Fish Oil Enriched Intravenous Lipid Emulsions Reduce Triglyceride Levels in Non-Critically Ill Patients with TPN and Type 2 Diabetes. A Post-Hoc Analysis of the INSUPAR Study
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Analytical Assessment during TPN Infusion
2.2. Metabolic and Liver Complications
- Infectious non-catheter and catheter related bloodstream infections; they were identified as an elevated white blood cell count in addition to one or more of the following: positive blood cultures, chest x-ray suggestive of pneumonia, positive urine culture, postoperative wound infection, and use of antibiotics.
- Length of stay.
- In-hospital mortality.
2.3. Statistical Analysis
3. Results
Sample
4. Discussion
4.1. Lipid Control and Liver Enzymes
4.2. Complications
4.3. Glycemic Control
4.4. Limitations and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.; et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klek, S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J. Clin. Med. 2016, 5, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Intravenous Lipid Emulsions to Deliver Bioactive Omega-3 Fatty Acids for Improved Patient Outcomes. Mar. Drugs 2019, 17, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martindale, R.G.; Berlana, D.; Boullata, J.I.; Cai, W.; Calder, P.C.; Deshpande, G.H.; Evans, D.; Garcia-de-Lorenzo, A.; Goulet, O.J.; Li, A.; et al. Summary of Proceedings and Expert Consensus Statements From the International Summit “Lipids in Parenteral Nutrition”. J. Parenter. Enter. Nutr. 2020, 44, S7–S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honeywell, S.; Zelig, R.; Rigassio Radler, D. Impact of Intravenous Lipid Emulsions Containing Fish Oil on Clinical Outcomes in Critically Ill Surgical Patients: A Literature Review. Nutr. Clin. Pract. 2019, 34, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, C. Effect of v-3 polyunsaturated fatty acid-supplemented parenteral nutrition on inflammatory and immune function in postoperative patients with gastrointestinal malignancy A meta-analysis of randomized control trials in China. Medicine 2018, 97. [Google Scholar] [CrossRef]
- Lu, C.; Sharma, S.; McIntyre, L.; Rhodes, A.; Evans, L.; Almenawer, S.; Leduc, L.; Angus, D.C.; Alhazzani, W. Omega-3 supplementation in patients with sepsis: A systematic review and meta-analysis of randomized trials. Ann. Intensive Care 2017, 7, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradelli, L.; Mayer, K.; Klek, S.; Omar Alsaleh, A.J.; Clark, R.A.C.; Rosenthal, M.D.; Heller, A.R.; Muscaritoli, M. ω-3 Fatty-Acid Enriched Parenteral Nutrition in Hospitalized Patients: Systematic Review With Meta-Analysis and Trial Sequential Analysis. J. Parenter. Enter. Nutr. 2020, 44, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C.; Adolph, M.; Deutz, N.E.; Grau, T.; Innes, J.K.; Klek, S.; Lev, S.; Mayer, K.; Michael-Titus, A.T.; Pradelli, L.; et al. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018, 37, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Abbott, K.A.; Burrows, T.L.; Thota, R.N.; Acharya, S.; Garg, M.L. Do v-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 104, 1470–1484. [Google Scholar] [CrossRef] [PubMed]
