Serum Phospholipid Fatty Acids Levels, Anthropometric Variables and Adiposity in Spanish Premenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Analysis of Serum PL-FAs
2.3. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight Fact Sheet no 3011. 2006. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 June 2020).
- La Encuesta Europea de Salud en España 2014 [ine]. 2014, pp. 7–8. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176784&menu=resultados&idp=1254735573175 (accessed on 15 June 2020).
- Hernáez, Á.; Zomeño, M.D.; Dégano, I.R.; Pérez-Fernández, S.; Goday, A.; Vila, J.; Civeira, F.; Moure, R.; Marrugat, J. Exceso de peso en España: Situación actual, proyecciones para 2030 y sobrecoste directo estimado para el Sistema Nacional de Salud. Rev. Española Cardiol. 2019, 72, 916–924. [Google Scholar] [CrossRef]
- Isidoro, B.; Lope, V.; Pedraz-Pingarrón, C.; Collado-García, F.; Santamariña, C.; Moreo, P.; Vidal, C.; Laso, M.S.; García-Lopez, M.; Pollán, M. Validation of obesity based on self-reported data in Spanish women participants in breast cancer screening programmes. BMC Public Health 2011, 11, 960. [Google Scholar] [CrossRef] [Green Version]
- Boden, G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havel, P.J. Update on Adipocyte Hormones: Regulation of Energy Balance and Carbohydrate/Lipid Metabolism. Diabetes 2004, 53, S143–S151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lago, F.; Gómez, R.; Gómez-Reino, J.J.; Dieguez, C.; Gualillo, O. Adipokines as novel modulators of lipid metabolism. Trends Biochem. Sci. 2009, 34, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Bergés, D.; Cabrera De León, A.; Sanz, H.; Elosua, R.; Guembe, M.J.; Alzamora, M.; Vega-Alonso, T.; Félix-Redondo, F.J.; Ortiz-Marrón, H.; Rigo, F.; et al. Metabolic syndrome in Spain: Prevalence and coronary risk associated with harmonized definition and who proposal. DARIOS study. Rev. Esp. Cardiol. 2012, 65, 241–248. [Google Scholar] [CrossRef]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Guimaraes Cunha, P.; Rodriguez Mañas, L.; Mattace Raso, F.U.; Lorenza Muiesan, M.; Ryliškytė, L.; Rietzschel, E.; et al. The metabolic syndrome across Europe-Different clusters of risk factors. Eur. J. Prev. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet-Ostaptchouk, J.V.; Nuotio, M.L.; Slagter, S.N.; Doiron, D.; Fischer, K.; Foco, L.; Gaye, A.; Gögele, M.; Heier, M.; Hiekkalinna, T.; et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Field, A.E.; Willett, W.C.; Lissner, L.; Colditz, G.A. Dietary fat and weight gain among women in the nurses’ health study. Obesity 2007, 15, 967–976. [Google Scholar] [CrossRef]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; de Cássia Freitas, K.; de Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chajès, V.; Biessy, C.; Ferrari, P.; Romieu, I.; Freisling, H.; Huybrechts, I.; Scalbert, A.; Bueno De Mesquita, B.; Romaguera, D.; Gunter, M.J.; et al. Plasma elaidic acid level as biomarker of industrial trans fatty acids and risk of weight change: Report from the EPIC study. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chajès, V.; Joulin, V.; Clavel-Chapelon, F. The fatty acid desaturation index of blood lipids, as a biomarker of hepatic stearoyl-CoA desaturase expression, is a predictive factor of breast cancer risk. Curr. Opin. Lipidol. 2011, 22, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Tosi, F.; Sartori, F.; Guarini, P.; Olivieri, O.; Martinelli, N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014, 824, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Aglago, E.K.; Biessy, C.; Torres-Mejía, G.; Angeles-Llerenas, A.; Gunter, M.J.; Romieu, I.; Chajès, V. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. J. Lipid Res. 2017, 58, 1462–1470. [Google Scholar] [CrossRef] [Green Version]
