Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Analyses
2.4. Validation
2.5. Statistics
3. Results
3.1. Method Validation
3.2. Aspartame and its Metabolites in Soft Drinks across Europe
3.3. Within- and Between-Batch Variation (Same Country)
3.4. Between-Batch Variation between Countries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Spronsen, F.J.; van Wegberg, A.M.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. Key European Guidelines for the Diagnosis and Management of Patients with Phenylketonuria. Lancet Diabetes Endocrinol. 2017, 5, 743–756. [Google Scholar] [CrossRef] [Green Version]
- Blau, N.; van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef]
- Pilotto, A.; Blau, N.; Leks, E.; Schulte, C.; Deuschl, C.; Zipser, C.; Piel, D.; Freisinger, P.; Gramer, G.; Kölker, S.; et al. Cerebrospinal Fluid Biogenic Amines Depletion and Brain Atrophy in Adult Patients with Phenylketonuria. J. Inherit. Metab. Dis. 2019, 42, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, S.; Holme, E.; Lock, E.A.; Hjalmarson, O.; Strandvik, B. Treatment of Hereditary Tyrosinaemia Type I by Inhibition of 4-Hydroxyphenylpyruvate Dioxygenase. Lancet 1992, 340, 813–817. [Google Scholar] [CrossRef]
- de Laet, C.; Dionisi-Vici, C.; Leonard, J.V.; McKiernan, P.; Mitchell, G.; Monti, L.; de Baulny, H.O.; Pintos-Morell, G.; Spiekerkötter, U. Recommendations for the Management of Tyrosinaemia Type 1. Orphanet J. Rare Dis. 2013, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milan, A.M.; Hughes, A.T.; Davison, A.S.; Devine, J.; Usher, J.; Curtis, S.; Khedr, M.; Gallagher, J.A.; Ranganath, L.R. The Effect of Nitisinone on Homogentisic Acid and Tyrosine: A Two-Year Survey of Patients Attending the National Alkaptonuria Centre, Liverpool. Ann. Clin. Biochem. 2017, 54, 323–330. [Google Scholar] [CrossRef]
- Pattanaargson, S.; Sanchavanakit, C. Aspartame Degradation Study using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 987–993. [Google Scholar] [CrossRef]
- Scientific Opinion on the Re-Evaluation of Aspartame (E 951) as a Food Additive. EFSA J. 2013, 11, 3496.
- Sakai, H.; Yamashita, A.; Tamura, M.; Uyama, A.; Mochizuki, N. Simultaneous Determination of Sweeteners in Beverages by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, Y.; Ye, M.; James, F.S. Separation and Simultaneous Determination of Four Artificial Sweeteners in Food and Beverages by Ion Chromatography. J. Chromatogr. A 2005, 1085, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wu, S. Simultaneous Analysis of Aspartame and its Hydrolysis Products of Coca-Cola Zero by on-Line Postcolumn Derivation Fluorescence Detection and Ultraviolet Detection Coupled Two-Dimensional High-Performance Liquid Chromatography. J. Chromatogr. A 2011, 1218, 2976–2983. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.M.; Costa, I.M.; Pena, A.; Ferreira, R.; Cardoso, S.M. Estimated Intake of the Sweeteners, Acesulfame-K and Aspartame, from Soft Drinks, Soft Drinks Based on Mineral Waters and Nectars for a Group of Portuguese Teenage Students. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1291–1296. [Google Scholar] [CrossRef]
- Barrado, E.; Rodríguez, J.A.; Castrillejo, Y. Renewable Stationary Phase Liquid Magnetochromatography: Determining Aspartame and its Hydrolysis Products in Diet Soft Drinks. Anal. Bioanal. Chem. 2006, 385, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Leth, T.; Fabricius, N.; Fagt, S. Estimated Intake of Intense Sweeteners from Non-Alcoholic Beverages in Denmark. Food Addit. Contam. 2007, 24, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Prodolliet, J.; Bruelhart, M. Determination of Aspartame and its Major Decomposition Products in Foods. J. AOAC Int. 1993, 76, 275–282. [Google Scholar] [CrossRef]
- Khurana, H.K.; Cho, I.K.; Shim, J.Y.; Li, Q.X.; Jun, S. Application of Multibounce Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Chemometrics for Determination of Aspartame in Soft Drinks. J. Agric. Food Chem. 2008, 56, 778–783. [Google Scholar] [PubMed]
- Furda, I.; Malizia, P.D.; Kolor, M.G.; Vernieri, P.J. Decomposition Products of L-Aspartyl-L-Phenylalanine Methyl Ester and their Identification by Gas-Liquid Chromatography. J. Agric. Food Chem. 1975, 23, 340–343. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Topic Q 2 (R1): Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Tanguay, R. Hereditary Tyrosinemia: Pathogenesis, Screening and Management; Springer International Publishing: Cam, Switzerland, 2017; p. 199. [Google Scholar]
