Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission
Abstract
:1. Introduction
2. Structure
3. Function
3.1. Resting State
3.2. Taste Response
4. Neurotransmission
4.1. Serotonin Signaling
4.2. Dopamine Signaling
4.3. Opioid Signaling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.H.; Iwakoshi, N.N.; Ozdelen, E.; Tuncman, G.; Görgün, C.; Glimcher, L.H.; Hotamisligil, G.S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306, 457–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandviwala, T.; Khalid, U.; Deswal, A. Obesity and Cardiovascular Disease: A Risk Factor or a Risk Marker? Curr. Atheroscler. Rep. 2016, 18, 21. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Anandacoomarasamy, A.; Caterson, I.; Sambrook, P.; Fransen, M.; March, L. The impact of obesity on the musculoskeletal system. Int. J. Obes. 2008, 32, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Tronieri, J.S.; Wurst, C.M.; Pearl, R.L.; Allison, K.C. Sex differences in obesity and mental health. Curr. Psychiatry Rep. 2017, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Cherbuin, N.; Budge, M.; Young, J. Body mass index in midlife and late-life as a risk factor for dementia: A meta-analysis of prospective studies. Obes. Rev. 2011, 12, e426–e437. [Google Scholar] [CrossRef] [PubMed]
- Wajchenberg, B.L. Subcutaneous and Visceral Adipose Tissue: Their Relation to the Metabolic Syndrome. Endocr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef]
- Lindgren, E.; Gray, K.; Miller, G.; Tyler, R.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Food addiction: A common neurobiological mechanism with drug abuse. Front. Biosci. (Landmark Ed.) 2018, 23, 811–836. [Google Scholar]
- Garcia-Garcia, I.; Horstmann, A.; Jurado, M.A.; Garolera, M.; Chaudhry, S.J.; Margulies, D.S.; Villringer, A.; Neumann, J. Reward processing in obesity, substance addiction and non-substance addiction. Obes. Rev. 2014, 15, 853–869. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Tomasi, D.; Baler, R.D. Obesity and addiction: Neurobiological overlaps. Obes. Rev. 2013, 14, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Telang, F. Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3191–3200. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.M.; Loughead, J.; Bakizada, Z.M.; Hopkins, C.; Geliebter, A.; Gur, R.C.; Wadden, T.A. Sex/gender differences in neural correlates of food stimuli: A systematic review of functional neuroimaging studies. Obes. Rev. 2017, 18, 687–699. [Google Scholar] [CrossRef]
- Martin, L.J.; Sollars, S.I. Contributory role of sex differences in the variations of gustatory function. J. Neurosci. Res. 2017, 95, 594–603. [Google Scholar] [CrossRef]
- Haase, L.; Green, E.; Murphy, C. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite 2011, 57, 421–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manippa, V.; Padulo, C.; van der Laan, L.N.; Brancucci, A. Gender Differences in Food Choice: Effects of Superior Temporal Sulcus Stimulation. Front. Hum. Neurosci. 2017, 11, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, C.P.; Polivy, J. Sex and Gender Differences in Eating Behavior. In Handbook of Gender Research in Psychology; Springer: New York, NY, USA, 2009; pp. 455–469. [Google Scholar]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisie, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Neumark-Sztainer, D.; Shenvood, N.E.; French, S.A.; Jefsery, R.W. Weight control behaviors among adult men and women: Cause for concern? Obes. Res. 1999, 7, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Davison, T.E.; McCabe, M.P. Relationships between Men’s and Women’s Body Image and Their Psychological, Social, and Sexual Functioning. Sex. Roles, J. Res. 2005, 52, 463–475. [Google Scholar] [CrossRef]
- Tiggemann, M. Gender differences in the interrelationships between weight dissatisfaction, restraint, and self-esteem. Sex. Roles J. Res. 1994, 30, 319–330. [Google Scholar] [CrossRef]
