Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Literature Search
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment and Risk of Bias
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies
3.3. Risk of Bias
3.4. Group and Subgroup Effects
4. Discussion
4.1. Forms of Nitrate Supplementation
4.2. Pharmacokinetics of Nitrate
4.3. Exercise Type and Ergogenic Response
4.4. Performance Level and Ergogenic Response
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44 (Suppl. 1), 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bescos, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Flueck, J.L.; Bogdanova, A.; Mettler, S.; Perret, C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl. Physiol. Nutr. Metab. 2016, 41, 421–429. [Google Scholar] [CrossRef]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Campos, H.O.; Drummond, L.R.; Rodrigues, Q.T.; Machado, F.S.M.; Pires, W.; Wanner, S.P.; Coimbra, C.C. Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: A systematic review and meta-analysis. Br. J. Nutr. 2018, 119, 636–657. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. (1985) 2010, 109, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. (1985) 2015, 118, 1396–1405. [Google Scholar] [CrossRef]
- Dominguez, R.; Cuenca, E.; Mate-Munoz, J.L.; Garcia-Fernandez, P.; Serra-Paya, N.; Estevan, M.C.; Herreros, P.V.; Garnacho-Castano, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [Green Version]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Aucouturier, J.; Boissiere, J.; Pawlak-Chaouch, M.; Cuvelier, G.; Gamelin, F.X. Effect of dietary nitrate supplementation on tolerance to supramaximal intensity intermittent exercise. Nitric Oxide 2015, 49, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Influence of dietary nitrate on the physiological determinants of exercise performance: A critical review. Appl. Physiol. Nutr. Metab. 2014, 39, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Chaouch, M.; Boissiere, J.; Munyaneza, D.; Gamelin, F.X.; Cuvelier, G.; Berthoin, S.; Aucouturier, J. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J. Am. Coll. Nutr. 2019, 38, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. (1985) 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Vasconcellos, J.; Henrique Silvestre, D.; Dos Santos Baiao, D.; Werneck-de-Castro, J.P.; Silveira Alvares, T.; Paschoalin, V.M. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals. J. Nutr. Metab. 2017, 2017, 7853034. [Google Scholar] [CrossRef]
- Kelly, J.; Vanhatalo, A.; Wilkerson, D.P.; Wylie, L.J.; Jones, A.M. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med. Sci. Sports Exerc. 2013, 45, 1798–1806. [Google Scholar] [CrossRef] [Green Version]
- Haider, G.; Folland, J.P. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med. Sci. Sports Exerc. 2014, 46, 2234–2243. [Google Scholar] [CrossRef]
- Pollock, A.; Berge, E. How to do a systematic review. Int. J. Stroke 2018, 13, 138–156. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Law, M.; Stewart, D.; Pollock, N.; Letts, L.; Bosch, J.; Westmorland, M. Guidelines for Critical Review Form—Quantitative Studies 1998; McMaster University: Hamilton, ON, Canada, 2008. [Google Scholar]
- Balsalobre-Fernandez, C.; Romero-Moraleda, B.; Cupeiro, R.; Peinado, A.B.; Butragueno, J.; Benito, P.J. The effects of beetroot juice supplementation on exercise economy, rating of perceived exertion and running mechanics in elite distance runners: A double-blinded, randomized study. PLoS ONE 2018, 13, e0200517. [Google Scholar] [CrossRef]