- Merone, L.; McDermott, R. Nutritional anti-inflammatories in the treatment and prevention of type 2 diabetes mellitus and the metabolic syndrome. Diabetes Res. Clin. Pract. 2017, 127, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Lou, P.-H.; Lucchinetti, E.; Hersberger, M.; Clanachan, A.S.; Zaugg, M. Lipid Emulsion Containing High Amounts of n3 Fatty Acids (Omegaven) as Opposed to n6 Fatty Acids (Intralipid) Preserves Insulin Signaling and Glucose Uptake in Perfused Rat Hearts. Anesth. Analg. 2020, 130, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Montori, V.M.; Farmer, A.; Wollan, P.C.; Dinneen, S.F. Fish oil supplementation in type 2 diabetes: A quantitative systematic review. Diabetes Care 2000, 23, 1407–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olveira, G.; Abuín, J.; López, R.; Herranz, S.; García-Almeida, J.M.; García-Malpartida, K.; Ferrer, M.; Cancer, E.; Luengo-Pérez, L.M.; Álvarez, J.; et al. Regular insulin added to total parenteral nutrition vs subcutaneous glargine in non-critically ill diabetic inpatients, a multicenter randomized clinical trial: INSUPAR trial. Clin. Nutr. 2019. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Pasquel, F.J.; Spiegelman, R.; Mccauley, M.; Smiley, D.; Umpierrez, D.; Johnson, R.; Pasquel, F.J.; Spiegelman, R.; McCauley, M.; Smiley, D.; et al. Hyperglycemia during total parenteral nutrition an important marker of poor outcome and mortality in hospitalized patients. Diabetes Care 2010, 33, 739–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Hanas, R.; John, G.; International HBA1c Consensus Committee O behalf of the IHC. 2010 consensus statement on the worldwide standardization of the hemoglobin A1C measurement. Diabetes Care 2010, 33, 1903–1904. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics for Windows; Version 22.0; IBM Corp. n.d.: Armonk, NY, USA, 2013. [Google Scholar]
- Ocón Bretón, M.J.; Ilundain González, A.I.; Altemir Trallero, J.; Agudo Tabuenca, A.; Gimeno Orna, J.A. Factores predictores de hipertrigliceridemia en pacientes hospitalizados con nutrición parenteral total. Nutr. Hosp. 2017, 34, 505–511. [Google Scholar] [CrossRef]
- Badia-Tahull, M.B.; Llop-Talaveron, J.; Leiva-Badosa, E. Impact of intravenous lipid emulsions on liver function tests: Contribution of parenteral fish oil. Nutrition 2015, 31, 1109–1116. [Google Scholar] [CrossRef]
