Total Energy Expenditure, Body Composition, Physical Activity, and Step Count in Japanese Preschool Children: A Study Based on Doubly Labeled Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. TEE and Body Composition Measurement with DLW
2.3. Step Count Measurement with Accelerometer-Based Pedometers
2.4. Statistical Analysis
3. Results
3.1. Climate Statistics during the Study Period
3.2. Physical Characteristics and Sex Difference
3.3. Determinants of TDEE
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNICEF/WHO/World Bank. Levels and Trends in Child Malnutrition: Key Findings of the 2019 Edition of the Joint Child Malnutrition Estimates; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. The Double Burden of Malnutrition; Policy brief; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy Balance and Obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Roberts, S.B.; Leibel, R.L. Excess energy intake and low energy expenditure as predictors of obesity. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 385–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urlacher, S.S.; Snodgrass, J.J.; Dugas, L.R.; Sugiyama, L.S.; Liebert, M.A.; Joyce, C.J.; Pontzer, H. Constraint and trade-offs regulate energy expenditure during childhood. Sci. Adv. 2019, 5, eaax1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komura, K.; Nakae, S.; Hirakawa, K.; Ebine, N.; Suzuki, K.; Ozawa, H.; Yamada, Y.; Kimura, M.; Ishii, K. Total energy expenditure of 10- to 12-year-old Japanese children measured using the doubly labeled water method. Nutr. Metab. 2017, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Changes in physical activity over the lifespan: Impact on body composition and sarcopenic obesity. Obes. Rev. 2018, 19, 8–13. [Google Scholar] [CrossRef] [Green Version]
- UK Scientific Advisory Committee on Nutrition. Identifying PAL values, in Energy reference values for infants, children and adolescents. In Dietary Reference Values for Energy; The Stationery Office Limited: London, UK, 2011; pp. 47–56. [Google Scholar]
- Lupton, J.R.; Brooks, J.A.; Butte, N.F.; Caballero, B.; Flatt, J.P.; Fried, S.K. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; Food and Nutrition Board, Institute of Medicine Energy; National Academies Press: Washington, DC, USA, 2005; pp. 107–264. [Google Scholar]
- Ministry of Health Labour and Welfare Japan. Japanese Dietary Reference Intake; Dai-ichi Shuppan: Tokyo, Japan, 2020. [Google Scholar]
- Tanaka, C.; Hikihara, Y.; Inoue, S.; Tanaka, S. The Choice of Pedometer Impacts on Daily Step Counts in Primary School Children under Free-Living Conditions. Int. J. Environ. Res. Public Health 2019, 16, 4375. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Itoi, A.; Yamada, Y.; Watanabe, Y.; Kimura, M. Physical activity, energy intake, and obesity prevalence among urban and rural schoolchildren aged 11-12 years in Japan. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2012, 37, 1189–1199. [Google Scholar] [CrossRef]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Hashii-Arishima, Y.; Yokoyama, K.; Itoi, A.; Adachi, T.; Kimura, M. Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64-96 years: A doubly labeled water study. Eur. J. Appl. Physiol. 2018, 118, 2133–2146. [Google Scholar] [CrossRef]
- Yamada, Y.; Yokoyama, K.; Noriyasu, R.; Osaki, T.; Adachi, T.; Itoi, A.; Naito, Y.; Morimoto, T.; Kimura, M.; Oda, S. Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers. Eur. J. Appl Physiol. 2009, 105, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Racette, S.B.; Schoeller, D.A.; Luke, A.H.; Shay, K.; Hnilicka, J.; Kushner, R.F. Relative dilution spaces of 2H- and 18O-labeled water in humans. Am. J. Physiol. Endocrinol. Metab. 1994, 267, E585–E590. [Google Scholar] [CrossRef] [PubMed]