- Vinknes, K.J.; Elshorbagy, A.K.; Nurk, E.; Drevon, C.A.; Gjesdal, C.G.; Tell, G.S.; Nygård, O.; Vollset, S.E.; Refsum, H. Plasma stearoyl-CoA desaturase indices: Association with lifestyle, diet, and body composition. Obesity 2013, 21, E294–E302. [Google Scholar] [CrossRef]
- Wirfält, E.; Vessby, B.; Mattisson, I.; Gullberg, B.; Olsson, H.; Berglund, G. No relations between breast cancer risk and fatty acids of erythrocyte membranes in postmenopausal women of the Malmö Diet Cancer cohort (Sweden). Eur. J. Clin. Nutr. 2004, 58, 761–770. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Prentice, R.L. Dietary assessment and the reliability of nutritional epidemiology reports. Lancet 2003, 362, 182–183. [Google Scholar] [CrossRef]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-de-la-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Saadatian-Elahi, M.; Slimani, N.; Chajès, V.; Jenab, M.; Goudable, J.; Biessy, C.; Ferrari, P.; Byrnes, G.; Autier, P.; Peeters, P.H.M.; et al. Plasma phospholipid fatty acid profiles and their association with food intakes: Results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2009, 89, 331–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chajès, V.; Thiébaut, A.C.M.; Rotival, M.; Gauthier, E.; Maillard, V.; Boutron-Ruault, M.C.; Joulin, V.; Lenoir, G.M.; Clavel-Chapelon, F. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC study. Am. J. Epidemiol. 2008, 167, 1312–1320. [Google Scholar] [CrossRef] [Green Version]
- Saadatian-Elahi, M.; Toniolo, P.; Ferrari, P.; Goudable, J.; Akhmedkhanov, A.; Zeleniuch-Jacquotte, A.; Riboli, E. Serum fatty acids and risk of breast cancer in a nested case-control study of the New York University Women’s Health Study. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1353–1360. [Google Scholar]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- Yammine, S.G.; Naja, F.; Tamim, H.; Nasrallah, M.; Biessy, C.; Aglago, E.K.; Matta, M.; Romieu, I.; Gunter, M.J.; Nasreddine, L.; et al. Association between serum phospholipid fatty acid levels and adiposity among lebanese adults: A cross-sectional study. Nutrients 2018, 10, 1371. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Micha, R.; Mozaffarian, D. Trans fatty acids: Effects on metabolic syndrome, heart disease and diabetes. Nat. Rev. Endocrinol. 2009, 5, 335–344. [Google Scholar] [CrossRef]
- Paniagua González, J.A.; Gallego De La Sacristana, A.; Romero, I.; Vidal-Puig, A.; Latre, J.M.; Sanchez, E.; Perez-Martinez, P.; Lopez-Miranda, J.; Perez-Jimenez, F. Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care 2007, 30, 1717–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.M.; Lacorte, J.M.; Viguerie, N.; Poitou, C.; Pelloux, V.; Guy-Grand, B.; Coussieu, C.; Langin, D.; Basdevant, A.; Clément, K. Adiponectin Gene Expression in Subcutaneous Adipose Tissue of Obese Women in Response to Short-Term Very Low Calorie Diet and Refeeding. J. Clin. Endocrinol. Metab. 2003, 88, 5881–5886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaillard, D.; Négrel, R.; Lagarde, M.; Ailhaud, G. Requirement and role of arachidonic acid in the differentiation of pre-adipose cells. Biochem. J. 1989, 257, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.L.; Nakamura, M.T.; Ma, D.W.L. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Buckley, J.D.; Howe, P.R.C. Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obes. Rev. 2009, 10, 648–659. [Google Scholar] [CrossRef]