- Llop-Talaveron, J.M.; Badia-Tahull, M.B.; Leiva-Badosa, E.; Ramon-Torrel, J.M. Parenteral fish oil and liver function tests in hospitalized adult patients receiving parenteral nutrition: A propensity score-matched analysis. Clin. Nutr. 2017, 36, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Zaloga, G.P. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition. J. Parenter. Enter. Nutr. 2015, 39, 39S–60S. [Google Scholar] [CrossRef] [PubMed]
- Llop-Talaveron, J.; Badía-Tahull, M.; Lozano-Andreu, T.; Rigo-Bonnin, R.; Virgili-Casas, N.; Farran-Teixidó, L.; Llop-Talaveron, J.; Badía-Tahull, M.; Lozano-Andreu, T.; Rigo-Bonnin, R.; et al. Phytosterolemia and γ-glutamyl transferase in adults with parenteral nutrition: Fish versus vegetal lipids: A randomized clinical trial. Nutrition 2020, 70. [Google Scholar] [CrossRef]
- Llop-Talaveron, J.M.; Leiva-Badosa, E.; Novak, A.; Rigo-Bonnin, R.; Tico-Grau, J.R.; Suñé-Negre, J.M.; Suárez-Lledó, A.; Lozano-Andreu, T.; Badía-Tahull, M.B. Phytosterolemia associated with parenteral nutrition administration in adult patients. Br. J. Nutr. 2020, 1–8. [Google Scholar] [CrossRef]
- Madnawat, H.; Welu, A.L.; Gilbert, E.J.; Taylor, D.B.; Jain, S.; Manithody, C.; Madnawat, H.; Welu, A.L.; Gilbert, E.J.; Taylor, D.B.; et al. Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury. Nutr. Clin. Pract. 2020, 35, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, C.E.; Brody, R.A.; Parrott, J.S.; Stankorb, S.M.; Heyland, D.K. The effects of different IV fat emulsions on clinical outcomes in critically ill patients. Crit. Care Med. 2014, 42, 1168–1177. [Google Scholar] [CrossRef]
- Senkal, M.; Geier, B.; Hannemann, M.; Deska, T.; Linseisen, J.; Wolfram, G.; Adolph, M. Supplementation of Ω-3 Fatty Acids in Parenteral Nutrition Beneficially Alters Phospholipid Fatty Acid Pattern. J. Parenter. Enter. Nutr. 2007, 31, 12–17. [Google Scholar] [CrossRef]
- Mateu-De-Antonio, J.; Florit-Sureda, M. Efectos no relacionados con la antiinfl amación de las emulsiones lipídicas que contienen aceite de pescado en la nutrición parenteral para pacientes adultos. Nutr. Hosp. 2017, 34, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Olveira, G.; Abuín-Fernández, J.; López, R.; Herranz, S.; García-Almeida, J.M.; Argente-Pla, M.; Ferrer, M.; Moreno-Borreguero, A.; Luengo-Pérez, L.M.; Álvarez, J.; et al. Risk factors for hypoglycemia in inpatients with Total Parenteral Nutrition and Type 2 Diabetes: A post-hoc analysis of the INSUPAR study. Endocr. Pract. 2020. [Google Scholar] [CrossRef] [Green Version]
Variable | Other ILEs n = 81 (50.3%) | n-3 PUFA n = 80 (49.7%) | p-Value |
---|---|---|---|
Gender | |||
Men, n (%) | 47 (58.0%) | 63 (78.8%) | 0.004 |
Women, n (%) | 34 (42.0%) | 17 (21.2%) | |
Age (years) | 71.6 ± 10.3 | 70.4 ± 9.5 | 0.451 |