- Sagayama, H.; Yamada, Y.; Racine, N.M.; Shriver, T.C.; Schoeller, D.A. Dilution space ratio of 2H and 18O of doubly labeled water method in humans. J. Appl. Physiol. 2016, 120, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeller, D.A.; Ravussin, E.; Schutz, Y.; Acheson, K.J.; Baertschi, P.; Jequier, E. Energy expenditure by doubly labeled water: Validation in humans and proposed calculation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986, 250, R823–R830. [Google Scholar] [CrossRef] [PubMed]
- Black, A.E.; Prentice, A.M.; Coward, W.A. Use of food quotients to predict respiratory quotients for the doubly-labelled water method of measuring energy expenditure. Hum. Nutr. Clin. Nutr. 1986, 40, 381–391. [Google Scholar] [PubMed]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. IAEA Human Health Series No. 3. Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques; Vienna International Centre: Vienna, Austria, 2009. [Google Scholar]
- International Atomic Energy Agency. IAEA Human Health Series No 13 Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry; Vienna International Centre: Vienna, Austria, 2011; pp. 9–11. [Google Scholar]
- Health Promotion and Nutrition Division-Health Service Bureau Ministry of Health and Welfare. Recommended Dietary Allowances for the Japanese; 4th revision; Dai-ichi Shuppan: Tokyo, Japan, 1995. [Google Scholar]
- Westerterp, K.R. Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Front Physiol. 2013, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Westerterp, K.R. Exercise, energy expenditure and energy balance, as measured with doubly labelled water. Proc. Nutr. Soc. 2018, 77, 4–10. [Google Scholar] [CrossRef]
- Sentongo, T.A.; Tershakovec, A.M.; Mascarenhas, M.R.; Watson, M.H.; Stallings, V.A. Resting energy expenditure and prediction equations in young children with failure to thrive. J. Pediatrics 2000, 136, 345–350. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Gando, Y.; Yamamoto, K.; Murakami, H.; Ohmori, Y.; Kawakami, R.; Sanada, K.; Higuchi, M.; Tabata, I.; Miyachi, M. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension 2010, 56, 540–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, H.; Kawakami, R.; Nakae, S.; Yamada, Y.; Nakata, Y.; Ohkawara, K.; Sasai, H.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of 12 Wearable Devices for Estimating Physical Activity Energy Expenditure Using a Metabolic Chamber and the Doubly Labeled Water Method: Validation Study. JMIR mHealth uHealth 2019, 7, e13938. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Kawakami, R.; Nakae, S.; Nakata, Y.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of Wearable Devices for Estimating Total Energy Expenditure: Comparison With Metabolic Chamber and Doubly Labeled Water Method. JAMA Intern. Med. 2016, 176, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.A.; Mahar, M.T.; Raedeke, T.D.; Lore, J. Measuring Physical Activity in Children with Pedometers: Reliability, Reactivity, and Replacement of Missing Data. Pediatric Exerc. Sci. 2004, 16, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Aadland, E.; Andersen, L.B.; Anderssen, S.A.; Resaland, G.K. A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health 2018, 18, 323. [Google Scholar] [CrossRef]
- Nishimoto, Y.; Ida, S.; Etani, Y.; Ebine, N.; Nakae, S.; Miyatani, S. Determination of Total Energy Expenditure Using the Doubly labeled Water Method and Expired Gas Analysis in Short-stature Children. Nippon Eiyo Shokuryo Gakkaishi 2013, 66, 133–139. [Google Scholar] [CrossRef]