- Del Parigi, A.; Chen, K.; Salbe, A.D.; Hill, J.O.; Wing, R.R.; Reiman, E.M.; Tataranni, P.A. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int. J. Obes. 2007, 31, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Long, J.D.; Dodd, S.L.; Doumit, R.; Boswell, C.; O’Boyle, M.W.; Rogers, T. Integrative Review of Dietary Choice Revealed by fMRI: Considerations for Obesity Prevention and Weight-Loss Education. Worldviews Evid. Based Nurs. 2020, 17, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Tannenbaum, C. Reporting Sex, Gender, or Both in Clinical Research? JAMA 2016, 316, 1863–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horstmann, A.; Busse, F.P.; Mathar, D.; Muller, K.; Lepsien, J.; Schlogl, H. Obesity-Related Differences between Women and Men in Brain Structure and Goal-Directed Behavior. Front. Hum. Neurosci. 2011, 5, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekkers, I.A.; Jansen, P.R.; Lamb, H.J. Obesity, Brain Volume, and White Matter Microstructure at MRI: A Cross-sectional UK Biobank Study. Radiology 2019, 291, 763–771. [Google Scholar] [CrossRef]
- Basser, P.J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995, 8, 333–344. [Google Scholar] [CrossRef]
- Mueller, K.; Anwander, A.; Möller, H.E.; Horstmann, A.; Lepsien, J.; Busse, F.; Mohammadi, S.; Schroeter, M.L.; Stumvoll, M.; Villringer, A.; et al. Sex-dependent influences of obesity on cerebral white matter investigated by diffusion-tensor imaging. PLoS ONE 2011, 6, e18544. [Google Scholar] [CrossRef]
- Kijonka, M.; Borys, D.; Psiuk-Maksymowicz, K.; Gorczewski, K.; Wojcieszek, P.; Kossowski, B.; Marchewka, A.; Swierniak, A.; Sokol, M.; Bobek-Billewicz, B. Whole Brain and Cranial Size Adjustments in Volumetric Brain Analyses of Sex- and Age-Related Trends. Front. Neurosci 2020, 14, 278. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, S.J.; Cox, S.R.; Shen, X.; Lombardo, M.V.; Reus, L.M.; Alloza, C.; Harris, M.A.; Alderson, H.L.; Hunter, S.; Neilson, E.; et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants. Cereb. Cortex 2018, 28, 2959–2975. [Google Scholar] [CrossRef]
- Ronan, L.; Alexander-Bloch, A.F.; Wagstyl, K.; Farooqi, S.; Brayne, C.; Tyler, L.K.; Fletcher, P.C. Obesity associated with increased brain age from midlife. Neurobiol. Aging 2016, 47, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafson, D.; Lissner, L.; Bengtsson, C.; Björkelund, C.; Skoog, I. A 24-year follow-up of body mass index and cerebral atrophy. Neurology 2004, 63, 1876–1881. [Google Scholar] [CrossRef]
- Driscoll, I.; Gaussoin, S.A.; Wassertheil-Smoller, S.; Limacher, M.; Casanova, R.; Yaffe, K.; Resnick, S.M.; Espeland, M.A. Obesity and Structural Brain Integrity in Older Women: The Women’s Health Initiative Magnetic Resonance Imaging Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1216–1222. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, N.M.; An, Y.; Beason-Held, L.; Doshi, J.; Erus, G.; Ferrucci, L.; Davatzikos, C.; Resnick, S.M. Sex differences in brain aging and predictors of neurodegeneration in cognitively healthy older adults. Neurobiol. Aging 2019, 81, 146–156. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Y.; Von Deneen, K.M.; Zhu, H.Q.; Gao, J.H. Brain structural alterations in obese children with and without Prader-Willi Syndrome. Hum. Brain Mapp. 2017, 38, 4228–4238. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.A.; Gart, E.; Vreeken, D.; Franx, B.A.; Wekking, L.; Verweij, V.G.; Worms, N.; Schoemaker, M.H.; Gross, G.; Morrison, M.C.; et al. Sex-Specific Differences in Fat Storage, Development of Non-Alcoholic Fatty Liver Disease and Brain Structure in Juvenile HFD-Induced Obese Ldlr-/-.Leiden Mice. Nutrients 2019, 11, 1861. [Google Scholar] [CrossRef] [Green Version]
- Haltia, L.T.; Viljanen, A.; Parkkola, R.; Kemppainen, N.; Rinne, J.O.; Nuutila, P.; Kaasinen, V. Brain white matter expansion in human obesity and the recovering effect of dieting. J. Clin. Endocrinol. Metab. 2007, 92, 3278–3284. [Google Scholar] [CrossRef] [Green Version]
- Robison, L.S.; Albert, N.M.; Camargo, L.A.; Anderson, B.M.; Salinero, A.E.; Riccio, D.A.; Abi-Ghanem, C.; Gannon, O.J.; Zuloaga, K.L. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. eNeuro 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasi, D.; Volkow, N.D. Gender differences in brain functional connectivity density. Hum. Brain Mapp. 2012, 33, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.; He, Y.; Evans, A.C. Brain connectivity: Gender makes a difference. Neuroscientist 2011, 17, 575–591. [Google Scholar] [CrossRef] [PubMed]