- Bescos, R.; Ferrer-Roca, V.; Galilea, P.A.; Roig, A.; Drobnic, F.; Sureda, A.; Martorell, M.; Cordova, A.; Tur, J.A.; Pons, A. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med. Sci. Sports Exerc. 2012, 44, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Bescos, R.; Rodriguez, F.A.; Iglesias, X.; Ferrer, M.D.; Iborra, E.; Pons, A. Acute administration of inorganic nitrate reduces VO(2peak) in endurance athletes. Med. Sci. Sports Exerc. 2011, 43, 1979–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boorsma, R.K.; Whitfield, J.; Spriet, L.L. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334. [Google Scholar] [CrossRef] [PubMed]
- Callahan, M.J.; Parr, E.B.; Hawley, J.A.; Burke, L.M. Single and Combined Effects of Beetroot Crystals and Sodium Bicarbonate on 4-km Cycling Time Trial Performance. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Gibala, M.J.; van Loon, L.J. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 64–71. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.; Stinkens, R.; Lundberg, J.O.; Gibala, M.J.; van Loon, L.J. No improvement in endurance performance after a single dose of beetroot juice. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand. J. Med. Sci. Sports 2013, 23, 21–31. [Google Scholar] [CrossRef]
- Esen, O.; Nicholas, C.; Morris, M.; Bailey, S.J. No Effect of Beetroot Juice Supplementation on 100-m and 200-m Swimming Performance in Moderately Trained Swimmers. Int. J. Sports Physiol. Perform. 2019, 14, 706–710. [Google Scholar] [CrossRef]
- Garnacho-Castano, M.V.; Palau-Salva, G.; Cuenca, E.; Munoz-Gonzalez, A.; Garcia-Fernandez, P.; Del Carmen Lozano-Estevan, M.; Veiga-Herreros, P.; Mate-Munoz, J.L.; Dominguez, R. Effects of a single dose of beetroot juice on cycling time trial performance at ventilatory thresholds intensity in male triathletes. J. Int. Soc. Sports Nutr. 2018, 15, 49. [Google Scholar] [CrossRef] [Green Version]
- Glaister, M.; Pattison, J.R.; Muniz-Pumares, D.; Patterson, S.D.; Foley, P. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J. Strength Cond. Res. 2015, 29, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Hoon, M.W.; Hopkins, W.G.; Jones, A.M.; Martin, D.T.; Halson, S.L.; West, N.P.; Johnson, N.A.; Burke, L.M. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl. Physiol. Nutr. Metab. 2014, 39, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.W.; Jones, A.M.; Johnson, N.A.; Blackwell, J.R.; Broad, E.M.; Lundy, B.; Rice, A.J.; Burke, L.M. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes. Int. J. Sports Physiol. Perform. 2014, 9, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.C.; Hawley, J.A.; Desbrow, B.; Jones, A.M.; Blackwell, J.R.; Ross, M.L.; Zemski, A.J.; Burke, L.M. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Lowings, S.; Shannon, O.M.; Deighton, K.; Matu, J.; Barlow, M.J. Effect of Dietary Nitrate Supplementation on Swimming Performance in Trained Swimmers. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 377–384. [Google Scholar] [CrossRef]
- MacLeod, K.E.; Nugent, S.F.; Barr, S.I.; Koehle, M.S.; Sporer, B.C.; MacInnis, M.J. Acute Beetroot Juice Supplementation Does Not Improve Cycling Performance in Normoxia or Moderate Hypoxia. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 359–366. [Google Scholar] [CrossRef]