- Blanc, S.; Schoeller, D.A.; Bauer, D.; Danielson, M.E.; Tylavsky, F.; Simonsick, E.M.; Harris, T.B.; Kritchevsky, S.B.; Everhart, J.E. Energy requirements in the eighth decade of life. Am. J. Clin. Nutr. 2004, 79, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.M.; Wang, J.; Pierson, R.N., Jr.; Wang, Z.; Heymsfield, S.B.; Sardinha, L.B.; Heshka, S. Extracellular water: Greater expansion with age in African Americans. J. Appl. Physiol. 2005, 99, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, D.; Albu, J.; He, Q.; Heshka, S.; Boxt, L.; Krasnow, N.; Elia, M. Small organs with a high metabolic rate explain lower resting energy expenditure in African American than in white adults. Am. J. Clin. Nutr. 2006, 83, 1062–1067. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ying, Z.; Bosy-Westphal, A.; Zhang, J.; Schautz, B.; Later, W.; Heymsfield, S.B.; Müller, M.J. Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 2010, 92, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Elia, M. Organ and tissue contribution to metabolic rate. In Energy Metabolism: Tissue Determinants and Cellular Corollaries; Kinney, J.M., Tucker, H.N., Eds.; Raven Press: New York, NY, USA, 1992. [Google Scholar]
- Hsu, A.; Heshka, S.; Janumala, I.; Song, M.-Y.; Horlick, M.; Krasnow, N.; Gallagher, D. Larger mass of high-metabolic-rate organs does not explain higher resting energy expenditure in children. Am. J. Clin. Nutr. 2003, 77, 1506–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, C.; Sokoloff, L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J. Clin. Investig. 1957, 36, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Chugani, H.T.; Phelps, M.E.; Mazziotta, J.C. Positron emission tomography study of human brain functional development. Ann. Neurol. 1987, 22, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Spence, J.C.; Cutumisu, N.; Boule, N.; Edwards, J. Seasonal Variation in Physical Activity Among Preschool Children in a Northern Canadian City. Res. Q. Exerc. Sport 2010, 81, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Kolle, E.; Steene-Johannessen, J.; Andersen, L.B.; Anderssen, S.A. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.R.; Page, A.S.; Wheeler, B.W.; Hillsdon, M.; Griew, P.; Jago, R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH project. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Duncan, J.S.; Hopkins, W.G.; Schofield, G.; Duncan, E.K. Effects of Weather on Pedometer-Determined Physical Activity in Children. Med. Sci. Sports Exerc. 2008, 40, 1432–1438. [Google Scholar] [CrossRef]
- Hjorth, M.F.; Chaput, J.-P.; Michaelsen, K.; Astrup, A.; Tetens, I.; Sjödin, A. Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: A repeated-measures study. BMC Public Health 2013, 13, 808. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Yamamoto, M.; Kitado, T.; Nakamura, H.; Kidera, K.; Fujimoto, S. High-accuracy physical activity monitor utilizing three-axis accelerometer. Natl. Tech. Rep. 2008, 56, 60–66. [Google Scholar]
- Tanaka, C.; Hikihara, Y.; Ando, T.; Oshima, Y.; Usui, C.; Ohgi, Y.; Kaneda, K.; Tanaka, S. Prediction of Physical Activity Intensity with Accelerometry in Young Children. Int. J. Environ. Res. Public Health 2019, 16, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. BR J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Hikihara, Y.; Tanaka, C.; Oshima, Y.; Ohkawara, K.; Ishikawa-Takata, K.; Tanaka, S. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm. PLoS ONE 2014, 9, e94940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClain, J.J.; Sisson, S.B.; Washington, T.L.; Craig, C.L.; Tudor-Locke, C. Comparison of Kenz Lifecorder EX and ActiGraph accelerometers in 10-yr-old children. Med. Sci. Sports Exerc. 2007, 39, 630–638. [Google Scholar] [CrossRef]
- Schneider, P.L.; Crouter, S.E.; Lukajic, O.; Bassett, D.R., Jr. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med. Sci. Sports Exerc. 2003, 35, 1779–1784. [Google Scholar] [CrossRef]
- McClain, J.J.; Tudor-Locke, C. Objective monitoring of physical activity in children: Considerations for instrument selection. J. Sci. Med. Sport 2009, 12, 526–533. [Google Scholar] [CrossRef]