- García-García, I.; Jurado, M.A.; Garolera, M.; Marques-Iturria, I.; Horstmann, A.; Segura, B.; Pueyo, R.; Sender-Palacios, M.J.; Vernet-Vernet, M.; Villringer, A.; et al. Functional network centrality in obesity: A resting-state and task fMRI study. Psychiatry Res. 2015, 233, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Doucet, G.E.; Rasgon, N.; McEwen, B.S.; Micali, N. Elevated Body Mass Index is Associated with Increased Integration and Reduced Cohesion of Sensory-Driven and Internally Guided Resting-State Functional Brain Networks. Cereb. Cortex 2018, 28, 988–997. [Google Scholar] [CrossRef]
- Gupta, A.; Mayer, E.A.; Hamadani, K.; Bhatt, R.; Fling, C.; Alaverdyan, M.; Torgerson, C.; Ashe-McNalley, C.; Van Horn, J.D.; Naliboff, B.; et al. Sex differences in the influence of body mass index on anatomical architecture of brain networks. Int. J. Obesity. 2017, 41, 1185–1195. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Mayer, E.A.; Labus, J.S.; Bhatt, R.R.; Ju, T.; Love, A.; Bal, A.; Tillisch, K.; Naliboff, B.; SanMiguel, C.P.; et al. Sex commonalities and differences in obesity-related alterations in intrinsic brain activity and connectivity. Obesity 2017, 26, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osadchiy, V.; Mayer, E.A.; Bhatt, R.; Labus, J.S.; Gao, L.; Kilpatrick, L.A.; Liu, C.; Tillisch, K.; Naliboff, B.; Chang, L.; et al. History of early life adversity is associated with increased food addiction and sex-specific alterations in reward network connectivity in obesity. Obes. Sci. Pract. 2019, 5, 416–436. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Preliminary validation of the Yale Food Addiction Scale. Appetite 2009, 52, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, X.N.; Di Martino, A.; Kelly, C.; Shehzad, Z.E.; Gee, D.G.; Klein, D.F.; Castellanos, F.X.; Biswal, B.B.; Milham, M.P. The oscillating brain: Complex and reliable. Neuroimage. 2010, 49, 1432–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kure Liu, C.; Joseph, P.V.; Feldman, D.E.; Kroll, D.S.; Burns, J.A.; Manza, P.; Volkow, N.D.; Wang, G.J. Brain Imaging of Taste Perception in Obesity: A Review. Curr. Nutr. Rep. 2019, 8, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, D.M.; Zald, D.H.; Jones-Gotman, M.; Zatorre, R.J.; Pardo, J.V.; Frey, S.; Petrides, M. Human cortical gustatory areas: A review of functional neuroimaging data. NeuroReport 1999, 10, 7–14. [Google Scholar] [CrossRef] [Green Version]
- O’Doherty, J.; Rolls, E.; Francis, S.; Bowtell, R.; McGlone, F. Representation of Pleasant and Aversive Taste in the Human Brain. J. Neurophysiol. 2001, 85, 1315–1321. [Google Scholar] [CrossRef]
- De Araujo, I.E.T.; Rolls, E.T.; Kringelbach, M.L.; McGlone, F.; Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 2003, 18, 2059–2068. [Google Scholar] [CrossRef] [Green Version]
- Grabenhorst, F.; Rolls, E.T. Selective attention to affective value alters how the brain processes taste stimuli. Eur. J. Neurosci. 2008, 27, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M. Taste representation in the human insula. Brain Struct. Funct. 2010, 214, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.A.; Liu, A.G.; Ingeholm, J.E.; Riddell, C.D.; Gotts, S.J.; Martin, A. Taste Quality Representation in the Human Brain. J. Neurosci. 2020, 40, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Cornier, M.A.; Shott, M.E.; Thomas, E.A.; Bechtell, J.L.; Bessesen, D.H.; Tregellas, J.R.; Frank, G.K. The effects of energy balance, obesity-proneness and sex on the neuronal response to sweet taste. Behav. Brain Res. 2015, 278, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Geliebter, A.; Pantazatos, S.P.; McOuatt, H.; Puma, L.; Gibson, C.D.; Atalayer, D. Sex-based fMRI differences in obese humans in response to high vs. low energy food cues. Behav. Brain Res. 2013, 243, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Atalayer, D.; Pantazatos, S.P.; Gibson, C.D.; McOuatt, H.; Puma, L.; Astbury, N.M.; Geliebter, A. Sexually dimorphic functional connectivity in response to high vs. low energy-dense food cues in obese humans: An fMRI study. Neuroimage 2014, 100, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Yang, Q.; Hajnal, A.; Rogers, A.M. A pilot functional MRI study in Roux-en-Y gastric bypass patients to study alteration in taste functions after surgery. Surg. Endosc. 2016, 30, 892–898. [Google Scholar] [CrossRef]
