Vitamin D Status Is Not Associated with Cognitive or Motor Function in Pre-School Ugandan Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants and Study Design
2.3. Sample Size
2.4. Laboratory Procedures and Definitions
2.5. Cognitive and Motor Assessments
2.6. Statistical Analysis
3. Results
3.1. Description of Study Participants
3.2. Associations Between 25(OH)D and Participant Characteristics
3.3. Cognitive and Motor Outcomes at Five Years and Associations with Participant Characteristics
3.4. Associations between 25(OH)D and Cognitive and Motor Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shonkoff, J.P.; Phillips, D.A. From neurons to neighborhoods: The science of early childhood development; National Academies Press: Washington, DC, USA, 2000; pp. 182–185. [Google Scholar]
- McCoy, D.C.; Peet, E.D.; Ezzati, M.; Danaei, G.; Black, M.M.; Sudfeld, C.R.; Fawzi, W.; Fink, G. Early childhood developmental status in low-and middle-income countries: National, regional, and global prevalence estimates using predictive modeling. PLoS Med. 2016, 13, e1002034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, M.M.; Walker, S.P.; Fernald, L.C.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Shiffman, J. Early childhood development coming of age: Science through the life course. The Lancet 2017, 389, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Black, M.M. Micronutrient deficiencies and cognitive functioning. J. Nutr. 2003, 133, 3927S–3931S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lips, P. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4–8. [Google Scholar] [CrossRef]
- Wahl, D.; Cooper, C.; Ebeling, P.; Eggersdorfer, M.; Hilger, J.; Hoffmann, K.; Josse, R.; Kanis, J.; Mithal, A.; Pierroz, D. A global representation of vitamin D status in healthy populations. Arch. Osteoporos. 2012, 7, 155–172. [Google Scholar] [CrossRef]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low-and middle-income countries. Ann. NY Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [Green Version]
- Mogire, R.M.; Mutua, A.; Kimita, W.; Kamau, A.; Bejon, P.; Pettifor, J.M.; Adeyemo, A.; Williams, T.N.; Atkinson, S.H. Prevalence of vitamin D deficiency in Africa: A systematic review and meta-analysis. The Lancet Glob. Health 2019, 8, e134–e142. [Google Scholar] [CrossRef] [Green Version]
- Harms, L.R.; Burne, T.H.; Eyles, D.W.; McGrath, J.J. Vitamin D and the brain. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 657–669. [Google Scholar] [CrossRef]
- Al-Harbi, A.N.; Khan, K.M.; Rahman, A. Developmental Vitamin D Deficiency Affects Spatial Learning in Wistar Rats. J. Nutr. 2017, 147, 1795–1805. [Google Scholar] [CrossRef]
- De Abreu, D.A.F.; Nivet, E.; Baril, N.; Khrestchatisky, M.; Roman, F.; Féron, F. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav. Brain Res. 2010, 208, 603–608. [Google Scholar] [CrossRef]
- Kesby, J.P.; Cui, X.; Ko, P.; McGrath, J.J.; Burne, T.H.; Eyles, D.W. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci. Lett. 2009, 461, 155–158. [Google Scholar] [CrossRef]
- AlJohri, R.; AlOkail, M.; Haq, S.H. Neuroprotective role of vitamin D in primary neuronal cortical culture. eNeurologicalSci 2019, 14, 43–48. [Google Scholar] [CrossRef]
- Mutua, A.M.; Mogire, R.M.; Elliott, A.M.; Williams, T.N.; Webb, E.L.; Abubakar, A.; Atkinson, S.H. Effects of vitamin D deficiency on neurobehavioural outcomes in children: A systematic review. Wellcome Op. Res. 2020, 5, 28. [Google Scholar] [CrossRef]