- Collins, J.M.; Neville, M.J.; Hoppa, M.B.; Frayn, K.N. De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J. Biol. Chem. 2010, 285, 6044–6052. [Google Scholar] [CrossRef] [Green Version]
- Poudyal, H.; Brown, L. Stearoyl-CoA Desaturase: A Vital Checkpoint in the Development and Progression of Obesity. Endocr. Metab. Immune Disord.—Drug Targets 2011, 11, 217–231. [Google Scholar] [CrossRef]
- Popeijus, H.E.; Saris, W.H.M.; Mensink, R.P. Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int. J. Obes. 2008, 32, 1076–1082. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.; Cegan, A.; Wagner, S.; Lehmann, R.; Stefan, N.; Königsrainer, A.; Königsrainer, I.; Häring, H.U.; Schleicher, E. Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin. Chem. 2009, 55, 2113–2120. [Google Scholar] [CrossRef] [Green Version]
- Vessby, B.; Gustafsson, I.B.; Tengblad, S.; Berglund, L. Indices of fatty acid desaturase activity in healthy human subjects: Effects of different types of dietary fat. Br. J. Nutr. 2013, 110, 871–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-chain polyunsaturated fatty acid status in obesity: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Schiller, K.; Jacobs, S.; Jansen, E.; Weikert, C.; Di Giuseppe, R.; Boeing, H.; Schulze, M.B.; Kröger, J. Associated factors of estimated desaturase activity in the EPIC-Potsdam study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 503–510. [Google Scholar] [CrossRef]
- Alsharari, Z.D.; Risérus, U.; Leander, K.; Sjögren, P.; Carlsson, A.C.; Vikström, M.; Laguzzi, F.; Gigante, B.; Cederholm, T.; De Faire, U.; et al. Serum fatty acids, desaturase activities and abdominal obesity—A population-based study of 60-year old men and women. PLoS ONE 2017, 12, e0170684. [Google Scholar] [CrossRef]
- Laganà, A.S.; Vitale, S.G.; Nigro, A.; Sofo, V.; Salmeri, F.M.; Rossetti, P.; Rapisarda, A.M.C.; La Vignera, S.; Condorelli, R.A.; Rizzo, G.; et al. Pleiotropic actions of peroxisome proliferator-activated receptors (PPARs) in dysregulated metabolic homeostasis, inflammation and cancer: Current evidence and future perspectives. Int. J. Mol. Sci. 2016, 17, 999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, S.G.; Laganà, A.S.; Nigro, A.; La Rosa, V.L.; Rossetti, P.; Rapisarda, A.M.C.; La Vignera, S.; Condorelli, R.A.; Corrado, F.; Buscema, M.; et al. Peroxisome proliferator-activated receptor modulation during metabolic diseases and cancers: Master and minions. PPAR Res. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A.; Luben, R.; Welch, A.; Wareham, N.; Khaw, K.T.; Day, N. Are imprecise methods obscuring a relation between fat and breast cancer? Lancet 2003, 362, 212–214. [Google Scholar] [CrossRef]
- Vitale, S.G.; Caruso, S.; Rapisarda, A.M.C.; Cianci, S.; Cianci, A. Isoflavones, calcium, Vitamin D and inulin improve quality of life, sexual function, body composition and metabolic parameters in menopausal women: Result from a prospective, randomized, placebo-controlled, parallel-group study. Prz. Menopauzalny 2018, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Informe del Estado de Salud de la Población de la Comunidad de Madrid 2016: Consejería de Sanidad, Comunidad de Madrid. 2007. Available online: http://www.informesdesalud.sanidadmadrid.org/docs/InformeCompleto.pdf (accessed on 15 June 2020).