- Butchko, H.H.; Stargel, W.W.; Comer, C.P.; Mayhew, D.A.; Benninger, C.; Blackburn, G.L.; de Sonneville, L.M.J.; Geha, R.S.; Hertelendy, Z.; Koestner, A.; et al. Aspartame: Review of Safety. Regul. Toxicol. Pharmacol. 2002, 35, 1. [Google Scholar] [CrossRef] [Green Version]
Sample | APM | Phe | DKP | Asp–Phe | Total Phe | |
---|---|---|---|---|---|---|
CVa intra-assay | ||||||
Soft drink A N = 10 | Mean (µmol/L) | 349.5 | 5.5 | 22.4 | 23.1 | 378.6 |
CV (%) | 3.3% | 8.1% | 6.8% | 1.8% | 3.1% | |
Soft drink B N = 10 | Mean (µmol/L) | 1559.0 | 12.3 | 30.4 | 25.1 | 1601.7 |
CV (%) | 2.5% | 3.7 | 7.6% | 1.4% | 2.4% | |
Soft drink C N = 10 | Mean (µmol/L) | 2747.0 | 16.1 | 141.2 | 72.9 | 2878.5 |
CV (%) | 3.8% | 7.3% | 3.3% | 3.1% | 3.8% | |
Soft drink D N = 10 | Mean (µmol/L) | 634.2 | 9.7 | 86.4 | 86.2 | 816.5 |
CV (%) | 2.7% | 4.1% | 2.9% | 3.8% | 2.9% | |
CVa inter-assay | ||||||
Soft drink A N = 14 | Mean (µmol/L) | 203.4 | 3.9 | 10.3 | 21.1 | 238.1 |
CV (%) | 4.9% | 38.6% | 33.6% | 14.4% | 5.4% | |
Soft drink B N = 14 | Mean (µmol/L) | 920.9 | 11.1 | 26.7 | 36.8 | 995.5 |
CV (%) | 4.7% | 23.8% | 17.4% | 12.0% | 4.7% | |
Soft drink C N = 14 | Mean (µmol/L) | 1664.3 | 4.1 | 77.0 | 139.2 | 1884.6 |
CV (%) | 3.9% | 49.6% | 22.9% | 11.9% | 4.4% | |
Soft drink D N = 14 | Mean (µmol/L) | 622.6 | 13.3 | 100.7 | 104.8 | 841.3 |
CV (%) | 3.8% | 22.3% | 16.9% | 11.4% | 4.7% |
APM | Phe | DKP | Asp–Phe | Total Phe | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-1 | S-2 | S-3 | S-1 | S-2 | S-3 | S-1 | S-2 | S-3 | S-1 | S-2 | S-3 | S-1 | S-2 | S-3 | ||
Reference (µmol/L) | Day 0 | 227.0 | 1008.0 | 1880.0 | 1.30 (<LOD) | 7.30 (<LOD) | 0.99 (<LOD) | 0.00 (<LOD) | 3.18 (<LOD) | 54.1 | 22.9 | 24.3 | 121.0 | 249.9 | 1035.5 | 2055.1 |
Heated ±37 °C | Day 1 | 100% | 100% | 98% | <LOD | <LOD | <LOD | <LOD | <LOD | 129% | 108% | 112% | 109% | 101% | 100% | 100% |
Day 6 | 79% | 77% | 78% | <LOD | <LOD | <LOD | <LOD | <LOD | 214% | 96% | 149% | 131% | 87% | 83% | 85% | |
Day 15 | 64% | 64% | 69% | <LOD | <LOD | <LOD | <LOD | <LOD | 375% | 120% | 217% | 181% | 79% | 74% | 84% | |
Room temp ±22 °C | Day 1 | 95% | 99% | 93% | <LOD | <LOD | <LOD | <LOD | <LOD | 101% | 101% | 114% | 102% | 96% | 100% | 94% |
Day 6 | 104% | 93% | 90% | <LOD | <LOD | <LOD | <LOD | <LOD | 124% | 124% | 105% | 103% | 112% | 95% | 92% | |
Day 15 | 86% | 93% | 90% | <LOD | <LOD | <LOD | <LOD | <LOD | 153% | 98% | 146% | 128% | 90% | 96% | 94% | |
Cooled ±2 °C | Day 1 | 100% | 99% | 95% | <LOD | <LOD | <LOD | <LOD | <LOD | 101% | 105% | 110% | 98% | 101% | 99% | 95% |
Day 6 | 97% | 97% | 93% | <LOD | <LOD | <LOD | <LOD | <LOD | 106% | 79% | 91% | 95% | 98% | 98% | 93% | |
Day 15 | 94% | 90% | 95% | <LOD | <LOD | <LOD | <LOD | <LOD | 108% | 86% | 103% | 102% | 95% | 91% | 96% | |
Frozen ±−20 °C | Day 1 | 93% | 98% | 98% | <LOD | <LOD | <LOD | <LOD | <LOD | 102% | 95% | 106% | 102% | 93% | 98% | 98% |
Day 6 | 100% | 94% | 96% | <LOD | <LOD | <LOD | <LOD | <LOD | 105% | 80% | 87% | 93% | 101% | 94% | 96% | |
Day 15 | 95% | 93% | 96% | <LOD | <LOD | <LOD | <LOD | <LOD | 109% | 86% | 96% | 96% | 96% | 94% | 97% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Vliet, K.; Melis, E.S.; de Blaauw, P.; van Dam, E.; Maatman, R.G.H.J.; Abeln, D.; van Spronsen, F.J.; Heiner-Fokkema, M.R. Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe. Nutrients 2020, 12, 1887. https://doi.org/10.3390/nu12061887
van Vliet K, Melis ES, de Blaauw P, van Dam E, Maatman RGHJ, Abeln D, van Spronsen FJ, Heiner-Fokkema MR. Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe. Nutrients. 2020; 12(6):1887. https://doi.org/10.3390/nu12061887
Chicago/Turabian Stylevan Vliet, Kimber, Elise S. Melis, Pim de Blaauw, Esther van Dam, Ronald G. H. J. Maatman, David Abeln, Francjan J. van Spronsen, and M. Rebecca Heiner-Fokkema. 2020. "Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe" Nutrients 12, no. 6: 1887. https://doi.org/10.3390/nu12061887
APA Stylevan Vliet, K., Melis, E. S., de Blaauw, P., van Dam, E., Maatman, R. G. H. J., Abeln, D., van Spronsen, F. J., & Heiner-Fokkema, M. R. (2020). Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe. Nutrients, 12(6), 1887. https://doi.org/10.3390/nu12061887