- Wicklow, B.; Gallo, S.; Majnemer, A.; Vanstone, C.; Comeau, K.; Jones, G.; L’Abbe, M.; Khamessan, A.; Sharma, A.; Weiler, H. Impact of vitamin D supplementation on gross motor development of healthy term infants: A randomized dose-response trial. Phys. Occup. Ther. Pediatr. 2016, 36, 330–342. [Google Scholar] [CrossRef]
- Salas, A.A.; Woodfin, T.; Phillips, V.; Peralta-Carcelen, M.; Carlo, W.A.; Ambalavanan, N. Dose-response effects of early vitamin D supplementation on neurodevelopmental and respiratory outcomes of extremely preterm infants at 2 years of age: A randomized trial. Neonatology 2018, 113, 256–262. [Google Scholar] [CrossRef]
- Yakah, W.; Fenton, J.I.; Sikorskii, A.; Zalwango, S.K.; Tuke, R.; Musoke, P.; Boivin, M.J.; Giordani, B.; Ezeamama, A.E. Serum Vitamin D is Differentially Associated with Socioemotional Adjustment in Early School-Aged Ugandan Children According to Perinatal HIV Status and In Utero/Peripartum Antiretroviral Exposure History. Nutrients 2019, 11, 1570. [Google Scholar] [CrossRef] [Green Version]
- Nassar, M.F.; Amin, D.A.; Hamed, A.I.; Nassar, J.F.; Abou-Zeid, A.-E.K.; Attaby, M.A. Vitamin D status and scholastic achievement in middle age childhood. J. Egypt. Soc. Parasitol. 2012, 240, 1–10. [Google Scholar] [CrossRef]
- Elliott, A.M.; Kizza, M.; Quigley, M.A.; Ndibazza, J.; Nampijja, M.; Muhangi, L.; Morison, L.; Namujju, P.B.; Muwanga, M.; Kabatereine, N. The impact of helminths on the response to immunization and on the incidence of infection and disease in childhood in Uganda: Design of a randomized, double-blind, placebo-controlled, factorial trial of deworming interventions delivered in pregnancy and early childhood [ISRCTN32849447]. Clin. Trials. 2007, 4, 42–57. [Google Scholar]
- Nabeta, H.W.; Kasolo, J.; Kiggundu, R.K.; Kiragga, A.N.; Kiguli, S. Serum vitamin D status in children with protein-energy malnutrition admitted to a national referral hospital in Uganda. BMC Res. Notes. 2015, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Nampijja, M. The Impact of Helminth Infections on Developmental and Educational Outcomes. In Handbook of Applied Developmental Science in Sub-Saharan Africa; Abubakar, A., Van de Vijver, F., Eds.; Springer: New York, NY, USA, 2017; pp. 133–156. [Google Scholar]
- Muriuki, J.M.; Mentzer, A.J.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; Webb, E.L.; Lule, S.A.; Morovat, A.; Hill, A.V.; Bejon, P. Iron status and associated malaria risk among African children. Clin. Infect. Dis. 2018, 68, 1807–1814. [Google Scholar] [CrossRef] [Green Version]
- Endocrine Society: clinical practice guidelines for vitamin D deficiency. Available online: https://www.healio.com/endocrinology/practice-management/news/online/%7Bf7557f26-0d85-4ec8-a33a-ef05f41e0e94%7D/endocrine-society-publishes-clinical-practice-guidelines-for-vitamin-d-deficiency (accessed on 24 July 2019).
- Nampijja, M.; Apule, B.; Lule, S.; Akurut, H.; Muhangi, L.; Elliott, A.; Alcock, K.J. Adaptation of Western measures of cognition for assessing 5-year-old semi-urban Ugandan children. Br. J. Educ. Psychol. 2010, 80, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, C.S.; McCulloch, K. The British Ability Scales, 3rd ed.; National Foundation for Psychological Research: Windsor, UK, 1996. [Google Scholar]