- McQuillan, J.A.; Dulson, D.K.; Laursen, P.B.; Kilding, A.E. Dietary Nitrate Fails to Improve 1 and 4 km Cycling Performance in Highly Trained Cyclists. Int. J. Sport. Nutr. Exerc. Metab. 2017, 27, 255–263. [Google Scholar] [CrossRef]
- McQuillan, J.A.; Dulson, D.K.; Laursen, P.B.; Kilding, A.E. The Effect of Dietary Nitrate Supplementation on Physiology and Performance in Trained Cyclists. Int. J. Sports Physiol. Perform. 2017, 12, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Nyakayiru, J.M.; Jonvik, K.L.; Pinckaers, P.J.; Senden, J.; van Loon, L.J.; Verdijk, L.B. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 11–17. [Google Scholar] [CrossRef]
- Nyback, L.; Glannerud, C.; Larsson, G.; Weitzberg, E.; Shannon, O.M.; McGawley, K. Physiological and performance effects of nitrate supplementation during roller-skiing in normoxia and normobaric hypoxia. Nitric Oxide 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Peacock, O.; Tjonna, A.E.; James, P.; Wisloff, U.; Welde, B.; Bohlke, N.; Smith, A.; Stokes, K.; Cook, C.; Sandbakk, O. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med. Sci. Sports Exerc. 2012, 44, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Pinna, M.; Roberto, S.; Milia, R.; Marongiu, E.; Olla, S.; Loi, A.; Migliaccio, G.M.; Padulo, J.; Orlandi, C.; Tocco, F.; et al. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients 2014, 6, 605–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokkedal-Lausch, T.; Franch, J.; Poulsen, M.K.; Thomsen, L.P.; Weitzberg, E.; Kamavuako, E.N.; Karbing, D.S.; Larsen, R.G. Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2019, 85, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, O.M.; Barlow, M.J.; Duckworth, L.; Williams, E.; Wort, G.; Woods, D.; Siervo, M.; O’Hara, J.P. Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur. J. Appl. Physiol. 2017, 117, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of World Class Cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- De Pauw, K.; Roelands, B.; Cheung, S.S.; de Geus, B.; Rietjens, G.; Meeusen, R. Guidelines to classify subject groups in sport-science research. Int. J. Sports Physiol. Perform. 2013, 8, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Govoni, M.; Jansson, E.A.; Weitzberg, E.; Lundberg, J.O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 2008, 19, 333–337. [Google Scholar] [CrossRef]
- Lansley, K.E.; Winyard, P.G.; Fulford, J.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. J. Appl. Physiol. (1985) 2011, 110, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Ormsbee, M.J.; Bach, C.W.; Baur, D.A. Pre-exercise nutrition: The role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients 2014, 6, 1782–1808. [Google Scholar] [CrossRef] [Green Version]
- Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011, 13, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totzeck, M.; Hendgen-Cotta, U.B.; Rammos, C.; Frommke, L.M.; Knackstedt, C.; Predel, H.G.; Kelm, M.; Rassaf, T. Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes. Nitric Oxide 2012, 27, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Jonvik, K.L.; Nyakayiru, J.; Van Dijk, J.W.; Maase, K.; Ballak, S.B.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Repeated-sprint performance and plasma responses following beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes. Eur. J. Sport Sci. 2018, 18, 524–533. [Google Scholar] [CrossRef]
- Breese, B.C.; McNarry, M.A.; Marwood, S.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, 1441–1450. [Google Scholar] [CrossRef] [Green Version]