Mean (SD) or N (%) | ||
---|---|---|
Age | 44.3 | (2.8) |
Weight (kg) | 63.7 | (11.7) |
Height (cm) | 161.8 | (5.8) |
Body mass index (kg/m2) | 24.3 | (4.3) |
Waist circumference (cm) | 80.0 | (11.2) |
Hip circumference (cm) | 98.2 | (9.3) |
Waist-to-hip ratio | 0.8 | (0.1) |
Weight at age 18 (kg) | 54.6 | (7.5) |
Weight gain since age 18 (kg) | 8.4 | (10.2) |
Body fat percentage | 30.3 | (7.3) |
Visceral fat index | 5.2 | (2.4) |
Physical activity, total MET-hours/week | 11.3 | (17.0) |
Total energy intake (kcal/day) | 1965.4 | (590.5) |
Education | ||
Primary school or less | 65 | (4.5) |
Secondary school | 494 | (34.3) |
University | 882 | (61.2) |
Age at menarche | 12.5 | (1.4) |
Age at first birth | 31.1 | (4.7) |
Number of children | ||
None | 341 | (23.6) |
1 | 336 | (23.3) |
2 | 683 | (47.3) |
>2 | 83 | (5.8) |
Cumulative lactation (months) | ||
No | 84 | (7.6) |
1–6 | 364 | (33.1) |
7–12 | 334 | (30.3) |
>12 | 319 | (29.0) |
Use of oral contraceptives | ||
Never | 549 | (38.3) |
Past use | 836 | (58.4) |
Current use | 47 | (3.3) |
Tobacco consumption | ||
No | 552 | (38.3) |
Former smoker | 503 | (34.9) |
Current smoker | 388 | (26.9) |
Alcohol consumption (g/day) | ||
No | 255 | (20.0) |
<10 | 839 | (66.0) |
≥10 | 178 | (14.0) |
Hypercholesterolemia | ||
No | 1243 | (87.0) |
Yes, not treated | 153 | (10.7) |
Treated with statins | 32 | (2.2) |
SFAs | cis-MUFAs | trans-FAs | n-6 PUFAs | n-3 PUFAs | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean (SD) | p-Val | Mean (SD) | p-Val | Mean (SD) | p-Val | Mean (SD) | p-Val | Mean (SD) | p-Val | |
Body mass index (kg/m2) | |||||||||||
<18.5 | 26 | 53.27 (4.13) | <0.001 | 10.17 (1.59) | <0.001 | 1.53 (0.24) | <0.001 | 31.72 (4.13) | 0.014 | 3.31 (1.19) | 0.729 |
18.5–24.9 | 945 | 54.44 (4.77) | 9.58 (2.07) | 1.45 (0.27) | 30.95 (4.07) | 3.58 (1.30) | |||||
25–29.9 | 331 | 55.25 (5.36) | 9.05 (2.72) | 1.41 (0.29) | 30.64 (4.77) | 3.64 (1.30) | |||||
≥30 | 140 | 56.51 (4.50) | 8.62 (1.80) | 1.30 (0.29) | 30.15 (3.53) | 3.42 (1.07) | |||||
Waist circumference a (cm) | |||||||||||
<74.35 | 476 | 54.47 (4.43) | 0.011 | 9.74 (2.08) | <0.001 | 1.45 (0.26) | <0.001 | 30.77 (3.99) | 0.904 | 3.58 (1.36) | 0.788 |
74.35–83.01 | 473 | 54.65 (4.78) | 9.35 (1.83) | 1.44 (0.27) | 30.99 (3.92) | 3.57 (1.25) | |||||
>83.01 | 474 | 55.27 (5.46) | 9.04 (2.67) | 1.39 (0.30) | 30.74 (4.68) | 3.56 (1.23) | |||||
Weight gain since age 18 a (kg) | |||||||||||
<4.0 | 412 | 54.19 (4.56) | 0.001 | 9.71 (2.05) | <0.001 | 1.46 (0.27) | <0.001 | 31.10 (3.97) | 0.103 | 3.54 (1.36) | 0.547 |