- Holding, P.A.; Taylor, H.G.; Kazungu, S.D.; Mkala, T.; Gona, J.; Mwamuye, B.; Mbonani, L.; Stevenson, J. Assessing cognitive outcomes in a rural African population: Development of a neuropsychological battery in Kilifi District, Kenya. J. Int. Neuropsychol. Soc. 2004, 10, 246–260. [Google Scholar] [CrossRef]
- Korkman, M.; Kirk, U.; Kemps, A. A developmental Neuropsychological Assessment; Harcourt Assessment: San Antonio, TX, USA, 1998. [Google Scholar]
- Manly, T.; Anderson, V.; Nimmo-Smith, I.; Turner, A.; Watson, P.; Robertson, I.H. The differential assessment of children’s attention: The Test of Everyday Attention for Children (TEA-Ch), normative sample and ADHD performance. J. Child Psychol. Psychiatry. 2001, 42, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.A. A simple objective technique for measuring flexibility in thinking. J. Gen. Psychol. 1948, 39, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, A.; Holding, P.; Van Baar, A.; Newton, C.; van de Vijver, F.J. Monitoring psychomotor development in a resourcelimited setting: An evaluation of the Kilifi Developmental Inventory. Ann. Trop. Paediatr. 2008, 28, 217–226. [Google Scholar] [CrossRef]
- Henderson, S.E.; Sugden, D. Movement assessment battery for children, 1st ed.; The Psychological Corporation: London, UK, 1992. [Google Scholar]
- Baksi, S.N.; Hughes, M.J. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Res. 1982, 242, 387–390. [Google Scholar] [CrossRef]
- Chowdhury, R.; Taneja, S.; Bhandari, N.; Kvestad, I.; Strand, T.A.; Bhan, M.K. Vitamin-D status and neurodevelopment and growth in young north Indian children: A secondary data analysis. Nutr. J. 2017, 16, 59. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Taneja, S.; Kvestad, I.; Hysing, M.; Bhandari, N.; Strand, T.A. Vitamin D status in early childhood is not associated with cognitive development and linear growth at 6–9 years of age in North Indian children: a cohort study. Nutr. J. 2020, 19, 14. [Google Scholar] [CrossRef] [Green Version]
- Filteau, S.; Rehman, A.M.; Yousafzai, A.; Chugh, R.; Kaur, M.; Sachdev, H.; Trilok-Kumar, G. Associations of vitamin D status, bone health and anthropometry, with gross motor development and performance of school-aged Indian children who were born at term with low birth weight. BMJ Open 2016, 6, e009268. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Al-Taiar, A.; Shaban, L.; Al-Sabah, R.; Al-Harbi, A.; Mojiminiyi, O. Plasma 25-hydroxy vitamin D is not associated with either cognitive function or academic performance in adolescents. Nutrients 2018, 10, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.J.; Niu, Q.; Eyles, D.W.; Hansen, R.L.; Iosif, A.M. Neonatal vitamin D status in relation to autism spectrum disorder and developmental delay in the CHARGE case–control study. Autism Res. 2019, 12, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Tolppanen, A.M.; Williams, D.; Lawlor, D.A. The association of circulating 25-hydroxyvitamin D and calcium with cognitive performance in adolescents: Cross-sectional study using data from the third National Health and Nutrition Examination Survey. Paediatr. Perinat. Epidemiol. 2011, 25, 67–74. [Google Scholar] [CrossRef]
- Trilok-Kumar, G.; Kaur, M.; Rehman, A.M.; Arora, H.; Rajput, M.M.; Chugh, R.; Kurpad, A.; Sachdev, H.S.; Filteau, S. Effects of vitamin D supplementation in infancy on growth, bone parameters, body composition and gross motor development at age 3–6 years: Follow-up of a randomized controlled trial. Int. J. Epidemiol 2015, 44, 894–905. [Google Scholar] [CrossRef]
