Nutritional Strategies to Optimize Performance and Recovery in Rowing Athletes
Abstract
:1. Introduction
2. Materials and Methods
3. Nutrition for Rowing Performance in Competition or Training
3.1. Before Training or Competition
3.2. During Training or Competition
3.3. Use of Performance Enhancing Supplements
4. Nutrition for Recovery after Rowing Competition or Training
4.1. Refueling
4.2. Rehydration
4.3. Repair
5. Nutrition for Recovery after Acute Weight Loss in Lightweight Rowing Athletes
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soper, C.; Hume, P.A. Towards an ideal rowing technique for performance: The contributions from biomechanics. Sports Med. 2004, 34, 825–848. [Google Scholar] [CrossRef]
- Martin, S.A.; Tomescu, V. Energy systems efficiency influences the results of 2,000 m race simulation among elite rowers. Clujul Med. 2017, 90, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Pripstein, L.P.; Rhodes, E.C.; McKenzie, D.C.; Coutts, K.D. Aerobic and anaerobic energy during a 2-km race simulation in female rowers. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 79, 491–494. [Google Scholar] [CrossRef]
- Boegman, S.; Dziedzic, C.E. Nutrition and supplements for elite open-weight rowing. Curr. Sports Med. Rep. 2016, 15, 252–261. [Google Scholar] [CrossRef]
- Lee, S.; Lim, H. Development of an evidence-based nutritional intervention protocol for adolescent athletes. J. Exerc. Nutr. Biochem. 2019, 23, 29–38. [Google Scholar] [CrossRef]
- Lewis, N.A.; Redgrave, A.; Homer, M.; Burden, R.; Martinson, W.; Moore, B.; Pedlar, C.R. Alterations in redox homeostasis during recovery from unexplained underperformance syndrome in an elite international rower. Int. J. Sports Physiol. Perform. 2018, 13, 107–111. [Google Scholar] [CrossRef]
- Kurgan, N.; Logan-Sprenger, H.; Falk, B.; Klentrou, P. Bone and inflammatory responses to training in female rowers over an olympic year. Med. Sci. Sports Exerc. 2018, 50, 1810–1817. [Google Scholar] [CrossRef]
- Doering, T.M.; Reaburn, P.R.; Cox, G.; Jenkins, D.G. Comparison of postexercise nutrition knowledge and postexercise carbohydrate and protein intake between australian masters and younger triathletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 338–346. [Google Scholar] [CrossRef]
- Heikkilä, M.; Valve, R.; Lehtovirta, M.; Fogelholm, M. Nutrition knowledge among young finnish endurance athletes and their coaches. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 522–527. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Maughan, R.J.; Burke, L.M. Nutrition for power sports: Middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J. Sports Sci. 2011, 29, 79–89. [Google Scholar] [CrossRef]
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philp, A.; Hargreaves, M.; Baar, K. More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am. J. Physiol. Endocrinol. Metab. 2012, 302, 1343–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonsen, J.C.; Sherman, W.M.; Lamb, D.R.; Dernbach, A.R.; Doyle, J.A.; Strauss, R. Dietary carbohydrate, muscle glycogen, and power output during rowing training. J. Appl. Physiol. 1991, 70, 1500–1505. [Google Scholar] [CrossRef] [Green Version]
- Cornford, E.; Metcalfe, R. Omission of carbohydrate-rich breakfast impairs evening 2000-m rowing time trial performance. Eur. J. Sport Sci. 2019, 19, 133–140. [Google Scholar] [CrossRef]
- Burke, L.M.; Mujika, I. Nutrition for recovery in aquatic sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E.; Killer, S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann. Nutr. Metab. 2010, 2, 18–25. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Training the gut for athletes. Sports Med. 2017, 47, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014, 1, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.; Stellingwerff, T.; Klimstra, M. Carbohydrate mouth rinse counters fatigue related strength reduction. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 252–261. [Google Scholar] [CrossRef]
- Chambers, E.S.; Bridge, M.W.; Jones, D.A. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. 2009, 587, 1779–1794. [Google Scholar] [CrossRef]
- Derave, W.; Tipton, K.D. Dietary supplements for aquatic sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 437–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, J.R.; Varanoske, A.; Stout, J.R. Effects of β-alanine supplementation on carnosine elevation and physiological performance. Adv. Food Nutr. Res. 2018, 84, 183–206. [Google Scholar]