Nitrate Content (mg/100 g Fresh Weight) | Vegetable Varieties |
---|---|
Very low, <20 | Artichoke, asparagus, broad bean, eggplant, garlic, onion, green bean, mushroom, pea, pepper, potato, summer squash, sweet potato, tomato, watermelon |
Low, 20 to <50 | Broccoli, carrot, cauliflower, cucumber, pumpkin, chicory |
Middle, 50 to <100 | Cabbage, dill, turnip, savoy cabbage |
High, 100 to <250 | Celeriac, Chinese cabbage, endive, fennel, kohlrabi, leek, parsley |
Very high, >250 | Celery, cress, chervil, lettuce, red beetroot, spinach, rocket |
Reference | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Ts | % | MQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Balsalobre et al. [22] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Bescós et al. [18] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 14 | 93.3 | VG |
Bescós et al. [23] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 14 | 93.3 | VG |
Boorsma et al. [24] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Callahan et al. [25] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 13 | 86.6 | VG |
Cermak et al. [26] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Cermak et al. [27] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 13 | 86.6 | VG |
Christense et al. [28] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Esen et al. [29] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Garnacho et al. [30] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Glaister et al. [31] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Hoon et al. [32] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Hoon et al. [33] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Lane et al. [34] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 14 | 93.3 | VG |
Lansley et al. [35] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Lowings et al. [36] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
MacLeod et al. [37] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
McQuillan et al. [38] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
McQuillan et al. [39] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Nyakayiru et al. [40] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Nybäck et al. [41] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Pawlak et al. [13] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | 86.6 | VG |
Peacock et al. [42] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Pinna et al. [43] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Rokkedal et al. [44] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Shannon et al. [45] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Wilkerson et al. [46] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 100 | VG |
Reference | Participants | Age | Sports Experience and/or Training Load | VO2max (mL/kg/min) | Supplementation Protocol | Nitrate Dose (mmol/day) | Last Dose (hours) | Exercise Protocol | Principal Performance Measures | Results |
---|---|---|---|---|---|---|---|---|---|---|
Balsalobre et al. [22] | M, middle and long-distance runners (n = 12) | 26.3 ± 5.1 | International athletes with personal bests | 71.8 ± 5.2 | BJ 70 mL (15 days) | 6.5 | 24 | Incremental running test to exhaustion | Time (s), RPE, SmO2 (%), VO2 (mL/kg/min) | Time (S: 1269 ± 53.6 vs. PLA: 1230 ± 73.5, D = yes), RPE (S: 6 ± 1 vs. PLA: 7.7 ± 1, D = yes), SmO2 (S: 31 ± 6.9 vs. PLA: 27.7 ± 4.8, D = yes), VO2 (S: 69.5 ± 2.9 vs. PLA: 71.4 ± 4.8, D = no) |