- Makaronidis, J.M.; Batterham, R.L. Potential Mechanisms Mediating Sustained Weight Loss Following Roux-en-Y Gastric Bypass and Sleeve Gastrectomy. Endocrinol. Metab. Clin. N. Am. 2016, 45, 539–552. [Google Scholar] [CrossRef]
- Collette, F.; Olivier, L.; Van der Linden, M.; Laureys, S.; Delfiore, G.; Luxen, A.; Salmon, E. Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Res. Cogn. Brain Res. 2005, 24, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Rolls, E.T.; Grabenhorst, F. The orbitofrontal cortex and beyond: From affect to decision-making. Prog. Neurobiol. 2008, 86, 216–244. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.; Dolan, R.J.; Frith, C.D. Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cereb. Cortex 2000, 10, 308–317. [Google Scholar] [CrossRef] [Green Version]
- O’Doherty, J.P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Curr. Opin. Neurobiol. 2004, 14, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J. Role of dopamine in drug reinforcement and addiction in humans: Results from imaging studies. Behav. Pharmacol. 2002, 13, 355–366. [Google Scholar] [CrossRef]
- Noel, C.A.; Cassano, P.A.; Dando, R. College-Aged Males Experience Attenuated Sweet and Salty Taste with Modest Weight Gain. J. Nutr. 2017, 147, 1885–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartor, F.; Donaldson, L.F.; Markland, D.A.; Loveday, H.; Jackson, M.J.; Kubis, H.-P. Taste perception and implicit attitude toward sweet related to body mass index and soft drink supplementation. Appetite 2011, 57, 237–246. [Google Scholar] [CrossRef]
- Simchen, U.; Koebnick, C.; Hoyer, S.; Issanchou, S.; Zunft, H.J. Odour and taste sensitivity is associated with body weight and extent of misreporting of body weight. Eur. J. Clin. Nutr. 2006, 60, 698–705. [Google Scholar] [CrossRef]
- Loper, H.B.; La Sala, M.; Dotson, C.; Steinle, N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr. Rev. 2015, 73, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Halford, J.C.; Blundell, J.E. Separate systems for serotonin and leptin in appetite control. Ann. Med. 2000, 32, 222–232. [Google Scholar] [CrossRef]
- Hassanain, M.; Levin, B.E. Dysregulation of hypothalamic serotonin turnover in diet-induced obese rats. Brain Res. 2002, 929, 175–180. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Nutt, D.J. Serotonin and brain function: A tale of two receptors. J. Psychopharmacol. 2017, 31, 1091–1120. [Google Scholar] [CrossRef] [Green Version]
- De Vry, J.; Schreiber, R. Effects ofselected serotonin 5-HT1 and 5-HT2 receptor agonists on feeding behavior: Possible mechanisms of action. Neurosci. Biobehav. Rev. 2000, 24, 341–353. [Google Scholar] [CrossRef]
- Dill, M.J.; Shaw, J.; Cramer, J.; Sindelar, D.K. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion. Pharmacol. Biochem. Behav. 2013, 112, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, W.; Barker, J.L.; Rubinow, D.R. Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: A possible role of testosterone. Neuroscience 1999, 94, 251–254. [Google Scholar] [CrossRef]
- Jovanovic, H.; Lundberg, J.; Karlsson, P.; Cerin, Å.; Saijo, T.; Varrone, A.; Halldin, C.; Nordström, A.L. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage 2008, 39, 1408–1419. [Google Scholar] [CrossRef]
- Moses-Kolko, E.L.; Price, J.C.; Shah, N.; Berga, S.; Sereika, S.M.; Fisher, P.M.; Coleman, R.; Becker, C.; Mason, N.S.; Loucks, T.; et al. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology 2011, 36, 2729–2740. [Google Scholar] [CrossRef]