- Baguet, A.; Bourgois, J.; Vanhee, L.; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. J. Appl. Physiol. 2010, 109, 1096–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, R.M.; Harris, R.C.; Martin, D.; Smith, P.; Macklin, B.; Gualano, B.; Sale, C. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 480–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecker, R.A.; Harty, P.S.; Jagim, A.R.; Candow, D.G.; Kerksick, C.M. Timing of ergogenic aids and micronutrients on muscle and exercise performance. J. Int. Soc. Sports Nutr. 2019, 16, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.E.; Bruce, C.R.; Fraser, S.F.; Stepto, N.K.; Klein, R.; Hopkins, W.G.; Hawley, J.A. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 464–475. [Google Scholar] [CrossRef]
- Bruce, C.R.; Anderson, M.E.; Fraser, S.F.; Stepto, N.K.; Klein, R.; Hopkins, W.G.; Hawley, J.A. Enhancement of 2000-m rowing performance after caffeine ingestion. Med. Sci. Sports Exerc. 2000, 32, 1958–1963. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.T.; O’Leary, T.; Walker, S.; Owen, R. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int. J. Sports Physiol. Perform. 2015, 10, 464–468. [Google Scholar] [CrossRef]
- Grgic, J.; Diaz-Lara, F.J.; Coso, J.D.; Duncan, M.J.; Tallis, J.; Pickering, C.; Schoenfeld, B.J.; Mikulic, P. The effects of caffeine ingestion on measures of rowing performance: A systematic review and meta-analysis. Nutrients 2020, 12, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnes, T.; Cruz, R.S.O.; Caputo, F.; De Aguiar, R.A. The Impact of preconditioning strategies designed to improve 2000-m rowing ergometer performance in trained rowers: A systematic review and meta-analysis. Int. J. Sports Physiol. Perform. 2019, 14, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Nutritional supplement for athletic performance: Based on Australian Institute of Sport sports supplement framework. Exerc. Sci. 2019, 28, 211–220. [Google Scholar] [CrossRef]
- Hobson, R.M.; Harris, R.C.; Martin, D.; Smith, P.; Macklin, B.; Elliott-Sale, K.J.; Sale, C. Effect of sodium bicarbonate supplementation on 2000-m rowing performance. Int. J. Sports Physiol. Perform. 2014, 9, 139–144. [Google Scholar] [CrossRef]
- Driller, M.W.; Gregory, J.R.; Williams, A.D.; Fell, J.W. The effects of chronic sodium bicarbonate ingestion and interval training in highly trained rowers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Kupcis, P.D.; Slater, G.J.; Pruscino, C.L.; Kemp, J.G. Influence of sodium bicarbonate on performance and hydration in lightweight rowing. Int. J. Sports Physiol. Perform. 2012, 7, 11–18. [Google Scholar] [CrossRef]
- Carr, A.J.; Gore, C.J.; Dawson, B. Induced alkalosis and caffeine supplementation: Effects on 2,000-m rowing performance. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 357–364. [Google Scholar] [CrossRef]
- Christensen, P.M.; Petersen, M.H.; Friis, S.N.; Bangsbo, J. Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers. Appl. Physiol. Nutr. Metab. 2014, 39, 1058–1063. [Google Scholar] [CrossRef]
- Wilson, J.M.; Fitschen, P.J.; Campbell, B.; Wilson, G.J.; Zanchi, N.; Taylor, L.; Wilborn, C.; Kalman, D.S.; Stout, J.R.; Hoffman, J.R.; et al. International Society of Sports Nutrition Position Stand: Beta-hydroxy-beta-methylbutyrate (HMB). J. Int. Soc. Sports Nutr. 2013, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Durkalec-Michalski, K.; Jeszka, J. The efficacy of a β-hydroxy-β-methylbutyrate supplementation on physical capacity, body composition and biochemical markers in elite rowers: A randomised, double-blind, placebo-controlled crossover study. J. Int. Soc. Sports Nutr. 2015, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Córdova Martínez, A.; León-Guereño, P.; Mielgo-Ayuso, J. Effect of ten weeks of creatine monohydrate plus HMB supplementation on athletic performance tests in elite male endurance athletes. Nutrients 2020, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, H.; Morton, L.; Braakhuis, A.J. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 251–256. [Google Scholar] [CrossRef]