4.0–11.2 | 404 | 54.66 (5.02) | 9.46 (2.12) | 1.44 (0.27) | 30.89 (4.24) | 3.55 (1.22) | |||||
>11.2 | 408 | 55.31 (5.01) | 9.09 (2.63) | 1.39 (0.29) | 30.62 (4.45) | 3.60 (1.27) | |||||
Body fat percentage a | |||||||||||
<27.1 | 458 | 54.22 (4.66) | <0.001 | 9.78 (2.10) | <0.001 | 1.46 (0.27) | <0.001 | 31.02 (4.13) | 0.127 | 3.53 (1.37) | 0.798 |
27.1–33.4 | 461 | 54.64 (4.62) | 9.37 (1.98) | 1.44 (0.26) | 30.95 (3.89) | 3.60 (1.18) | |||||
>33.4 | 454 | 55.55 (5.46) | 8.94 (2.39) | 1.38 (0.30) | 30.59 (4.68) | 3.55 (1.24) | |||||
Visceral fat index a | |||||||||||
<5 | 613 | 54.20 (4.63) | <0.001 | 9.64 (1.95) | <0.001 | 1.46 (0.27) | <0.001 | 31.12 (4.07) | 0.021 | 3.59 (1.36) | 0.947 |
5–6 | 453 | 54.87 (5.09) | 9.43 (2.59) | 1.43 (0.27) | 30.77 (4.21) | 3.49 (1.17) | |||||
7–18 | 306 | 55.88 (5.22) | 8.71 (1.84) | 1.36 (0.31) | 30.45 (4.61) | 3.61 (1.22) |
Total | Tertiles of Serum PL-FAs a | 80th vs. 20th Percentiles b | |||
---|---|---|---|---|---|
Tertile 2 | Tertile 3 | ||||
Mean (SD) | β (95% CI) c | β (95% CI) c | β (95% CI) c | q-Val d | |
SFAs | |||||
14:0 myristic acid | 0.20 (0.16) | 0.35 (−0.20; 0.90) | 1.48 (0.92; 2.04) | 0.54 (0.24; 0.85) | 0.002 |
15:0 pentadecanoic acid | 0.09 (0.05) | 0.49 (−0.07; 1.05) | 0.46 (−0.11; 1.02) | −0.00 (−0.31; 0.30) | 0.985 |
16:0 palmitic acid | 32.92 (1.97) | 0.65 (0.10; 1.20) | 1.36 (0.80; 1.92) | 0.44 (0.12; 0.75) | 0.011 |
17:0 margaric acid | 0.26 (0.46) | 0.02 (−0.55; 0.58) | −0.34 (−0.90; 0.23) | −0.02 (−0.07; 0.02) | 0.407 |
18:0 stearic acid | 21.21 (4.33) | 0.43 (−0.13; 0.99) | 0.96 (0.40; 1.52) | 0.85 (0.40; 1.29) | 0.001 |
20:0 arachidic acid | 0.12 (0.06) | 0.20 (−0.35; 0.76) | 0.53 (−0.03; 1.09) | 0.32 (−0.11; 0.74) | 0.211 |
Total saturates (SFAs) | 54.81 (4.91) | 0.27 (−0.28; 0.82) | 1.18 (0.62; 1.74) | 0.94 (0.52; 1.36) | 0.001 |
cis-MUFAs | |||||
16:1 n-7 palmitoleic acid | 0.32 (0.17) | 0.20 (−0.35; 0.76) | 1.09 (0.53; 1.65) | 0.53 (0.24; 0.83) | 0.001 |
17:1 heptadecenoic acid | 0.02 (0.12) | -0.22 (−0.77; 0.34) | 0.39 (-0.17; 0.94) | −0.01 (−0.05; 0.03) | 0.632 |
18:1 n-9 oleic acid | 8.96 (2.17) | −1.09 (−1.64; −0.54) | −1.98 (−2.53; −1.42) | −0.90 (−1.19; −0.61) | 0.001 |
20:1n-9 gondoic acid | 0.07 (0.03) | −0.82 (−1.38; −0.27) | −1.09 (−1.64; −0.53) | −0.48 (−0.79; −0.16) | 0.006 |
Total cis-MUFAs | 9.37 (2.23) | −0.85 (−1.40; −0.30) | −1.84 (−2.39; −1.28) | −0.85 (−1.15; −0.56) | 0.001 |
trans-fatty acids | |||||
Ruminant trans-fatty acids | |||||
16:1 n-7 palmitelaidic acid | 0.13 (0.05) | −0.43 (−1.00; 0.13) | −0.44 (−1.00; 0.12) | −0.17 (−0.54; 0.19) | 0.410 |