Bescós et al. [18] | M, cyclists and triathletes (n = 13) | 32.6 ± 5.6 | Experience in endurance events: 8 ± 5 years, training volume: 15.7 ± 5.0 h/wk | 60 ± 7 | Sodium nitrate 250 mL (3 days) | 11.6 | 3 | Distance trial (40 min) in cycle ergometer | Distance covered (km), Mean power output (W), VO2 (mL/kg/min) | Distance covered (S: 26.4 ± 1.1 vs. PLA: 26.3 ± 1.2, D = no), mean power output (S: 258 ± 28 vs. PLA: 257 ± 28, D = no), VO2 (S: 51 ± 7.9 vs. PLA: 50.9 ± 6.6, D = no) |
Bescós et al. [23] | M, cyclists and triathletes (n = 11) | 34.3 ± 4.8 | Members of competitive squads | 65.1 ± 6.2 | Sodium nitrate 250 mL (1 day) | 11.8 | 3 | Submaximal cycling trial (4 × 6 min) (T1), incremental exercise test to exhaustion (T2) | T1: VO2 (L/min) at 3.5 W/kg T2: time (s), maximal power (W), VO2peak (L/min) | T1: VO2 (S: 0.5 ± 0.11 vs. 0.53 ± 0.06, D = no) T2: time (S: 416 ± 32 vs. PLA: 409 ± 27, D = no), maximal power (S: 416 ± 29 vs. PLA: 410 ± 28, D = no), VO2peak (S: 4.64 ± 0.35 vs. PLA: 4.82 ± 0.33, D = yes) |
Boorsma et al. [24] | M, distance runners (n = 8) | 23.8 ± 5 | Elite distance; experience: provincial, national, or international events; training volume: 12.3 ± 4 h/wk | 80 ± 5 | BJ 210 mL (1 day) | 19.5 | 1.5 | Submaximal treadmill run (T1), time trial 1500 m (T2) | T1: VO2 (mL/min) T2: time (s) | T1: VO2 (S: 4192 ± 113 vs. PLA: 4194 ± 90, D = no) T2: time (S: 250 ± 7 vs. PLA: 250 ± 4, D = no) |
BJ 210 mL (on the test day) and 140 (other days) (8 days) | 19.5 and 13 | 2.5 | Submaximal treadmill run (T1), time trial 1500 m (T2) | T1: VO2 (mL/min) T2: time (s) | T1: VO2 (S: 4299 ± 92 vs. PLA: 4216 ± 95, D = no) T2: time (S: 250 ± 5 vs. PLA: 251 ± 4, D = no) | |||||
Callahan et al. [25] | M, cyclists (n = 8) | 34 ± 7 | Well-trained cyclist | 65.2 ± 4.2 | Beetroot crystals 15 g (3 days) | 5 | 1 | Time trial 4 km | Mean power output (W), time (s) | Mean power output (S: 388 ± 54 vs. PLA: 386 ± 56, D = no), time (S: 337.4 ± 17.1 vs. PLA: 338.1 ± 18, D = no) |
Cermak et al. [26] | M, cyclists and triathletes (n = 12) | 31 ± 3 | Training history of ≈10 years, training volume: ≈10 h/wk. | 58 ± 2 | BJ 140 mL (6 days) | 8 | 2.5 | Submaximal cycling trail (2 × 30 min) (P1), time trial 10 km (T2) | T1: VO2 (L/min) T2: mean power output (W), Time (s) | T1: VO2 (S: 2.94 ± 0.1 vs. PLA: 3.1 ± 0.09, D = yes) T2: mean power output (S: 294 ± 41.5 vs. PLA: 288 ± 41.5, D = yes), time (S: 953 ± 72.5 vs. PLA: 965 ± 72.5, D = yes) |
Cermak et al. [27] | M, cyclists and triathletes (n = 20) | 26 ± 1 | Training experience: >3 times/wk for several years | 60 ± 1 | BJ 140 mL (1 day) | 8.7 | 2.5 | Time trial ≈1 h | Mean power output (W), time (min) | Mean power output (S: 275 ± 7 vs. PLA: 278 ± 7, D = no), time (S: 65.5 ± 1.1 vs. PLA: 65 ± 1.1, D = no) |
Christensen et al. [28] | M, cyclists (n = 10) | 29 ± 4 | Experience: elite cyclists competing at the highest domestic level | 72.1 ± 4.5 | BJ 500 mL (6 days) | 8 | 3 | Submaximal cycling trial at 70% Wmax (2 × 6 min) (T1), repeated sprint test (6 × 20 s) (T2), time trial 400 kcal (≈20 min) (T3) | T1: VO2 (mL/min) T2: mean power output (W) T3: mean power output (W), time (min) | P1: VO2 (S: 792 ± 82 vs. PLA: 806 ± 82, D = no) P2: mean power output (S: 630 ± 84 vs. PLA: 630 ± 92, D = no) P3: mean power output (S: 290 ± 43 vs. PLA: 285 ± 44, D = no), time (S: 18.20 vs. PLA: 18.37, D = no) |
