 | 0.401 | 0.13 | <0.001 | 0.20 | 1.000 | |
48 | 0 vs. 7.5 | −0.13 | 0.352 | 0.06 | 0.004 | 0.06 | 1.000 |
0 vs. 15 | −0.10 | 1.000 | 0.06 | 0.001 | 0.03 | 1.000 | |
0 vs. 30 | −0.15 | 0.121 | 0.05 | 0.015 | 0.10 | 0.540 | |
0 vs. 100 | −0.18 | 0.046 | 0.06 | 0.004 | 0.12 | 0.277 |
Incubation Time (h) | AA Concentration (μg/mL) | % of Cells | |||||
---|---|---|---|---|---|---|---|
Alive | Injured | Dead | |||||
Difference between Means | p | Difference between Means | p | Difference between Means | p | ||
0 | 0 vs. 7.5 | 1.01 | 0.009 | −0.09 | 1.000 | −0.92 | 0.002 |
0 vs. 15 | 0.75 | 0.098 | −0.21 | 0.373 | −0.53 | 0.149 | |
0 vs. 30 | 0.44 | 1.000 | −0.04 | 1.000 | −0.39 | 0.648 | |
0 vs. 100 | 0.48 | 0.789 | −0.26 | 0.115 | −0.22 | 1.000 | |
24 | 0 vs. 7.5 | 1.00 | 0.153 | −0.55 | 0.001 | −0.45 | 1.000 |
0 vs. 15 | 2.08 | <0.001 | −0.88 | <0.001 | −1.20 | 0.007 | |
0 vs. 30 | 1.46 | 0.010 | −0.77 | <0.001 | −0.69 | 0.311 | |
0 vs. 100 | 1.44 | 0.011 | −0.37 | 0.049 | −1.07 | 0.019 | |
48 | 0 vs. 7.5 | 1.12 | 0.260 | −1.70 | <0.001 | 0.57 | 0.481 |
0 vs. 15 | 3.07 | <0.001 | −3.61 | <0.001 | 0.53 | 0.652 | |
0 vs. 30 | 2.00 | 0.004 | −2.76 | <0.001 | 0.76 | 0.115 | |
0 vs. 100 | 1.58 | 0.028 | −1.10 | 0.001 | −0.48 | 0.911 |
Incubation Time (h) | AA Concentration (μg/mL) | % of Cells | |||||
---|---|---|---|---|---|---|---|
Bacillus | Diplobacillus | Streptobacillus | |||||
Difference between Means | p | Difference between Means | p | Difference between Means | p | ||
0 | 0 vs. 7.5 | −1.51 | 1.000 | 1.52 | 1.000 | 0 | 1.000 |
0 vs. 15 | −2.77 | 0.140 | 2.77 | 0.140 | 0 | 1.000 | |
0 vs. 30 | −5.42 | <0.001 | 5.42 | <0.001 | 0 | 1.000 | |
0 vs. 100 | −2.82 | 0.127 | 2.81 | 0.127 | 0 | 1.000 | |
24 | 0 vs. 7.5 | 0.87 | 0.024 | −0.86 | 0.023 | −0.01 | 1.000 |
0 vs. 15 | 0.98 | 0.008 | −0.98 | 0.007 | 0 | 1.000 | |
0 vs. 30 | 0.59 | 0.280 | −0.57 | 0.313 | −0.02 | 0.417 | |
0 vs. 100 | 0.48 | 0.692 | −0.45 | 0.791 | −0.02 | 0.598 | |
48 | 0 vs. 7.5 | 30.77 | <0.001 | −27.80 | <0.001 | −2.98 | <0.001 |
0 vs. 15 | 21.60 | <0.001 | −20.81 | <0.001 | −0.80 | 0.033 | |
0 vs. 30 | 48.37 | <0.001 | −40.18 | <0.001 | −8.19 | <0.001 | |
0 vs. 100 | 26.95 | <0.001 | −26.93 | <0.001 | −0.01 | 1.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petka, K.; Tarko, T.; Duda-Chodak, A. Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus. Nutrients 2020, 12, 1157. https://doi.org/10.3390/nu12041157
Petka K, Tarko T, Duda-Chodak A. Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus. Nutrients. 2020; 12(4):1157. https://doi.org/10.3390/nu12041157
Chicago/Turabian StylePetka, Katarzyna, Tomasz Tarko, and Aleksandra Duda-Chodak. 2020. "Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus" Nutrients 12, no. 4: 1157. https://doi.org/10.3390/nu12041157
APA StylePetka, K., Tarko, T., & Duda-Chodak, A. (2020). Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus. Nutrients, 12(4), 1157. https://doi.org/10.3390/nu12041157