18:1 n-7 vaccenic acid | 1.16 (0.24) | −1.20 (−1.75; −0.64) | −1.26 (−1.82; −0.71) | −0.94 (−1.31; −0.57) | 0.001 |
Total ruminant trans-fatty acids | 1.28 (0.26) | −1.02 (−1.58; −0.47) | −1.35 (−1.90; −0.80) | −0.92 (−1.30; −0.54) | 0.001 |
Industrial trans-fatty acids | |||||
18:1 n-9 elaidic acid | 0.14 (0.06) | −0.35 (−0.91; 0.21) | −0.48 (−1.04; 0.08) | −0.29 (−0.64; 0.07) | 0.176 |
n-6 PUFAs | |||||
18:2 linoleic acid | 19.65 (3.68) | −0.93 (−1.47; −0.38) | −1.66 (−2.22; −1.11) | −1.11 (−1.46; −0.76) | 0.001 |
18:3 γ-linolenic acid | 0.06 (0.04) | −0.32 (−0.88; 0.24) | −0.54 (−1.10; 0.03) | −0.37 (−0.69; −0.06) | 0.033 |
20:2 eicosadienoic acid | 0.15 (0.05) | 0.09 (−0.46; 0.65) | 0.20 (−0.36; 0.75) | 0.17 (−0.18; 0.53) | 0.410 |
20:3 dihomo-γ-linolenic acid (DGLA) | 2.15 (0.66) | 0.70 (0.16; 1.24) | 2.35 (1.80; 2.90) | 1.86 (1.51; 2.22) | 0.001 |
20:4 arachidonic acid (AA) | 8.82 (1.91) | 0.58 (0.03; 1.13) | 0.95 (0.40; 1.51) | 0.67 (0.28; 1.05) | 0.002 |
Total n-6 PUFAs | 30.82 (4.20) | −0.32 (−0.88; 0.24) | −0.63 (−1.19; −0.07) | −0.43 (−0.81; −0.04) | 0.048 |
n-3 PUFAs | |||||
18:3 α-linolenic acid | 0.04 (0.03) | 0.49 (−0.06; 1.04) | 1.22 (0.66; 1.77) | 0.93 (0.63; 1.22) | 0.001 |
20:5 eicosapentaenoic acid (EPA) | 0.64 (0.55) | 0.56 (0.00; 1.12) | 0.81 (0.25; 1.37) | 0.16 (−0.09; 0.41) | 0.275 |
22:6 docosahexaenoic acid (DHA) | 2.90 (0.88) | 0.06 (−0.51; 0.62) | −0.21 (−0.77; 0.36) | −0.07 (−0.45; 0.30) | 0.719 |
Total n-3 PUFAs | 3.57 (1.27) | 0.49 (−0.07; 1.05) | 0.19 (−0.38; 0.75) | 0.08 (−0.27; 0.42) | 0.710 |
Ratio n-6/n-3 PUFAs | 9.12 (1.51) | 0.22 (−0.34; 0.77) | −0.34 (−0.91; 0.22) | −0.09 (−0.22; 0.04) | 0.221 |
Weight Gain Since Age 18 | Body Fat Percentage | Visceral Fat Index | Waist Circumference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β a,b | SD | q-Val c | β a,b | SD | q-Val c | β a,b | SD | q-Val c | β a,b | SD | q-Val c | |
SFAs | ||||||||||||
14:0 myristic acid | −0.16 | 0.250 | 0.918 | 0.00 | 0.140 | 0.998 | 0.00 | 0.030 | 0.935 | −0.06 | 0.270 | 0.906 |
15:0 pentadecanoic acid | −0.24 | 0.250 | 0.818 | −0.12 | 0.140 | 0.503 | −0.03 | 0.030 | 0.388 | −0.06 | 0.260 | 0.906 |
16:0 palmitic acid | −0.02 | 0.260 | 0.954 | 0.22 | 0.150 | 0.282 | 0.05 | 0.030 | 0.138 | 0.32 | 0.220 | 0.420 |
17:0 margaric acid | 0.06 | 0.030 | 0.504 | 0.01 | 0.020 | 0.503 | 0.00 | 0.000 | 0.459 | −0.01 | 0.030 | 0.890 |
18:0 stearic acid | −0.10 | 0.380 | 0.954 | 0.19 | 0.200 | 0.503 | 0.06 | 0.040 | 0.161 | −1.20 | 0.310 | 0.003 |
20:0 arachidic acid | −0.18 | 0.360 | 0.918 | −0.16 | 0.190 | 0.503 | −0.01 | 0.030 | 0.874 | −1.24 | 0.300 | 0.003 |