Group of treatment | |||
Regular insulin, n (%) | 40 (49.4%) | 40 (50.0%) | 0.938 |
Glargine insulin, n (%) | 41 (50.6%) | 40 (50.0%) | |
Subjective global assessment | |||
Well nourished, n (%) | 28 (34.6%) | 24 (30.0%) | 0.549 |
Moderate malnutrition, n (%) | 32 (39.5%) | 29 (36.3%) | |
Severe malnutrition, n (%) | 21 (25.9%) | 27 (33.7%) | |
Blood test parameters | |||
Creatinine (mg/dL) | 0.84 ± 0.24 | 0.77 ± 0.25 | 0.089 |
Albumin (mg/dL) | 2.57 ± 0.52 | 2.47 ± 0.57 | 0.219 |
C reactive protein (mg/dL) | 112.3 ± 103.6 | 90.2 ± 90.9 | 0.169 |
Reason for admission | |||
Surgical, n (%) | 41 (50.6%) | 43 (53.8%) | 0.242 |
Oncohematological, n (%) | 22 (27.2%) | 27 (33.7%) | |
Medical, n (%) | 18 (22.2%) | 10 (12.5%) | |
Charlson comorbidity index | 6.5 ± 2.9 | 7.1 ± 2.9 | 0.188 |
Type 2 diabetes mellitus | |||
Duration of type 2 diabetes mellitus (years) | 11.0 ± 8.5 | 11.3 ± 7.3 | 0.840 |
Diabetes with end-organ damage, n (%) | 10 (12.3%) | 15 (18.8%) | 0.262 |
Patients with insulin prior to the admission, n (%) | 20 (24.7%) | 26 (32.5%) | 0.230 |
Insulin units prior to the admission (IU/kg/day) | 0.36 ± 0.23 | 0.55 ± 0.34 | 0.075 |
HbA1c (%) | 6.60 ± 1.0 | 6.6 ± 1.2 | 0.912 |
Plasma glucose (mg/dL) | 190.3 ± 64.3 | 184.3 ± 81.5 | 0.604 |
Real weight (kg) | 71.16 ± 17.33 | 74.14 ± 15.73 | 0.255 |
BMI (kg/m2) | 27.14 ± 5.50 | 27.22 ± 5.88 | 0.919 |
<18.5 kg/m2 | 1 (1.2%) | 3 (3.7%) | 0.724 |
18.5–25.0 kg/m2 | 30 (37.0%) | 27 (33.8%) | |
25.0–30.0 kg/m2 | 32 (39.5%) | 30 (37.5%) | |
>30.0 kg/m2 | 18 (22.2%) | 20 (25.0%) | |
Total energy expenditure (kcal) | 1599.0 ± 248.7 | 1636.5 ± 210.0 | 0.303 |
Any drug induces hyperglycemia, n (%) | 17 (21.0%) | 20 (25.0%) | 0.545 |
TPN duration (days) | 8.6 ± 4.3 | 11.6 ± 8.8 | 0.007 |
Other ILEs n = 81 (50.3%) | n-3 PUFA n = 80 (49.7%) | p-Value * | |
---|---|---|---|
Insulin | |||
Mean total daily insulin (IU/kg) | 45.7 ± 26.1 | 47.5 ± 26.8 | 0.662 |
Mean total daily insulin/10 g of carbohydrates in TPN (IU) | 2.5 ± 1.2 | 2.5 ± 1.3 | 0.894 |
Mean capillary glucose | |||
08:00 h (mg/dL) | 169.1 ± 41.3 | 163.6 ± 40.4 | 0.398 |
13:00 h (mg/dL) | 176 ± 42.6 | 172.1 ± 42.3 | 0.560 |
20:00 h (mg/dL) | 174.1 ± 44.5 | 163 ± 38.6 | 0.100 |
00:00 h (mg/dL) | 164.7 ± 44.6 | 159.1 ± 42.3 | 0.446 |
During TPN (mg/dL) | 172.4 ± 40.9 | 165.4 ± 38.6 | 0.269 |
Mean post-TPN capillary blood glucose 48 h (mg/dL) | 156 ± 49.1 | 145.5 ± 40.5 | 0.206 |
Hypoglycemic variables | |||
Number of capillary glucose ≤ 70 mg/dL, n (%) | 0.18 ± 0.61 | 0.55 ± 1.17 | 0.012 |
Number of capillary glucose < 54 mg/dL, n (%) | 0.04 ± 0.19 | 0.06 ± 0.24 | 0.471 |
Capillary glucose variability | |||
Standard deviation of capillary glucose (mg/dL) | 41.3 ± 18.7 | 42.6 ± 16.5 | 0.634 |