- Windham, G.C.; Pearl, M.; Anderson, M.C.; Poon, V.; Eyles, D.; Jones, K.L.; Lyall, K.; Kharrazi, M.; Croen, L.A. Newborn vitamin D levels in relation to autism spectrum disorders and intellectual disability: A case–control study in California. Autism Res. 2019, 12, 989–998. [Google Scholar] [CrossRef]
- Tofail, F.; Islam, M.M.; Mahfuz, M.; Ashraful Alam, M.; Aktar, S.; Haque, R.; Hossain, M.I.; Mondal, D.; Petri, W.A.; Ahmed, T. Association of vitamin D nutrition with neuro-developmental outcome of infants of slums in Bangladesh. PLoS ONE 2019, 14, e0221805. [Google Scholar] [CrossRef]
- Tavakolizadeh, R.; Ardalani, M.; Shariatpanahi, G.; Mojtahedi, S.Y.; Sayarifard, A. Is There Any Relationship between Vitamin D Deficiency and Gross Motor Development in12-Month-Old Children? Iran. J. Child Neurol. 2019, 13, 55–60. [Google Scholar]
- Laird, E.; Thurston, S.W.; van Wijngaarden, E.; Shamlaye, C.F.; Myers, G.J.; Davidson, P.W.; Watson, G.E.; McSorley, E.M.; Mulhern, M.S.; Yeates, A.J.; et al. Maternal vitamin D status and the relationship with neonatal anthropometric and childhood neurodevelopmental outcomes: Results from the Seychelles child development nutrition study. Nutrients 2017, 9, 1235. [Google Scholar] [CrossRef] [Green Version]
- Marini, F.; Bartoccini, E.; Cascianelli, G.; Voccoli, V.; Baviglia, M.G.; Magni, M.V.; Garcia-Gil, M.; Albi, E. Effect of 1α, 25-dihydroxyvitamin D3 in embryonic hippocampal cells. Hippocampus 2010, 20, 696–705. [Google Scholar] [CrossRef]
- Chen, S.; Villalta, S.A.; Agrawal, D.K. FOXO1 Mediates Vitamin D Deficiency–Induced Insulin Resistance in Skeletal Muscle. J. Bone Miner. Res. 2016, 31, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh, M.; Talaei, S.A.; Salami, M. Vitamin D deficiency impairs spatial learning in adult rats. Iran. Biomed. J. 2013, 17, 42–48. [Google Scholar] [PubMed]
- Hawes, J.E.; Tesic, D.; Whitehouse, A.J.; Zosky, G.R.; Smith, J.T.; Wyrwoll, C.S. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav. Brain Res. 2015, 286, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.L.; Rayman, M.P.; Steer, C.D.; Golding, J.; Lanham-New, S.A.; Bath, S.C. Association between maternal vitamin D status in pregnancy and neurodevelopmental outcomes in childhood: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Br. J. Nutr. 2017, 117, 1682–1692. [Google Scholar] [CrossRef] [Green Version]
- Keim, S.A.; Bodnar, L.M.; Klebanoff, M.A. Maternal and cord blood 25 (OH)-vitamin D concentrations in relation to child development and behaviour. Paediatr. Perinat. Epidemiol. 2014, 28, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Tong, S.-L.; Hao, J.-H.; Tao, R.-X.; Huang, K.; Hu, W.-B.; Zhou, Q.-F.; Jiang, X.-M.; Tao, F.-B. Cord Blood Vitamin D and Neurocognitive Development Are Nonlinearly Related in Toddlers. J. Nutr. 2015, 145, 1232–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, C.R.; Robinson, S.M.; Harvey, N.C.; Javaid, M.K.; Jiang, B.; Martyn, C.N.; Godfrey, K.M.; Cooper, C. Maternal vitamin D status during pregnancy and child outcomes. Eur. J. Clin. Nutr. 2008, 62, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Veena, S.R.; Krishnaveni, G.V.; Srinivasan, K.; Thajna, K.P.; Hegde, B.G.; Gale, C.R.; Fall, C.H. Association between maternal vitamin D status during pregnancy and offspring cognitive function during childhood and adolescence. Asia Pac. J. Clin. Nutr. 2017, 26, 438–449. [Google Scholar]