Esen et al. [29] | M (n = 5) and F (n = 5), swimmers (n = 10) | 22 ± 6 | Experience: ≥10 years competing at club standard and ≥5 years competing in regional and university-level. Training volume: 3–4 times/wk and 6–8 h/wk | 2212 | BJ 140 mL (3 days) | 8 | 3 | Time trial 200 m (T1), time trial 100 m (T2) | T1: time (s) T2: time (s) | T1: time (S: 152.6 ± 14.1 vs. PLA: 152.5 ± 14.1, D = no) T2: time (S: 69.5 ± 7.2 vs. PLA: 69.4 ± 7.4, D = no) |
Garnacho et al. [30] | M, triathletes (n = 12) | 39.3 ± 7.5 | Experience: National (n = 8) and international (n = 4) level of competition; training volume: ≥4 times/wk with ≥1 h/session | 54.8 ± 3.1 | BJ 70 mL (1 day) | 6.5 | 3 | Time trial at VT1 (30 min) and VT2 (15 min) | VO2 (L/min), VCO2 (L/min), time (s) at VT2 | VO2 (S: 73.8 ± 8.9 vs. PLA: 72.2 ± 9.4, D = no), VCO2 (S: 3.1 ± 0.3 vs. PLA: 2.9 ± 0.4, D = yes), time VT2 (S: 933 vs. PLA: 882, D = no) |
Glaister et al. [31] | F, cyclists and triathletes (n = 14) | 31 ± 7 | Experience: ≈13 years actively in sport; training volume: 10.7 ± 2.2 h/wk at the time of the investigation | 52.3 ± 4.9 | BJ 70 mL (1 day) | 7.3 | 2.5 | Time trial 20 km | Time (min) | Time (S: 35.33 ± 1.5 vs. PLA: 35.37 ± 1.7, D = no) |
Hoon et al. [32] | M, cyclists (n = 26) | 20.3 ± 1.4 | Trained male cyclists that were involved in a 6 week training camp at the Australian Institute of Sport | - | BJ 70 mL (1 day) | 4.1 | 1.25 | Time trail 4 min ×2 | Mean power output (W) | Mean power output (S: 403 ± 52 vs. PLA: 396 ± 57, D = no) |
2.5 | Time trail 4 min ×2 | Mean power output (W) | Mean power output (S: 402 ± 47 vs. PLA: 396 ± 57, D = no) | |||||||
Hoon et al. [33] | M, rowers (n = 10) | 20.6 ± 2.5 | Highly trained; 2000-m personal-best time: 6 min, 17 s ± 10 s; training volume: 16.9 ± 3.4 h/wk | - | BJ 70 mL (1 day) | 4.2 | 2 | Time trial 2000 m | Time (s) | Time (S: 383.4 ± 8.7 vs. PLA: 3835 ± 9, D = no) |
BJ 140 mL (1 day) | 8.4 | 2 | Time trial 2000 m | Time (s) | Time (S: 381.9 ± 9 vs. PLA: 383.5 ± 9, D = yes) | |||||
Lane et al. [34] | M (n = 12) and F (n = 12), cyclists and triathletes (n = 24) | 31 ± 7 | Competitive level | 71.6 ± 4.6 | BJ 140 mL (1 day) | 8.4 | 2 | Time trial 43.83 km | Time (min), power output (W) | Time (S: 64 ± 2.8 vs. PLA: 63.5 ± 3.2, D = no), power output (S:298 ± 35 vs. PLA: 303 ± 41, D = no) |
28 ± 6 | Competitive level | 59.9 ± 5.1 | BJ 140 mL (1 day) | 8.4 | 2 | Time trial 29.35 km | Time (min), power output (W) | Time (p > 0.05), power output (S: 207 ± 31 vs. PLA: 207 ± 29, D = no) | ||
Lansley et al. [35] | M, cyclists (n = 9) | 21 ± 4 | Competitive level | 56 ± 5.7 | BJ 500 mL (1 day) | 6.2 | 2.5 | Time trial 4 km | Time (min), mean power output (W), VO2 (L/min) | Time (S: 6.27 ± 0.35 vs. PLA: 6.45 ± 0.42, D = yes), mean power output (S: 292 ± 44 vs. PLA: 279 ± 51, D = yes), VO2 (S: 4.46 ± 0.5 vs. PLA: 4.36 ± 0.47, D = no) |
Time trial 16.1 km | Time (min), mean power output (W), VO2 (L/min) | Time (S: 26.9 ± 1.8 vs. PLA: 27.7 ± 2.1, D = yes), mean power output (S: 247 ± 44 vs. PLA: 233 ± 43, D = yes), VO2 (S: 4.32 ± 0.47 vs. PLA: 4.19 ± 0.56, D = no) | ||||||||
Lowings et al. [36] | M (n = 5) and F (n = 5), swimmers (n = 10) | 20 ± 1 | Competitive level; training volume: ≥3 times/wk | − | BJ 140 mL (1 day) | 12.5 | 3 | Time trial 168 m | Time (s) | Time (p = 0.144), nitric oxide bioavailability + |