- Hoon, M.W.; Jones, A.M.; Johnson, N.A.; Blackwell, J.R.; Broad, E.M.; Lundy, B.; Rice, A.J.; Burke, L.M. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int. J. Sports Physiol. Perform. 2014, 9, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Abel, M.G.; Thomas, T.; Symons, T.B.; Yates, J.W. Acute beetroot juice supplementation does not attenuate knee extensor exercise muscle fatigue in a healthy young population. J. Exerc. Nutr. Biochem. 2019, 23, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Keohane, D.M.; Woods, T.; McCarthy, Y.; O’Connor, P.; Underwood, S.; Molloy, M.G. A repeated-measures case series of physiological responses to a transoceanic rowing race. Int. J. Sports Med. 2019, 40, 152–157. [Google Scholar] [CrossRef]
- Gleeson, M. Biochemical and immunological markers of over-training. J. Sports Sci. Med. 2002, 1, 31–41. [Google Scholar] [PubMed]
- McCartney, D.; Desbrow, B.; Irwin, C. Post-exercise ingestion of carbohydrate, protein and water: A systematic review and meta-analysis for effects on subsequent athletic performance. Sports Med. 2018, 48, 379–408. [Google Scholar] [CrossRef]
- Ivy, J.L. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. J. Sports Sci. Med. 2004, 3, 131–138. [Google Scholar]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.M.; Collier, G.R.; Hargreaves, M. Muscle glycogen storage after prolonged exercise: Effect of the glycemic index of carbohydrate feedings. J. Appl. Physiol. 1993, 75, 1019–1023. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Davis, P.G.; Fricker, P.A.; Sanigorski, A.J.; Hargreaves, M. Muscle glycogen storage after prolonged exercise: Effect of the frequency of carbohydrate feedings. Am. J. Clin. Nutr. 1996, 64, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keizer, H.A.; Kuipers, H.; van Kranenburg, G.; Geurten, P. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int. J. Sports Med. 1987, 8, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in sports and exercise: Tracking health, performance, and recovery in athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [Green Version]
- Castro-Sepulveda, M.; Cerda-Kohler, H.; Pérez-Luco, C.; Monsalves, M.; Andrade, D.C.; Zbinden-Foncea, H.; Báez-San Martín, E.; Ramírez-Campillo, R. Hydration status after exercise affect resting metabolic rate and heart rate variability. Nutr. Hosp. 2014, 31, 1273–1277. [Google Scholar] [PubMed]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef] [PubMed]
- McGlory, C.; Devries, M.C.; Phillips, S.M. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J. Appl. Physiol. 2017, 122, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Park, H.Y.; Kim, J.; Hwang, H.; Jung, Y.; Kreider, R.; Lim, K. Effects of whey protein supplementation prior to, and following, resistance exercise on body composition and training responses: A randomized double-blind placebo-controlled study. J. Exerc. Nutr. Biochem. 2019, 23, 34–44. [Google Scholar] [CrossRef]
- Dreyer, H.C.; Drummond, M.J.; Pennings, B.; Fujita, S.; Glynn, E.L.; Chinkes, D.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 294, 392–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.; van Loon, L.J. Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders, T.; Res, P.T.; Smeets, J.S.; van Vliet, S.; van Kranenburg, J.; Maase, K.; Kies, A.K.; Verdijk, L.B.; van Loon, L.J. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J. Nutr. 2015, 145, 1178–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trommelen, J.; van Loon, L.J. Pre-sleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutrients 2016, 8, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slater, G.J.; Rice, A.J.; Sharpe, K.; Mujika, I.; Jenkins, D.; Hahn, A.G. Body-mass management of Australian lightweight rowers prior to and during competition. Med. Sci. Sports Exerc. 2005, 37, 860–866. [Google Scholar] [CrossRef] [Green Version]
- Slater, G.; Rice, A.; Jenkins, D.; Hahn, A. Body mass management of lightweight rowers: Nutritional strategies and performance implications. Br. J. Sports Med. 2014, 48, 1529–1533. [Google Scholar] [CrossRef]
- Slater, G.J.; Rice, A.J.; Jenkins, D.; Gulbin, J.; Hahn, A.G. Preparation of former heavyweight oarsmen to compete as lightweight rowers over 16 weeks: Three case studies. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 108–121. [Google Scholar] [CrossRef]
- Slater, G.; Rice, A.J.; Tanner, R.; Sharpe, K.; Gore, C.J.; Jenkins, D.G.; Hahn, A.G. Acute weight loss followed by an aggressive nutritional recovery strategy has little impact on on-water rowing performance. Br. J. Sports Med. 2006, 40, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Slater, G.J.; Rice, A.J.; Sharpe, K.; Tanner, R.; Jenkins, D.; Gore, C.J.; Hahn, A.G. Impact of acute weight loss and/or thermal stress on rowing ergometer performance. Med. Sci. Sports Exerc. 2005, 37, 1387–1394. [Google Scholar] [CrossRef]