- Zhu, Z.; Zhan, J.; Shao, J.; Chen, W.; Chen, L.; Li, W.; Ji, C.; Zhao, Z. High prevalence of vitamin D deficiency among children aged 1 month to 16 years in Hangzhou, China. BMC Public Health 2012, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Cusick, S.E.; Opoka, R.O.; Lund, T.C.; John, C.C.; Polgreen, L.E. Vitamin D insufficiency is common in Ugandan children and is associated with severe malaria. PLoS ONE 2014, 9, e113185. [Google Scholar] [CrossRef]
- Sudfeld, C.R.; Manji, K.P.; Smith, E.R.; Aboud, S.; Kisenge, R.; Fawzi, W.W.; Duggan, C.P. Vitamin D deficiency is not associated with growth or the incidence of common morbidities among Tanzanian infants. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wöbke, T.K.; Sorg, B.L.; Steinhilber, D. Vitamin D in inflammatory diseases. Front. Physiol. 2014, 5, 244. [Google Scholar] [CrossRef] [Green Version]
- Junaid, K.A.; Fellowes, S. Gender differences in the attainment of motor skills on the movement assessment battery for children. Phys. Occup. Ther. Pediatr. 2006, 26, 5–11. [Google Scholar] [CrossRef]
- Flatters, I.; Hill, L.J.; Williams, J.H.; Barber, S.E.; Mon-Williams, M. Manual control age and sex differences in 4 to 11 year old children. PLoS ONE 2014, 9, e88692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyre, H.; Hoertel, N.; Bernard, J.Y.; Rouffignac, C.; Forhan, A.; Taine, M.; Heude, B.; Ramus, F.; EDEN Mother–Child Cohort Study Group. Sex differences in psychomotor development during the preschool period: A longitudinal study of the effects of environmental factors and of emotional, behavioral, and social functioning. J. Exp. Child. Psychol. 2019, 178, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, maturation, and physical activity; Human kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Ndibazza, J.; Mpairwe, H.; Webb, E.L.; Mawa, P.A.; Nampijja, M.; Muhangi, L.; Kihembo, M.; Lule, S.A.; Rutebarika, D.; Apule, B. Impact of anthelminthic treatment in pregnancy and childhood on immunisations, infections and eczema in childhood: a randomised controlled trial. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Nampijja, M.; Apule, B.; Lule, S.; Akurut, H.; Muhangi, L.; Webb, E.L.; Lewis, C.; Elliott, A.M.; Alcock, K.J. Effects of maternal worm infections and anthelminthic treatment during pregnancy on infant motor and neurocognitive functioning. J. Int. Neuropsychol. Soc. 2012, 18, 1019–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PCA Components | Name of Test | Domain | Description of Measure | Absolute Scores (Min, Max) |
---|---|---|---|---|
Verbal and non-verbal IQ | Block design | Non-verbal IQ | The measure is adapted from the British Ability Scales-third edition [26]. The child is asked to copy and construct items with wooden blocks following a demonstration by the assessor. | 0, 16 |
Picture vocabulary scale | Verbal IQ | The measure is adapted from the Kilifi Vocabulary Test [27]. The child is asked to point out and identify items from 24 black and white picture items familiar to them. | 0, 24 | |
Executive function | Verbal fluency | Working memory | The measure is adapted from the Developmental NEuroPSYchological Assessment [28]. The child is asked to name items including foods and animals as fast as possible in a minute. | * |