Variation coefficient of capillary glucose (%) | 24 ± 9.2 | 25.9 ± 9.2 | 0.187 |
Other ILEs n = 81 (50.3%) | n-3 PUFA n = 80 (49.7%) | p-Value * | ||||
---|---|---|---|---|---|---|
Metabolic and liver complications | ||||||
Hypertriglyceridemia, n (%) | 6 (7.4%) | 4 (5.0%) | 0.527 | |||
Hypernatremia, n (%) | 1 (1.2%) | 5 (6.3%) | 0.093 | |||
Hyponatremia, n (%) | 2 (2.5%) | 7 (8.8) | 0.083 | |||
Hypokalemia, n (%) | 7 (8.6%) | 8 (10.0%) | 0.767 | |||
Hypophosphatemia, n (%) | 8 (9.9%) | 11 (13.8%) | 0.446 | |||
Hypocalcemia (with corrected calcium), n (%) | 2 (2.5%) | 2 (2.5%) | 0.980 | |||
Increased creatinine, n (%) | 5 (6.2%) | 4 (5.0%) | 0.732 | |||
Increased urea, n (%) | 5 (6.2%) | 7 (8.8%) | 0.533 | |||
Liver complications, n (%) | 5 (6.2%) | 7 (8.8%) | 0.534 | |||
Infectious and other complications | ||||||
Central line-associated bloodstream infections, n (%) | 6 (7.4%) | 11 (13.8%) | 0.190 | |||
Sepsis, n (%) | 4 (4.9%) | 6 (7.5%) | 0.501 | |||
Pneumonia, n (%) | 4 (4.9%) | 2 (2.5%) | 0.414 | |||
Surgical site infection, n (%) | 5 (6.2%) | 8 (10.0%) | 0.360 | |||
Urinary tract infection, n (%) | 3 (3.7%) | 2 (2.5%) | 0.660 | |||
Mortality, n (%) | 10 (12.3%) | 14 (17.5%) | 0.359 | |||
Length of hospital stay (days) | 28.7 ± 20.0 | 32.2 ± 27.5 | 0.367 | |||
Blood test results | Days | Days | Analysis of variance | |||
Triglycerides (mg/dL) $ | 1 (n = 79) | 194.8 ± 86.8 | 1 (n = 79) | 182.5 ± 93.9 | 0.663 | 0.028 |
5 (n = 70) | 220.3 ± 134.8 | 5 (n = 68) | 147.5 ± 72.6 & | 0.052 | ||
Last (n = 19) | 217.9 ± 117.1 | Last (n = 28) | 143.1 ± 63.7 & | 0.024 | ||
Total cholesterol (mg/dL) | 1 (n = 79) | 115.9 ± 48.3 | 1 (n = 79) | 117.7 ± 51.2 | 0.825 | 0.220 |
5 (n = 72) | 123.4 ± 37.1 | 5 (n = 65) | 114.7 ± 33.8 | 0.156 | ||
Last (n = 19) | 135.2 ± 44.9 | Last (n = 26) | 119.9 ± 35.3 | 0.206 | ||
HDL cholesterol (mg/dL) | 1 (n = 50) | 23.6 ± 12.2 | 1 (n = 51) | 23.1 ± 11.4 | 0.831 | 0.401 |
5 (n = 45) | 21.9 ± 8.9 | 5 (n = 43) | 20.1 ± 9.4 | 0.366 | ||
Last (n = 7) | 18.9 ± 6.5 | Last (n = 19) | 19.2 ± 8.6 | 0.934 | ||
LDL cholesterol (mg/dL) | 1 (n = 49) | 50.1 ± 26.6 | 1 (n = 47) | 58.6 ± 42.4 | 0.246 | 0.770 |
5 (n = 44) | 61.8 ± 30.9 | 5 (n = 40) | 58.3 ± 28.7 | 0.586 | ||
Last (n = 6) | 73.2 ± 40.4 | Last (n = 18) | 69.4 ± 32.1 | 0.817 | ||
Aspartate transaminase (U/L) | 1 (n = 78) | 29.1 ± 33.1 | 1 (n = 78) | 29.7 ± 36.5 | 0.936 | 0.797 |
5 (n = 67) | 35.0 ± 37.2 | 5 (n = 59) | 35.9 ± 38.0 | 0.897 | ||
Last (n = 20) | 32.0 ± 27.4 | Last (n = 32) | 31.3 ± 35.9 | 0.939 | ||
Alanine aminotransferase (U/L) | 1 (n = 78) | 30.6 ± 32.9 | 1 (n = 78) | 29.9 ± 33.4 | 0.904 | 0.319 |
5 (n = 72) | 38.8 ± 49.2 | 5 (n = 68) | 32.4 ± 30.6 | 0.363 | ||
Last (n = 21) | 35.2 ± 44.9 | Last (N = 34) | 30.4 ± 26.7 | 0.624 | ||
Gamma glutamyl transferase (U/L) | 1 (n = 78) | 98.2 ± 131.4 | 1 (n = 78) | 151.5 ± 183.3 | 0.057 | 0.303 |