MacLeod et al. [37] | M, cyclists (n = 11) | 29.3 ± 5.1 | Trained cyclists that met the inclusion criterion VO2peak > 5 L/min | 67.5 ± 5.8 | BJ 70 mL (1 day) | 6.5 | 2 | Time trial 15 km | Time (s), mean power output (W/kg) | Time (S: 961 ± 54 vs. PLA: 954 ± 47, D = no), mean power output (S: 3.7 ± 0.4 vs. PLA: 3.8 ± 0.3, D = no) |
McQuillan et al. [38] | M, cyclists (n = 9) | 27 ± 9 | Endurance trained cyclists and competing in cycle races in the 3 months preceding the study; training volume: regular 11.4 ± 2.6 hr/wk and 310.27 km/wk | 68 ± 3 | BJ 140 mL (3 days) | 8 | 2.5 | Time trial 4 km | Time (s), mean power output (W) | Time (S: 341 ± 12 vs. PLA: 340 ± 10, D = no), mean power output (S: 390 ± 45 vs. PLA: 393 ± 37, D = no) |
BJ 140 mL (4 days) | 8 | 2.5 | Time trial 1 km | Time (s), mean power output (W) | Time (S: 79.6 ± 3.5 vs. PLA: 79.2 ± 2.9, D = no), mean power output (S: 8495 ± 61 vs. PLA: 503 ± 51, D = no) | |||||
BJ 140 mL (6 days) | 8 | 2.5 | Time trial 4 km | Time (s), mean power output (W) | Time (S: 340 ± 10 vs. PLA: 340 ± 11, D = no), mean power output (S: 394 ± 38 vs. PLA: 393 ± 37, D = no) | |||||
BJ 140 mL (7 days) | 8 | 2.5 | Time trial 1 km | Time (s), mean power output (W) | Time (S: 79.3 ± 3.3 vs. PLA: 79 ± 3, D = no), mean power output (S: 501 ± 59 vs. PLA: 505 ± 52, D = no) | |||||
McQuillan et al. [39] | M, cyclists (n = 8) | 26 ± 8 | Well-trained endurance cyclists; training volume: weekly training duration 9 ± 3 h/wk | 63 ± 4 | BJ 70 mL (8 days) | 4 | 2 | Time trial 4 km | Time (s), mean power output (W) | Time (S: 343.6 ± 14.3 vs. PLA: 344.8 ± 14, D = no), mean power output (S: 380 ± 41 vs. PLA: 375 ± 40, D = no) |
Nyakayiru et al. [40] | M, cyclists and triathletes (n = 17) | 25 ± 4 | Competitive cyclist; experience: 9.6 ± 5.1 years; training volume: 9.7 ± 3.7 h/wk | 65 ± 4 | Sodium nitrate 1097 mg (1 day) | 12.9 | 4 | Submaximal cycling trial at 45% Wmax (30 min) and 65% Wmax (30 min) (T1), time trial 10km (T2), | T1: VO2 T2: time (s) | T1: VO2 (D = no) T2: time (S: 1022 ± 72 vs. PLA: 1017 ± 71, D = no) |
Sodium nitrate 1097 mg (6 days) | 12.9 | 4 | submaximal cycling trial at 45% Wmax (30 min) and 65% Wmax (30min) (T1), time trial 10km (T2) | T1: VO2 T2: time (s) | T1: VO2 (D = no) T2: time (S: 1004 ± 61 vs. PLA: 1017 ± 71, D = no) | |||||
Nybäck et al. [41] | M (n = 5) and F (n = 3), cross-country skiers (n = 8) | 21.8 ± 2.8 | Well-trained, competing at a national level | 71.5 ± 4.7 (M) | BJ 140 mL (1 day) | 13 | 2.5 | Submaximal test (2 × 6 min) (T1), time trial 1 km (T2) | T1: VO2 (L/min) T2: time (s) | T1: VO2 (S: 2.92 ± 0.48 vs. PLA: 2.9 ± 0.49, D = no) T2: time (S: 297 ± 29 vs. PLA: 295 ± 29, D = no) |
Pawlak et al. [13] | M, triathletes and runners (n = 9) | 21.7 ± 3.7 | Runners from clubs engaged in intense endurance exercise training and competition; inclusion based on VO2max > 65 mL/kg/min | 71.1 ± 5.2 | BJ 500 mL (3 days) | 5.4 | 3 | Repeated sprint test to exhaustion | No. of sprints completed, mean power output (W), VO2 (mL/min) | No. of sprints completed (S: 13.9 ± 4 vs. PLA: 14.2 ± 4.5, D = no), mean power output (S: 579.2 ± 57.7 vs. PLA: 578.9 ± 54.3, D = no), VO2 (S: 3378.5 ± 681.8 vs. PLA: 3466.1 ± 505.3, D = no) |
Peacock et al. [42] | M, cross-country skiers (n = 10) | 18 | Experience: national and international standard junior skiers, all among the 20 best in the 2010 Norwegian Cup Series; training history: 502 ± 45 h/year | 69.6 ± 5.1 | Potassium nitrate 1 g (1 day) | 9.9 | 2.5 | Submaximal test at 55% VO2max (5 min) and 75% VO2max (5 min) (T1), time trial 5 km (T2) | T1: VO2 (L/min) T2: time (s) | T1: VO2 (S: 3.77 ± 0.62 vs. PLA: 3.89 ± 0.39, D = no) T2: time (S: 1005 ± 53 vs. PLA: 996 ± 49, D = no) |