Picture search | Selective attention | The measure is adapted from the Sky Search in Tests of Everyday Attention for Children [29]. The child is presented with three A3 sheets each with a target picture on top and about 100 others at the bottom including copies of the target picture. The child is asked to locate as many copies of the target pictures as possible within 10 s. | ** | |
Wisconsin card sort test | Cognitive flexibility | The measure is adapted from Berg’s card sort test [30]. The child is given four playing cards of different suits and a pack of 12 cards and asked to sort the cards by number (block 1) and suit (block 2). | 0, 12 | |
Motor function | Coin box | Fine motor function | The measure is adapted from the Kilifi Developmental Inventory [31]. The child is asked to slot coins through a small opening on a coinbox within 20 s in two trials. | 0, 20 † |
Balancing on one leg | Gross motor function | The measure is adapted from the Movement Assessment Battery for Children [32]. It entails timed attempts (two per leg) of balancing on one leg for one minute. | 0, 60 † |
Characteristics | All Participants | 25(OH)D Levels ≤75 nmol/L) (n = 113) | 25(OH)D Levels >75 nmol/L (n = 189) | 25(OH)D Levels (Per 10 nmol/L) (n = 295) β (95% CI) †† | p Value |
---|---|---|---|---|---|
Age at 25(OH)D measurement in years, (n, %) | |||||
1 | 10 (3.3) | 3 (30.0) | 7 (70.0) | 0.91 (−0.79, 2.62) | 0.02 * |
2 | 206 (68.2) | 75 (36.4) | 131 (63.6) | Reference | |
3 | 63 (20.9) | 24 (38.1) | 39 (61.9) | −0.49 (−1.19, 0.19) | |
4 | 23 (7.6) | 11 (47.8) | 12 (52.2) | −1.31 (−2.72, 0.11) | |
Sex (n, %) | |||||
Male | 146 (48.3) | 56 (38.4) | 90 (61.6) | Reference | |
Female | 156 (51.7) | 57 (36.5) | 99 (63.5) | −0.29 (−0.82, 0.24) | 0.29 |
Height-for-age Z-scores (mv = 8) | |||||
Normal (>2 SD) | 193 (65.7) | 79 (40.9) | 114 (59.1) | Reference | |
Stunted (<2 SD) | 101 (34.4) | 32 (31.7) | 69 (68.3) | 0.21 (−0.36, 0.78) | 0.47 |
Weight-for-age Z-scores (mv = 5) | |||||
Normal (>2 SD) | 264 (88.9) | 103 (39.0) | 161 (61.0) | Reference | |
Underweight (<2 SD) | 33 (11.1) | 8 (24.2) | 25 (75.8) | 0.33 (−0.57,1.23) | 0.47 |
Weight-for-height Z-scores (mv = 5) | |||||
Normal (>2 SD) | 283 (95.3) | 105 (37.1) | 178 (62.9) | Reference | |
Wasted (<2 SD) | 14 (4.7) | 6 (42.9) | 8 (57.1) | −0.50 (−1.84, 0.84) | 0.46 |
Helminthic infections between birth and 5 years (n, %) | |||||
Negative | 248 (82.1) | 96 (38.7) | 152 (61.3) | Reference | |
Positive | 54 (17.9) | 17 (31.5) | 37 (68.5) | 0.01 (−0.74, 0.76) | 0.98 |
Asymptomatic malaria between birth and 5 years (n, %) | |||||
Negative | 268 (88.7) | 103 (38.4) | 165 (61.6) | Reference | |
Positive | 34 (11.3) | 10 (29.4) | 24 (70.6) | 1.14 (0.27, 2.02) | 0.01 |
Malaria episodes between birth and 5 years (n, %) | |||||
None | 135 (44.7) | 56 (41.8) | 79 (58.5) | Reference | |
1 | 65 (21.5) | 24 (36.9) | 41 (63.1) | −0.38 (−1.12, 0.36) | |
≥2 | 102 (33.8) | 33 (32.3) | 69 (67.7) | 0.25 (−0.38, 0.89) | 0.48 * |
Haemoglobin levels at time of 25(OH)D measurement a (n, %) (mv = 16) | |||||
Normal | 172 (60.1) | 62 (36.1) | 110 (63.9) | Reference | |
Anaemia | 114 (39.9) | 44 (38.6) | 70 (61.4) | −0.17 (−0.74, 0.40) | 0.56 |
Iron deficiency at time of 25(OH)D measurement b (n, %) (mv = 14) | |||||
Normal | 210 (72.9) | 76 (36.2) | 134 (63.8) | Reference | |
Iron deficiency | 78 (27.1) | 31 (39.7) | 47 (60.3) | 0.03 (−0.60, 0.66) | 0.93 |