5 (n = 64) | 177.2 ± 155.7 | 5 (n = 58) | 199.4 ± 185.2 | 0.474 | ||
Last (n = 19) | 171.4 ± 155.0 | Last (n = 28) | 211.6 ± 205.4 | 0.472 | ||
Alcaline phosphatase (U/L) | 1 (n = 78) | 115.8 ± 111.6 | 1 (n = 78) | 139.8 ± 197.9 | 0.339 | 0.549 |
5 (n = 68) | 151.3 ± 125.3 | 5 (n = 66) | 154.2 ± 186.9 | 0.918 | ||
Last (n = 20) | 121.0 ± 60.0 | Last (n = 32) | 166.0 ± 160.0 | 0.234 | ||
C reactive protein (mg/L) | 1 (n = 71) | 112.3 ± 103.6 | 1 (n = 77) | 90.2 ± 90.9 | 0.169 | 0.320 |
5 (n = 66) | 68.7 ± 77.9 | 5 (n = 68) | 65.3 ± 79.6 | 0.805 | ||
Last (n = 15) | 58.4 ± 81.4 | Last (n = 29) | 56.2 ± 48.6 | 0.913 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuín-Fernández, J.; Tapia-Guerrero, M.J.; López-Urdiales, R.; Herranz-Antolín, S.; García-Almeida, J.M.; García-Malpartida, K.; Ferrer-Gómez, M.; Cancer-Minchot, E.; Luengo-Pérez, L.M.; Álvarez-Hernández, J.; et al. Fish Oil Enriched Intravenous Lipid Emulsions Reduce Triglyceride Levels in Non-Critically Ill Patients with TPN and Type 2 Diabetes. A Post-Hoc Analysis of the INSUPAR Study. Nutrients 2020, 12, 1566. https://doi.org/10.3390/nu12061566
Abuín-Fernández J, Tapia-Guerrero MJ, López-Urdiales R, Herranz-Antolín S, García-Almeida JM, García-Malpartida K, Ferrer-Gómez M, Cancer-Minchot E, Luengo-Pérez LM, Álvarez-Hernández J, et al. Fish Oil Enriched Intravenous Lipid Emulsions Reduce Triglyceride Levels in Non-Critically Ill Patients with TPN and Type 2 Diabetes. A Post-Hoc Analysis of the INSUPAR Study. Nutrients. 2020; 12(6):1566. https://doi.org/10.3390/nu12061566
Chicago/Turabian StyleAbuín-Fernández, Jose, María José Tapia-Guerrero, Rafael López-Urdiales, Sandra Herranz-Antolín, Jose Manuel García-Almeida, Katherine García-Malpartida, Mercedes Ferrer-Gómez, Emilia Cancer-Minchot, Luis Miguel Luengo-Pérez, Julia Álvarez-Hernández, and et al. 2020. "Fish Oil Enriched Intravenous Lipid Emulsions Reduce Triglyceride Levels in Non-Critically Ill Patients with TPN and Type 2 Diabetes. A Post-Hoc Analysis of the INSUPAR Study" Nutrients 12, no. 6: 1566. https://doi.org/10.3390/nu12061566
APA StyleAbuín-Fernández, J., Tapia-Guerrero, M. J., López-Urdiales, R., Herranz-Antolín, S., García-Almeida, J. M., García-Malpartida, K., Ferrer-Gómez, M., Cancer-Minchot, E., Luengo-Pérez, L. M., Álvarez-Hernández, J., Aragón Valera, C., Ocón-Bretón, J., García-Manzanares, Á., Bretón-Lesmes, I., Serrano-Aguayo, P., Pérez-Ferre, N., López-Gómez, J. J., Olivares-Alcolea, J., Arraiza-Irigoyen, C., ... Olveira, G. (2020). Fish Oil Enriched Intravenous Lipid Emulsions Reduce Triglyceride Levels in Non-Critically Ill Patients with TPN and Type 2 Diabetes. A Post-Hoc Analysis of the INSUPAR Study. Nutrients, 12(6), 1566. https://doi.org/10.3390/nu12061566