Total saturates (SFAs) | −0.04 | 0.360 | 0.954 | 0.29 | 0.190 | 0.282 | 0.08 | 0.030 | 0.100 | −0.86 | 0.290 | 0.019 |
cis-MUFAs | ||||||||||||
16:1 n-7 palmitoleic acid | −0.01 | 0.240 | 0.954 | 0.11 | 0.140 | 0.503 | 0.04 | 0.020 | 0.182 | 0.14 | 0.210 | 0.790 |
17:1 heptadecenoic acid | 0.06 | 0.030 | 0.406 | 0.01 | 0.020 | 0.503 | 0.00 | 0.000 | 0.417 | −0.01 | 0.030 | 0.906 |
18:1 n-9 oleic acid | −0.07 | 0.250 | 0.954 | −0.30 | 0.140 | 0.190 | −0.06 | 0.030 | 0.100 | −0.25 | 0.210 | 0.506 |
20:1n-9 gondoic acid | −0.26 | 0.270 | 0.818 | −0.10 | 0.150 | 0.503 | −0.04 | 0.030 | 0.268 | −0.20 | 0.220 | 0.668 |
Total cis-MUFAs | −0.04 | 0.250 | 0.954 | −0.28 | 0.140 | 0.233 | −0.05 | 0.030 | 0.137 | −0.24 | 0.210 | 0.515 |
trans-fatty acids | ||||||||||||
Ruminant trans-fatty acids | ||||||||||||
16:1 n-7 palmitelaidic acid | −0.46 | 0.300 | 0.508 | −0.26 | 0.170 | 0.282 | −0.05 | 0.030 | 0.161 | −0.13 | 0.250 | 0.803 |
18:1 n-7 vaccenic acid | −0.06 | 0.310 | 0.954 | −0.21 | 0.170 | 0.354 | −0.06 | 0.030 | 0.133 | 0.18 | 0.260 | 0.790 |
Total ruminant trans-fatty acids | −0.16 | 0.320 | 0.918 | −0.26 | 0.180 | 0.282 | −0.07 | 0.030 | 0.100 | 0.14 | 0.270 | 0.803 |
Industrial trans-fatty acids | ||||||||||||
18:1 n-9 elaidic acid | −0.10 | 0.290 | 0.954 | −0.12 | 0.160 | 0.503 | −0.03 | 0.030 | 0.388 | −0.45 | 0.250 | 0.241 |
n-6 PUFAs | ||||||||||||
18:2 linoleic acid | −0.26 | 0.300 | 0.818 | −0.59 | 0.160 | 0.007 | −0.10 | 0.030 | 0.028 | 0.35 | 0.250 | 0.420 |
18:3 γ-linolenic acid | −0.74 | 0.260 | 0.140 | −0.42 | 0.140 | 0.037 | −0.07 | 0.030 | 0.065 | −0.30 | 0.220 | 0.420 |
20:2 eicosadienoic acid | −0.24 | 0.290 | 0.818 | 0.14 | 0.160 | 0.503 | −0.02 | 0.030 | 0.623 | 0.24 | 0.250 | 0.668 |
20:3 dihomo-γ-linolenic acid (DGLA) | 0.66 | 0.330 | 0.401 | 0.68 | 0.180 | 0.007 | 0.09 | 0.030 | 0.065 | 1.33 | 0.260 | 0.003 |
20:4 arachidonic acid (AA) | 0.73 | 0.320 | 0.308 | 0.48 | 0.180 | 0.042 | 0.04 | 0.030 | 0.305 | 1.10 | 0.260 | 0.003 |
Total n-6 PUFAs | 0.19 | 0.320 | 0.918 | −0.22 | 0.170 | 0.354 | −0.06 | 0.030 | 0.138 | 1.02 | 0.260 | 0.003 |
n-3 PUFAs | ||||||||||||
18:3 α-linolenic acid | 0.40 | 0.250 | 0.508 | 0.23 | 0.140 | 0.282 | 0.05 | 0.030 | 0.137 | 0.40 | 0.210 | 0.232 |
20:5 eicosapentaenoic acid (EPA) | −0.26 | 0.210 | 0.714 | 0.16 | 0.110 | 0.282 | 0.04 | 0.020 | 0.161 | −0.02 | 0.170 | 0.942 |
22:6 docosahexaenoic acid (DHA) | −0.27 | 0.310 | 0.818 | 0.27 | 0.170 | 0.282 | 0.00 | 0.030 | 0.935 | 0.15 | 0.260 | 0.803 |