CRP levels at time of 25(OH)D measurement c (n, %) (mv = 3) | |||||
Normal | 230 (76.9) | 98 (42.6) | 132 (57.4) | Reference | |
Inflammation | 69 (23.1) | 15 (21.7) | 54 (78.3) | 0.79 (0.14, 1.46) | 0.02 |
Randomized treatment of children with albendazole (ABZ) in EMaBS trial | |||||
Placebo | 143 (47.4) | 53 (37.1) | 90 (62.9) | Reference | |
ABZ | 159 (52.7) | 60 (37.7) | 99 (62.3) | 0.13 (−0.41, 0.67) | 0.63 |
Maternal age in years at enrolment to EMaBS (n, %) | |||||
14–24 | 165 (54.6) | 63 (38.2) | 102 (61.8) | Reference | |
25–34 | 110 (36.4) | 40 (36.4) | 70 (63.6) | −0.09 (−0.77, 0.59) | |
35+ | 27 (8.9) | 10 (37.0) | 17 (63.0) | 0.69 (−0.54, 1.91) | 0.55 * |
Maternal education at enrolment to EMaBS (n, %) (mv = 1) | |||||
Primary/none | 165 (54.8) | 66 (40.0) | 99 (60.0) | 0.19 (−0.91, 1.29) | |
Secondary | 114 (37.9) | 37 (32.5) | 77 (67.5) | 0.46 (−0.64, 1.56) | |
Tertiary | 22 (7.3) | 9 (40.9) | 13 (59.1) | Reference | 0.77 * |
Parity (n, %) | |||||
1 | 54 (17.9) | 27 (50.0) | 27 (50.0) | Reference | |
2–4 | 179 (59.3) | 61 (34.1) | 118 (65.9) | 0.19 (−0.56, 0.94) | |
5+ | 69 (22.9) | 25 (36.2) | 44 (63.8) | −0.09 (−1.23, 1.05) | 0.97 * |
Randomized treatment of mothers with ABZ during pregnancy in EMaBS trial (n, %) | |||||
Placebo | 144 (47.7) | 51 (35.4) | 93 (64.6) | Reference | |
ABZ | 158 (552.3) | 62 (39.2) | 96 (60.8) | −0.02 (−0.56, 0.52) | 0.94 |
Randomized treatment of mothers with praziquantel during pregnancy in EMaBS trial (n, %) | |||||
Placebo | 167 (55.3) | 65 (38.9) | 102 (61.1) | Reference | |
Praziquantel | 135 (44.7) | 48 (35.6) | 87 (64.4) | 0.47 (−0.07, 1.00) | 0.09 |
Household socioeconomic status recorded at EMaBS enrolment d (n, %) (mv = 5) | |||||
1 (lowest) | 16 (5.4) | 13 (81.3) | 3(18.7) | −1.49 (−2.92, −0.07) | |
2 | 16 (5.4) | 6 (37.5) | 10 (62.5) | −1.26 (−2.77, 0.24) | |
3 | 82 (27.6) | 22 (26.8) | 60 (73.2) | 0.33 (−0.71, 1.37) | |
4 | 89 (29.9) | 30 (33.7) | 59 (66.3) | −0.14 (−1.18, 0.89) | |
5 | 69 (23.2) | 29 (42.0) | 40 (58.0) | −0.33 (−1.39, 0.72) | |
6 (highest) | 25 (8.4) | 11 (44.0) | 14 (56.0) | Reference | 0.25 * |
Location recorded at EMaBS enrolment (n, %) | |||||
Urban | 118 (39.1) | 49 (41.5) | 69 (58.5) | Reference | |
Peri-urban | 79 (26.2) | 29 (36.7) | 50 (63.3) | 0.36 (−0.33, 1.05) | |
Rural | 105 (34.8) | 35 (33.3) | 70 (66.7) | 0.24 (−0.41, 0.89) | 0.45 * |
Variables | Verbal and Non-Verbal IQ (n = 259) β (95% CI) | p Value | Executive Function (n = 259) β (95% CI) | p Value | Motor Function (n = 259) β (95% CI) | p Value |
---|---|---|---|---|---|---|
Sex | ||||||
Male | Reference | Reference | Reference | |||
Female | −0.19 (−0.50, 0.13) | 0.25 | 0.42 (0.11, 0.72) | 0.01 | 0.33 (0.05, 0.60) | 0.02 |
HAZ | ||||||
Normal | Reference | Reference | Reference | |||
Stunted | −0.30 (−0.64, 0.04) | 0.08 | 0.02 (−0.31, 0.35) | 0.91 | −0.05 (−0.34, 0.25) | 0.75 |
Maternal education | ||||||
Primary/none | −0.46 (−1.08, 0.16) | −0.43 (−1.04, 0.17) | 0.27 (−0.27, 0.81) | |||
Secondary | −0.21 (−0.84, 0.41) | −0.18 (−0.79, 0.43) | 0.34 (−0.21, 0.88) | |||
Tertiary | Reference | 0.07 * | Reference | 0.07 * | Reference | 0.66 * |
Household socioeconomic status | ||||||
1 (Lowest) | −0.33 (−1.19, 0.53) | −0.04 (−0.88, 0.79) | 0.36 (−0.38, 1.11) | |||
2 | 0.09 (−0.80, 0.99) | −0.04 (−0.91, 0.31) | 0.17 (−0.61, 0.94) | |||
3 | −0.06 (−0.68, 0.57) | −0.29 (−0.90, 0.32) | 0.37 (−0.17, 0.92) | |||