Mean | ± | SD | |
---|---|---|---|
Age (year) | 5.1 | ± | 0.9 |
Height (cm) | 107.2 | ± | 6.6 |
Weight (kg) | 17.5 | ± | 1.7 |
BMI (kg/m2) | 15.3 | ± | 1.3 |
n (%) of overweight or obesity by IOTF (Cole et al. 2000) | 0 (0%) | ||
n (%) of thinness by Cole et al. (2007) | 3 (14%) | ||
FFM (kg) | 13.0 | ± | 1.5 |
FM (kg) | 4.5 | ± | 0.9 |
%fat (%) | 25.5 | ± | 4.3 |
TDEE (kcal/day) | 1300 | ± | 174 |
TDEE (kcal/day) for normal BMI group (n = 18) | 1305 | ± | 170 |
BMRJapanese (kcal/day) | 903 | ± | 50.0 |
BMRSchofield (kcal/day) | 868 | ± | 33.0 |
PAL | 1.44 | ± | 0.15 |
Step count (step/day) by Actimarker | 14,742 | ± | 4083 |
Girls (n = 11) | Boys (n =12) | p-Value | |||||
---|---|---|---|---|---|---|---|
Mean | ± | SEM | Mean | ± | SEM | ||
Height (cm) | 108.2 | ± | 1.1 | 106.1 | ± | 1.1 | 0.26 |
Weight (kg) | 18.0 | ± | 0.5 | 16.9 | ± | 0.5 | 0.19 |
BMI (kg/m2) | 15.4 | ± | 0.3 | 15.1 | ± | 0.3 | 0.49 |
FFM (kg) | 12.9 | ± | 0.4 | 13.1 | ± | 0.4 | 0.75 |
FM (kg) | 5.1 | ± | 0.2 | 3.8 | ± | 0.2 | 0.002 ** |
%fat (%) | 28.2 | ± | 1.0 | 22.6 | ± | 1.0 | 0.002 ** |
TDEE (kcal/d) | 1282 | ± | 57 | 1320 | ± | 60 | 0.68 |
BMRJapanese (kcal/d) | 899 | ± | 17.8 | 907 | ± | 18.8 | 0.81 |
BMRSchofield (kcal/d) | 852 | ± | 10.5 | 885 | ± | 11.1 | 0.07 |
PAL | 1.42 | ± | 0.05 | 1.45 | ± | 0.05 | 0.70 |
Step count (step/d) by Actimarker | 12,326 | ± | 1215 | 17,400 | ± | 1287 | 0.018 * |
Step count (step/d) by Lifecorder | 9790 | ± | 898 | 13,479 | ± | 952 | 0.020 * |
Variables | Age | Height | Weight | FFM | FM | %fat | Step Counts |
---|---|---|---|---|---|---|---|
Control Variables | |||||||
Sex | 0.365 | 0.650 ** | 0.767 *** | 0.816 *** | −0.007 | −0.394 | 0.626 ** |
Sex, Age | ‒ | 0.648 *** | 0.756 *** | 0.804 *** | 0.311 | −0.190 | 0.585 ** |
Sex, Age, Height | ‒ | ‒ | 0.529 * | 0.626 ** | 0.101 | −0.145 | 0.665 ** |
Sex, Age, Height, Weight | ‒ | ‒ | ‒ | 0.405 | −0.405 | −0.403 | 0.567 * |
Sex, Age, Height, FFM | ‒ | ‒ | ‒ | ‒ | 0.099 | 0.097 | 0.500 * |
Sex, Age, Height, FFM, FM | ‒ | ‒ | ‒ | ‒ | ‒ | −0.007 | 0.498 * |
Sex, Age, Height, FFM, %fat | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 0.498 * |
Predictor Variables | B | β | p-Value | 95%CI for B |
---|---|---|---|---|
FFM (kg) | 85.0 | 0.723 | <0.001 | (53.6, 11.3) |
Step counts (n/day) | 0.0135 | 0.296 | 0.032 | (0.0013, 0.0256) |
(Constant) | −4.7 | 0.98 | (−401, 392) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, Y.; Sagayama, H.; Itoi, A.; Nishimura, M.; Fujisawa, K.; Higaki, Y.; Kimura, M.; Aoki, Y. Total Energy Expenditure, Body Composition, Physical Activity, and Step Count in Japanese Preschool Children: A Study Based on Doubly Labeled Water. Nutrients 2020, 12, 1223. https://doi.org/10.3390/nu12051223
Yamada Y, Sagayama H, Itoi A, Nishimura M, Fujisawa K, Higaki Y, Kimura M, Aoki Y. Total Energy Expenditure, Body Composition, Physical Activity, and Step Count in Japanese Preschool Children: A Study Based on Doubly Labeled Water. Nutrients. 2020; 12(5):1223. https://doi.org/10.3390/nu12051223
Chicago/Turabian StyleYamada, Yosuke, Hiroyuki Sagayama, Aya Itoi, Makoto Nishimura, Kaori Fujisawa, Yasuki Higaki, Misaka Kimura, and Yoshiko Aoki. 2020. "Total Energy Expenditure, Body Composition, Physical Activity, and Step Count in Japanese Preschool Children: A Study Based on Doubly Labeled Water" Nutrients 12, no. 5: 1223. https://doi.org/10.3390/nu12051223
APA StyleYamada, Y., Sagayama, H., Itoi, A., Nishimura, M., Fujisawa, K., Higaki, Y., Kimura, M., & Aoki, Y. (2020). Total Energy Expenditure, Body Composition, Physical Activity, and Step Count in Japanese Preschool Children: A Study Based on Doubly Labeled Water. Nutrients, 12(5), 1223. https://doi.org/10.3390/nu12051223