- Parsey, R.V.; Oquendo, M.A.; Simpson, N.R.; Ogden, R.T.; Van Heertum, R.; Arango, V.; Mann, J.J. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res. 2002, 954, 173–182. [Google Scholar] [CrossRef]
- Frokjaer, V.G.; Erritzoe, D.; Juul, A.; Nielsen, F.Å.; Holst, K.; Svarer, C.; Madsen, J.; Paulson, O.B.; Knudsen, G.M. Endogenous plasma estradiol in healthy men is positively correlated with cerebral cortical serotonin 2A receptor binding. Psychoneuroendocrinology 2010, 35, 1311–1320. [Google Scholar] [CrossRef]
- Kugaya, A.; Epperson, C.N.; Zoghbi, S.; van Dyck, C.H.; Hou, Y.; Fujita, M.; Staley, J.K.; Garg, P.K.; Seibyl, J.P.; Innis, R.B. Increase in Prefrontal Cortex Serotonin2A Receptors Following Estrogen Treatment in Postmenopausal Women. Am. J. Psychiatry 2003, 160, 1522–1524. [Google Scholar] [CrossRef]
- Moses, E.L.; Drevets, W.C.; Smith, G.; Mathis, C.A.; Kalro, B.N.; Butters, M.A.; Leondires, M.P.; Greer, P.J.; Lopresti, B.; Loucks, T.L.; et al. Effects of Estradiol and Progesterone Administration on Human Serotonin 2A Receptor Binding: A PET Study. Biol. Psychiatry 2000, 48, 854–860. [Google Scholar] [CrossRef]
- Adams, K.H.; Pinborg, L.H.; Svarer, C.; Hasselbalch, S.G.; Holm, S.; Haugbøl, S.; Madsen, K.; Frøkjær, V.; Martiny, L.; Paulson, O.B.; et al. A database of [(18)F]-altanserin binding to 5-HT(2A) receptors in normal volunteers: Normative data and relationship to physiological and demographic variables. Neuroimage 2004, 21, 1105–1113. [Google Scholar] [CrossRef]
- Biver, F.; Lotstra, F.; Monclus, M.; Wikler, D.; Damhaut, P.; Mendlewicz, J.; Goldman, S. Sex difference in 5HT2 receptor in the living human brain. Neurosci. Lett. 1996, 204, 25–28. [Google Scholar] [CrossRef]
- Frokjaer, V.G.; Erritzoe, D.; Madsen, J.; Paulson, O.B.; Knudsen, G.M. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding. Neuroscience 2009, 163, 640–645. [Google Scholar] [CrossRef]
- Meyer, J.H.; Kapur, S.; Houle, S.; DaSilva, J.; Owczarek, B.; Brown, G.M.; Wilson, A.A.; Kennedy, S.H. Prefrontal Cortex 5-HT2 Receptors in Depression: An [18F]Setoperone PET Imaging Study. Am. J. Psychiatry 1999, 156, 1029–1034. [Google Scholar] [PubMed]
- Rosier, A.; Dupont, P.; Peuskens, J.; Bormans, G.; Vandenberghe, R.; Maes, M.; de Groot, T.; Schiepers, C.; Verbruggen, A.; Mortelmans, L. Visualisation of loss of 5-HT2A receptors with age in healthy volunteers using [18F]altanserin and positron emission tomographic imaging. Psychiatry Res. Neuroimaging 1996, 68, 11–22. [Google Scholar] [CrossRef]
- Staley, J.K.; Zoghbi, S.; Tamagnan, G.; Fujita, M.; Seibyl, J.P.; Maciejewski, P.K.; O’Malley, S.; Innis, R.B. Sex differences in [123I]β-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 2001, 41, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, C.H.; Malison, R.T.; Seibyl, J.P.; Laruelle, M.; Klumpp, H.; Zoghbi, S.S.; Baldwin, R.M.; Innis, R.B. Age-related decline in central serotonin transporter availability with [123I]β-CIT SPECT. Neurobiol. Aging 2000, 21, 497–501. [Google Scholar] [CrossRef]
- Erritzoe, D.; Frokjaer, V.G.; Haahr, M.T.; Kalbitzer, J.; Svarer, C.; Holst, K.K.; Hansen, D.L.; Jernigan, T.L.; Lehel, S.; Knudsen, G.M. Cerebral serotonin transporter binding is inversely related to body mass index. Neuroimage 2010, 52, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Koskela, A.K.; Kaurijoki, S.; Pietiläinen, K.H.; Karhunen, L.; Pesonen, U.; Kuikka, J.T.; Kaprio, J.; Rissanen, A. Serotonin transporter binding and acquired obesity—An imaging study of monozygotic twin pairs. Physiol. Behav. 2008, 93, 724–732. [Google Scholar] [CrossRef]
- Laruelle, M.; Baldwin, R.M.; Malison, R.T.; Zea-Ponce, Y.; Zoghbi, S.S.; Al-Tikeriti, M.S.; Sybirska, E.H.; Zimmermann, R.C.; Wisniewski, G.; Neumeyer, J.L. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: Pharmacological characterization of brain uptake in nonhuman primates. Synapse 1993, 13, 295–309. [Google Scholar] [CrossRef]
- Kim, J.S.; Ichise, M.; Sangare, J.; Innis, R.B. PET Imaging of Serotonin Transporters with [11C]DASB: Test–Retest Reproducibility Using a Multilinear Reference Tissue Parametric Imaging Method. J. Nucl. Med. 2006, 47, 208–214. [Google Scholar]