Pinna et al. [43] | M, swimmers (n = 14) | 34.7 ± 7.5 | Master athletes involved in regional and national competitions; training volume: average of 6.5 ± 0.8 h per week; training frequency ranged 3–4 times/wk, with 3000–5000 m distance covered each time | 42.7 ± 2.6 | BJ 500 mL (6 days) | 5.5 | 3 | Incremental swimming test | Workload (kg/min), VO2 (mL/min) | Workload (S: 6.7 ± 1.1 vs. PLA: 6.35 ± 1 D = yes), VO2 (S: 2741 ± 454 vs. PLA: 2817 ± 545, D = no) |
Rokkedal et al. [44] | M, cyclists (n = 12) | 29.1 ± 7.7 | Well-trained in performance level 4 [47,48] | 66.4 ± 5.3 | BJ 140 mL (7 days) | 12.4 | 2.75 | Time trial 10 km | Power output (W), time (s), VO2 (mL/min) | Power output (S: 315.8 ± 13.2 vs. PLA: 311.3 ± 13.2, D = yes), time (S: 884,5 ± 16 vs. PLA: 890,1 ± 16, D = yes), VO2 (D = yes) |
Shannon et al. [45] | M, runners and triathletes (n = 8) | 28.3 ± 5.8 | Experience in competing in running events | 62.3 ± 8.1 | BJ 140 mL (1 day) | 12.5 | 3 | Time trial 1500 m | Time (s), VO2 (mL/kg/min) | Time (S: 319.6 ± 36.2 vs. PLA: 325.7 ± 38.8, D = yes) VO2 (S: 53.4 ± 6.8 vs. PLA: 53.9 ± 6.9, D = no) |
Time trial 10 km | Time (s), VO2 (mL/kg/min) | Time (S: 2643.1 ± 324,1 vs. PLA: 2649.9 ± 319.8, D = no), VO2 (S: 49 ± 6 vs. PLA: 48.6 ± 6.3, D = no) | ||||||||
Wilkerson et al. [46] | M, cyclists (n = 8) | 31 ± 11 | Well-trained subjects; training volume: 5.8 ± 1.0 times per week and completed 11.1 ± 2.5 h training per week | 63 ± 8 | BJ 500 mL (1 day) | 6.2 | 2.5 | Time trial 50 miles | Time (min), mean power output (W) | Time (S: 136.7 ± 5.6 vs. PLA: 137.9 ± 6.4, D = no), mean power output (S: 238 ± 22 vs. PLA: 235 ± 27, D = no) |
Sport | n | Sex | Number of Studies | Number of Significant Studies | Results on Respiratory and/or Performance Parameters | |
---|---|---|---|---|---|---|
Performance | Respiratory | |||||
Cycling | 101 | All M | 9 | 2 [35,44] | Time [35,44], MPO [35,44] | VO2max [44] |
Cycling and Triathlon | 97 | 85 M, 12 F | 6 | 2 [23,26] | Time [26], MPO [26] | VO2peak [23] VO2max [26] |
Athletics and Triathlon | 17 | All M | 2 | 1 [22] | Time, RPE | SmO2 |
Triathlon | 26 | 12 M, 14 F | 2 | |||
Athletics | 20 | All M | 2 | 1 [45] | Time | |
Cross-country skiing | 18 | 15 M, 3 F | 2 | |||
Rowing | 10 | All M | 1 | 1 [33] | Time | |
Swimming | 34 | 24 M, 10 F | 3 | 1 [43] | Time | Reduction of aerobic energy cost |
Six different sports | 323 | Only one study exclusively with F [31] and four mixed studies [29,34,36,41] | 27 | 8 | 7 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo Calvo, J.; Alorda-Capo, F.; Pareja-Galeano, H.; Jiménez, S.L. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients 2020, 12, 1796. https://doi.org/10.3390/nu12061796
Lorenzo Calvo J, Alorda-Capo F, Pareja-Galeano H, Jiménez SL. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients. 2020; 12(6):1796. https://doi.org/10.3390/nu12061796
Chicago/Turabian StyleLorenzo Calvo, Jorge, Francesca Alorda-Capo, Helios Pareja-Galeano, and Sergio L. Jiménez. 2020. "Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review" Nutrients 12, no. 6: 1796. https://doi.org/10.3390/nu12061796
APA StyleLorenzo Calvo, J., Alorda-Capo, F., Pareja-Galeano, H., & Jiménez, S. L. (2020). Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients, 12(6), 1796. https://doi.org/10.3390/nu12061796