4 | 0.06 (−0.56, 0.69) | −0.23 (−0.84, 0.38) | 0.42 (−0.12, 0.97) | |||
5 | 0.44 (−0.19, 1.08) | 0.10 (−0.52, 0.72) | 0.39 (−0.16, 0.94) | |||
6 (Highest) | Reference | 0.08 * | Reference | 0.35 * | Reference | 0.66 * |
Location | ||||||
Urban | Reference | Reference | Reference | |||
Peri-urban | 0.03 (−0.37, 0.43) | −0.37 (−0.76, 0.02) | −0.08 (−0.42, 0.27) | |||
Rural | −0.11 (−0.49, 0.27) | 0.57 * | −0.20 (−0.57, 0.17) | 0.27 * | 0.12 (−0.21, 0.45) | 0.50 * |
Randomized treatment of children with albendazole (ABZ) in EMaBS trial | ||||||
ABZ | Reference | Reference | Reference | |||
Placebo | −0.07 (−0.39, 0.25) | 0.69 | −0.13 (−0.45, 0.18) | 0.40 | −0.31 (−0.59, −0.04) | 0.03 |
Univariable Model β (95% CI) n= 302 | p Value | Model 1 * β (95% CI) n = 272 | p Value | Model 2 ** β (95% CI) n = 259 | p Value | |
---|---|---|---|---|---|---|
Verbal and non-verbal IQ | ||||||
25(OH)D levels (per 10 nmol/L) | −0.01 (−0.07, 0.06) | 0.76 | 0.01 (−0.07, 0.08) | 0.86 | 0.01(−0.07, 0.08) | 0.82 |
25(OH)D levels >75 nmol/L | Reference | Reference | Reference | |||
25(OH)D levels 50–75 nmol/L | −0.08 (−0.40, 0.24) | 0.63 | 0.02 (−0.31, 0.35) | 0.89 | 0.04 (−0.30, 0.39) | 0.80 |
25(OH)D levels ≤75 nmol/L | 0.08 (−0.23, 0.39) | 0.63 | −0.01 (−0.33, 0.32) | 0.96 | −0.05 (−0.38, 0.29) | 0.78 |
Executive function | ||||||
25(OH)D levels (per 10 nmol/L) | 0.01 (−0.06, 0.07) | 0.81 | 0.03 (−0.04, 0.10) | 0.37 | 0.04 (−0.03, 0.12) | 0.25 |
25(OH)D levels >75 nmol/L | Reference | Reference | Reference | |||
25(OH)D levels 50–75 nmol/L | −0.07 (−0.38, 0.23) | 0.64 | −0.06 (−0.38, 0.27) | 0.73 | −0.04 (−37, 0.29) | 0.81 |
25(OH)D levels ≤75 nmol/L | 0.08 (−0.22, 0.39) | 0.58 | 0.04 (−0.27, 0.35) | 0.80 | 0.01 (−0.32, 0.34) | 0.94 |
Motor function | ||||||
25(OH)D levels (per 10 nmol/L) | 0.02 (−0.04, 0.07) | 0.54 | 0.02 (−0.04, 0.08) | 0.55 | 0.02 (−0.04, 0.09) | 0.52 |
25(OH)D levels >75 nmol/L | Reference | Reference | Reference | |||
25(OH)D levels 50–75 nmol/L | 0.00 (−0.27, 0.27) | 0.99 | 0.01 (−0.27, 0.29) | 0.96 | 0.01 (−0.29, 0.30) | 0.97 |
25(OH)D levels ≤75 nmol/L | −0.04 (−0.29, 0.22) | 0.79 | −0.06 (−0.33, 0.22) | 0.68 | −0.06 (−0.34, 0.23) | 0.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutua, A.M.; Nampijja, M.; Elliott, A.M.; Pettifor, J.M.; Williams, T.N.; Abubakar, A.; Webb, E.L.; Atkinson, S.H. Vitamin D Status Is Not Associated with Cognitive or Motor Function in Pre-School Ugandan Children. Nutrients 2020, 12, 1662. https://doi.org/10.3390/nu12061662
Mutua AM, Nampijja M, Elliott AM, Pettifor JM, Williams TN, Abubakar A, Webb EL, Atkinson SH. Vitamin D Status Is Not Associated with Cognitive or Motor Function in Pre-School Ugandan Children. Nutrients. 2020; 12(6):1662. https://doi.org/10.3390/nu12061662
Chicago/Turabian StyleMutua, Agnes M., Margaret Nampijja, Alison M. Elliott, John M. Pettifor, Thomas N. Williams, Amina Abubakar, Emily L. Webb, and Sarah H. Atkinson. 2020. "Vitamin D Status Is Not Associated with Cognitive or Motor Function in Pre-School Ugandan Children" Nutrients 12, no. 6: 1662. https://doi.org/10.3390/nu12061662
APA StyleMutua, A. M., Nampijja, M., Elliott, A. M., Pettifor, J. M., Williams, T. N., Abubakar, A., Webb, E. L., & Atkinson, S. H. (2020). Vitamin D Status Is Not Associated with Cognitive or Motor Function in Pre-School Ugandan Children. Nutrients, 12(6), 1662. https://doi.org/10.3390/nu12061662