- Rahmim, A.; Zaidi, H. PET versus SPECT: Strengths, limitations and challenges. Nucl. Med. Commun. 2008, 29, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Kuikka, J.T.; Tammela, L.; Karhunen, L.; Rissanen, A.; Bergström, K.A.; Naukkarinen, H.; Vanninen, E.; Karhu, J.; Lappalainen, R.; Repo-Tiihonen, E.; et al. Reduced serotonin transporter binding in binge eating women. Psychopharmacology 2001, 155, 310–314. [Google Scholar] [CrossRef]
- Wise, S.D. Clinical studies with fluoxetine in obesity. Am. J. Clin. Nutr. 1992, 55, 181S–184S. [Google Scholar] [CrossRef] [PubMed]
- Tammela, L.I.; Rissanen, A.; Kuikka, J.T.; Karhunen, L.J.; Bergström, K.A.; Repo-Tiihonen, E.; Naukkarinen, H.; Vanninen, E.; Tiihonen, J.; Uusitupa, M. Treatment improves serotonin transporter binding and reduces binge eating. Psychopharmacology 2003, 170, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Figlewicz, D.P.; Patterson, T.A.; Johnson, L.B.; Zavosh, A.; Israel, P.A.; Szot, P. Dopamine transporter mRNA is increased in the CNS of Zucker fatty (fa/fa) rats. Brain Res. Bull. 1998, 46, 199–202. [Google Scholar] [CrossRef]
- Johnson, P.M.; Kenny, P.J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 2010, 13, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.J.; Volkow, N.D.; Fowler, J.S. The role of dopamine in motivation for food in humans: Implications for obesity. Expert Opin. Ther. Targets 2002, 6, 601–609. [Google Scholar] [CrossRef]
- Laakso, A.; Vilkman, H.; Bergman, J.; Haaparanta, M.; Solin, O.; Syvälahti, E.; Salokangas, R.K.; Hietala, J. Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol. Psychiatry 2002, 52, 759–763. [Google Scholar] [CrossRef]
- Munro, C.A.; McCaul, M.E.; Wong, D.F.; Oswald, L.M.; Zhou, Y.; Brasic, J.; Kuwabara, H.; Kumar, A.; Alexander, M.; Ye, W.; et al. Sex differences in striatal dopamine release in healthy adults. Biol. Psychiatry 2006, 59, 966–974. [Google Scholar] [CrossRef]
- Pohjalainen, T.; Rinne, J.O.; Någren, K.; Syvälahti, E.; Hietala, J. Sex differences in the striatal dopamine d2 receptor binding characteristics in vivo. Am. J. Psychiatry 1998, 155, 768–773. [Google Scholar]
- Riccardi, P.; Zald, D.; Li, R.; Park, S.; Ansari, M.S.; Dawant, B.; Anderson, S.; Woodward, N.; Schmidt, D.; Baldwin, R.; et al. Sex differences in amphetamine-induced displacement of [18 F] fallypride in striatal and extrastriatal regions: A PET study. Am. J. Psychiatry 2006, 163, 1639–1641. [Google Scholar] [CrossRef]
- Van de Giessen, E.; Celik, F.; Schweitzer, D.H.; van den Brink, W.; Booij, J. Dopamine D2/D3 receptor availability and amphetamine-induced dopamine release in obesity. J. Psychopharmacol. 2014, 28, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Thanos, P.K.; Logan, J.; Alexoff, D.; Ding, Y.S.; Wong, C.; Ma, Y.; et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. Neuroimage 2008, 42, 1537–1543. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusil, N.; Fowler, J.S. Brain dopamine and obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef]
- Haltia, L.T.; Rinne, J.O.; Merisaari, H.; Maguire, R.P.; Savontaus, E.; Helin, S.; Nagren, K.; Kaasinen, V. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 2007, 61, 748–756. [Google Scholar] [CrossRef]
- Karlsson, H.K.; Tuominen, L.; Tuulari, J.J.; Hirvonen, J.; Parkkola, R.; Helin, S.; Salminen, P.; Nuutila, P.; Nummenmaa, L. Obesity is associated with decreased mu-opioid but unaltered dopamine D2 receptor availability in the brain. J. Neurosci. 2015, 35, 3959–3965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenstein, S.A.; Antenor-Dorsey, J.A.; Gredysa, D.M.; Koller, J.M.; Bihun, E.C.; Ranck, S.A.; ArbelÁez, A.M.; Klein, S.; Perlmutter, J.S.; Moerlein, S.M.; et al. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse 2013, 67, 748–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Weijer, B.A.; van de Giessen, E.; Janssen, I.; Berends, F.J.; van de Laar, A.; Ackermans, M.T.; Fliers, E.; La Fleur, S.E.; Booij, J.; Serlie, M.J. Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia 2014, 57, 1078–1080. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.P.; Cowan, R.L.; Volkow, N.D.; Feurer, I.D.; Li, R.; Williams, D.B.; Kessler, R.M.; Abumrad, N.N. Decreased dopamine type 2 receptor availability after bariatric surgery: Preliminary findings. Brain Res. 2010, 1350, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Steele, K.E.; Prokopowicz, G.P.; Schweitzer, M.A.; Magunsuon, T.H.; Lidor, A.O.; Kuwabawa, H.; Kuma, A.; Brasic, J.; Wong, D.F. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes. Surg. 2010, 20, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.J.; Tomasi, D.; Convit, A.; Logan, J.; Wong, C.T.; Shumay, E.; Fowler, J.S.; Volkow, N.D. BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake. PLoS ONE 2014, 9, e101585. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, J.; Jayne, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity 2011, 19, 1601–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginovart, N. Imaging the Dopamine System with In Vivo [11C]raclopride Displacement Studies: Understanding the True Mechanism. Mol. Imaging Biol. 2005, 7, 45–52. [Google Scholar] [CrossRef]
- Kung, H.F.; Alavi, A.; Chang, W.; Kung, M.P.; Keyes, J.; Velchik, M.G.; Billings, J.; Pan, S.; Noto, R.; Rausch, A. In vivo SPECT imaging of CNS D-2 dopamine receptors: Initial studies with iodine-123-IBZM in humans. J. Nucl. Med. 1990, 31, 573–579. [Google Scholar] [PubMed]
- Best, S.E.; Sarrel, P.M.; Malison, R.T.; Laruelle, M.; Zoghbi, S.S.; Baldwin, R.M.; Seibyl, J.P.; Innis, R.B.; Van Dyck, C.H. Striatal dopamine transporter availability with [123I]beta-CIT SPECT is unrelated to gender or menstrual cycle. Psychopharmacology 2005, 183, 181–189. [Google Scholar] [CrossRef]
- Nam, S.B.; Kim, K.; Kim, B.S.; Im, H.J.; Lee, S.H.; Kim, S.J.; Kim, I.J.; Pak, K. The Effect of Obesity on the Availabilities of Dopamine and Serotonin Transporters. Sci. Rep. 2018, 8, 4924. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, G.; Ziebell, M.; Jensen, P.S.; da Cuhna-Bang, S.; Knudsen, G.M.; Pinborg, L.H. No correlation between body mass index and striatal dopamine transporter availability in healthy volunteers using SPECT and [123I]PE2I. Obesity 2013, 21, 1803–1806. [Google Scholar] [CrossRef] [PubMed]
- Ziebell, M. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT. Dan. Med. Bull. 2011, 58, B4279. [Google Scholar] [PubMed]
- Burghardt, P.R.; Rothberg, A.E.; Dykhuis, K.E.; Burant, C.F.; Zubieta, J.K. Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans. J. Clin. Endocrinol. Metab. 2015, 100, 3193–3201. [Google Scholar] [CrossRef]
- Joutsa, J.; Karlsson, H.K.; Majuri, J.; Nuutila, P.; Helin, S.; Kaasinen, V.; Nummenmaa, L. Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain. Psychiatry Res. Neuroimaging 2018, 276, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Tuominen, L.; Tuulari, J.; Karlsson, H.; Hirvonen, J.; Helin, S.; Salminen, P.; Parkkola, R.; Hietala, J.; Nuutila, P.; Nummenmaa, L. Aberrant mesolimbic dopamine–opiate interaction in obesity. NeuroImage 2015, 122, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Gosnell, B.A.; Levine, A.S. Reward systems and food intake: Role of opioids. Int. J. Obes. 2009, 33, S54–S58. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, G.; Spilker, M.E.; Sprenger, T.; Hauser, A.; Platzer, S.; Boecker, H.; Toelle, T.R.; Schwaiger, M.; Wester, H.J. Gender dependent rate of metabolism of the opioid receptor-PET ligand [18F]fluoroethyldiprenorphine. Nuklearmedizin 2006, 45, 197–200. [Google Scholar] [PubMed]
- Vijay, A.; Wang, S.; Worhunsky, P.; Zheng, M.-Q.; Nabulsi, N.; Ropchan, J.; Krishnan-Sarin, S.; Huang, Y.; Morris, E.D. PET imaging reveals sex differences in kappa opioid receptor availability in humans, in vivo. Am. J. Nucl. Med. Mol. Imaging 2016, 6, 205–214. [Google Scholar] [PubMed]
- Zubieta, J.K.; Dannals, R.F.; Frost, J.J. Gender and Age Influences on Human Brain Mu-Opioid Receptor Binding Measured by PET. Am. J. Psychiatry 1999, 156, 842–848. [Google Scholar] [CrossRef]
- Czyzyk, T.A.; Romero-Picó, A.; Pintar, J.; McKinzie, J.H.; Tschöp, M.H.; Statnick, M.A.; Nogueiras, R. Mice lacking delta-opioid receptors resist the development of diet-induced obesity. FASEB J. 2012, 26, 3483–3492. [Google Scholar] [CrossRef] [Green Version]