Total n-3 PUFAs | −0.32 | 0.290 | 0.803 | 0.28 | 0.160 | 0.282 | 0.03 | 0.030 | 0.459 | 0.10 | 0.240 | 0.868 |
Ratio n-6/n-3 PUFAs | 0.04 | 0.100 | 0.954 | −0.07 | 0.060 | 0.372 | −0.01 | 0.010 | 0.415 | 0.07 | 0.090 | 0.686 |
Body Mass Index | Weight Gain Since Age 18 | Body Fat Percentage | Visceral Fat Index | Waist Circumference | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β a,b | SD | q-Val d | β a,c | SD | q-Val d | β a,c | SD | q-Val d | β a,c | SD | q-Val d | β a,c | SD | q-Val d | |
Desaturation indices | |||||||||||||||
SCD-16: 16:1n-7c/16:0 | 0.51 | 0.16 | 0.001 | 0.00 | 0.250 | 0.993 | 0.08 | 0.140 | 0.575 | 0.03 | 0.030 | 0.237 | 0.07 | 0.210 | 0.738 |
SCD-18: 18:1n-9c/18:0 | −0.95 | 0.17 | 0.001 | 0.04 | 0.290 | 0.993 | −0.17 | 0.160 | 0.425 | −0.04 | 0.030 | 0.237 | 0.56 | 0.240 | 0.038 |
FADS1: 20:4n-6/20:3n-6 | −1.02 | 0.16 | 0.001 | −0.08 | 0.270 | 0.993 | −0.15 | 0.150 | 0.425 | −0.02 | 0.030 | 0.441 | −0.39 | 0.230 | 0.113 |
FADS2: 20:3n-6/18:2 | 2.24 | 0.18 | 0.001 | 0.75 | 0.330 | 0.092 | 0.88 | 0.180 | 0.002 | 0.13 | 0.030 | 0.002 | 1.04 | 0.270 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Pozo, M.d.P.; Lope, V.; Criado-Navarro, I.; Pastor-Barriuso, R.; Fernández de Larrea, N.; Ruiz, E.; Castelló, A.; Lucas, P.; Sierra, Á.; Romieu, I.; et al. Serum Phospholipid Fatty Acids Levels, Anthropometric Variables and Adiposity in Spanish Premenopausal Women. Nutrients 2020, 12, 1895. https://doi.org/10.3390/nu12061895
del Pozo MdP, Lope V, Criado-Navarro I, Pastor-Barriuso R, Fernández de Larrea N, Ruiz E, Castelló A, Lucas P, Sierra Á, Romieu I, et al. Serum Phospholipid Fatty Acids Levels, Anthropometric Variables and Adiposity in Spanish Premenopausal Women. Nutrients. 2020; 12(6):1895. https://doi.org/10.3390/nu12061895
Chicago/Turabian Styledel Pozo, María del Pilar, Virginia Lope, Inmaculada Criado-Navarro, Roberto Pastor-Barriuso, Nerea Fernández de Larrea, Emma Ruiz, Adela Castelló, Pilar Lucas, Ángeles Sierra, Isabelle Romieu, and et al. 2020. "Serum Phospholipid Fatty Acids Levels, Anthropometric Variables and Adiposity in Spanish Premenopausal Women" Nutrients 12, no. 6: 1895. https://doi.org/10.3390/nu12061895
APA Styledel Pozo, M. d. P., Lope, V., Criado-Navarro, I., Pastor-Barriuso, R., Fernández de Larrea, N., Ruiz, E., Castelló, A., Lucas, P., Sierra, Á., Romieu, I., Chajès, V., Priego-Capote, F., Pérez-Gómez, B., & Pollán, M. (2020). Serum Phospholipid Fatty Acids Levels, Anthropometric Variables and Adiposity in Spanish Premenopausal Women. Nutrients, 12(6), 1895. https://doi.org/10.3390/nu12061895