- Slater, G.J.; Rice, A.J.; Sharpe, K.; Jenkins, D.; Hahn, A.G. Influence of nutrient intake after weigh-in on lightweight rowing performance. Med. Sci. Sports Exerc. 2007, 39, 184–191. [Google Scholar] [CrossRef] [PubMed]
Periods | Nutrition Points |
---|---|
Before training or competition |
|
During training or competition |
|
Supplements | Reference | Subjects | Trials | Main Findings |
---|---|---|---|---|
β-alanine | Baguet et al. [23] | Elite male and female rowers (n = 19) | 5 g/day for 7 weeks (divided over 5 doses of 1 g, ingestion with 2 hr intervals) | Rowing speed ↑ |
Hobson et al. [24] | Well-trained male rowers (n = 20) | 6.4 g/day for 4 weeks (2 × 800 mg/time, 4 times/day separated by 3–4 hr) | 2000-m rowing performance ↑ | |
Caffeine | Anderson et al. [28] | Competitive male rowers (n = 8) | 6 or 9 mg/kg (timing: 60 min before exercise) | Rowing performance time↑ (both doses of caffeine had a similar effect) Mean power output ↑ (9 > 6 mg/kg) First 500 m time of 2000-m row ↑ (9 > 6 mg/kg) |
Bruce et al. [29] | Well-trained male rowers (n = 8) | 6 or 9 mg/kg (timing: 60 min before exercise) | Rowing performance time↑ (both doses of caffeine had a similar effect) Mean power output ↑ (both doses of caffeine had a similar effect) | |
Scott et al. [30] | University sports performers (n = 13) | 21.6 g of CHO and 100 mg of caffeine (caffeinated CHO gel, timing: 10 min before exercise) | 2000-m rowing performance ↑ | |
Carr et al. [37] | Well-trained male and female rowers (n = 8) | 6 mg/kg (timing: 30 min before exercise) | 2000-m mean power ↑ | |
Christensen et al. [38] | Elite male rowers (n = 12) | 3 mg/kg (timing: 45 min before exercise) | Total distance ↑ Mean power ↑ | |
Sodium bicarbonate | Hobson et al. [34] | Well-trained male rowers (n = 20) | 0.3 g/kg (timing: 120 min before exercise) | 2000-m rowing performance ↑ |
Driller et al. [35] | National male rowers (n = 12) | 0.3 g/kg for 4 weeks (timing: 90 min before exercise) | 2000-m power = 2000-m time =peak power output = power at 4 mmol/L lactate threshold = | |
Kupcis et al. [36] | Elite male rowers (n = 7) | 0.3 g/kg (timing: 70–90 min before exercise) | Rowing performance time = | |
Carr et al. [37] | Well-trained male and female rowers (n = 8) | Acute: 0.3 g/kg (timing: 120 min before exercise) Chronic: 0.5 g/kg for 3 days (ingestion with meals and snacks) | 2000-m rowing performance = (both acute and chronic) | |
Christensen et al. [38] | Elite male rowers (n = 12) | 0.3 g/kg (timing: 75 min before exercise) | Total distance = Mean power = | |
HMB | Durkalec-Michalski and Jeszka [40] | Elite male rowers (n = 16) | 3x1 g/day for 12 weeks (timing of 3 doses: Upon waking, immediately after training, and before sleep) | VO2 max ↑Ventilatory threshold ↑Peak anaerobic power ↑ |
Fernández-Landa et al. [41] | Elite male rowers (n = 28) | 3 g/day for 10 weeks (+ creatine: 0.04 g/kg and chocolate shake: 1 g/kg of CHO and 0.3 g/kg protein; timing of training day: In the half hour after training, and timing of off day: 30 min before sleep) | Aerobic power ↑ | |
Beetroot juice | Bond et al. [42] | Well-trained junior male rowers (n = 14) | 5.5 mmol nitrate/day for 6 days (timing: Every morning and afternoon) | Maximal rowing-ergometer repetitions ↑ |
Hoon et al. [43] | Well-trained male rowers (n = 10) | 8.4 or 4.2 mmol nitrate/day (timing: 2 hr before exercise) | 2000-m rowing performance ↑ (8.4 > 4.2 mmol nitrate) |
Components | Nutrition Points |
---|---|
Refueling |
|
Rehydration |
|
Repair |
|
Nutrition Points |
---|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, E.-K. Nutritional Strategies to Optimize Performance and Recovery in Rowing Athletes. Nutrients 2020, 12, 1685. https://doi.org/10.3390/nu12061685
Kim J, Kim E-K. Nutritional Strategies to Optimize Performance and Recovery in Rowing Athletes. Nutrients. 2020; 12(6):1685. https://doi.org/10.3390/nu12061685
Chicago/Turabian StyleKim, Jooyoung, and Eun-Kyung Kim. 2020. "Nutritional Strategies to Optimize Performance and Recovery in Rowing Athletes" Nutrients 12, no. 6: 1685. https://doi.org/10.3390/nu12061685
APA StyleKim, J., & Kim, E. -K. (2020). Nutritional Strategies to Optimize Performance and Recovery in Rowing Athletes. Nutrients, 12(6), 1685. https://doi.org/10.3390/nu12061685