- Paus, T.; Keshavan, M.; Giedd, J.N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 2008, 9, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Clegg, D.J.; Riedy, C.A.; Smith, K.A.; Benoit, S.C.; Woods, S.C. Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 2003, 52, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Berglund, P.A.; Chiu, W.T.; Deitz, A.C.; Hudson, J.I.; Shahly, V.; Aguilar-Gaxiola, S.; Alonso, J.; Angermeyer, M.C.; Benjet, C.; et al. The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol. Psychiatry 2013, 73, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Paper | Age (Years), Mean (SD) | Sample Size | Female, % | Obesity Metrics | Neuro-Imaging Modality | Pertinent Findings |
---|---|---|---|---|---|---|
Hortsmann et al. (2011) [25] | Male: 25.46 (4.25) Female: 25.11 (4.43) | 122 | 50 | BMI ≥ 30 kg/m2 Serum leptin | MRI | Men and women show a positive association between GMV and BMI in the right OFC and NAcc. Women’s BMI and leptin levels positively correlate with GMV in the left putamen; leptin negatively correlates with GMV in the right dorsolateral prefrontal cortex. Women with obesity were more likely to prefer immediate rewards, despite long-term negative consequences, than lean women. |
Dekkers et al. (2019) [26] | 62.0 (7.3) | 12087 | 52.8 | Overweight: BMI ≥ 25 kg/m2 Obese: BMI ≥ 30 kg/m2 Total Body Fat | MRI & DTI | Men and women show a negative correlation between total body fat and GMV in the globus pallidus. In men, total body fat was also negatively associated with subcortical GMV in the thalamus, caudate nucleus, putamen, hippocampus, and NAcc. In women, total body fat was negatively associated with global mean diffusivity. |
Mueller et al. (2011) [28] | 26.4 (5.0) Men: 25.5 (5.1) Women: 27.1 (5.0) | 49 | 46.9 | BMI ≥ 30 kg/m2 Serum leptin | T1w MRI & DTI | In men and women, BMI negatively correlated with axial diffusivity in the corpus callosum. In females only, BMI and serum leptin levels also positively correlated with radial diffusivity and negatively correlated with fractional anisotropy in the corpus callosum. |
Ronan et al. (2016) [31] | Lean: 48(16) Overweight: 57(17) Obese: 61 (16) | Lean: 246 Over- weight: 150 Obese: 77 | Lean: 49.6 Over- weight: 44 Obese: 63.6 | BMI ≥ 30 kg/m2 | T1w MRI | Greater atrophy of cerebral WM volume in participants who were obese or overweight, independent of sex/gender. This effect was age-dependent, with the greatest atrophy, adding an estimated 10 years of ‘brain age’, occurring at around age 40. |
Gustafson et al. (2004) [32] | NR Range: 70–84 years | 290 | 100 | BMI ≥ 25 kg/m2 | CT | Women were more likely to experience atrophy of the temporal lobe as both BMI and age increased. |
Driscoll et al. (2016) [33] | NR Range: 65-89 years | 1366 | 100 | ND subjects grouped by BMI | T1w MRI | In women aged 70–89, obesity was positively associated with frontal WM, temporal WM, and hippocampal volume. |
Armstrong et al. (2019) [34] | 71.2 (8.7) Men: 72.2 (8.5) Women: 70.3 (8.7) | 617 | 52.8 | BMI ≥ 30 kg/m2 | T1w MRI | In women, obesity protected against GMV loss as age increased, slowing hippocampal volume decline, and ventricular enlargement. |
Xu et al. (2019) [35] | Control: 8.3 (0.9) Prader-Willi: 7.2(1.2) Obese: 9.0(0.9) | Control: 18 Prader-Willi: 12 Obese: 18 | 66.7 | BMI percentile > 95%. | T1w MRI & DTI | No sex/gender differences were found in children with obesity, although subjects with obesity had lower GMV in the temporal lobe, dorsolateral, and medial prefrontal cortices, and the right anterior cingulate cortex. |
Haltia et al. (2007) [37] | Lean: 37(21) Obese: 37(12) | Lean: 16 Obese: 30 | Lean: 50 Obese: 60 | BMI > 27 kg/m2 | T1w MRI | Both men and women with obesity had greater WM volumes in temporal lobes, brainstem, and cerebellum, but this expansion could recover after a 6-week low-calorie diet. |
Paper | Age (years), Mean (SD) | Sample Size | Female, % | Obesity Metrics | Neuro-Imaging Modality | Pertinent Findings |
---|---|---|---|---|---|---|
Gupta et al. (2017) [43] | 30.96 (11.26) | 124 | 50.8 | BMI ≥ 25 kg/m2 | Resting state fMRI | Women with high BMI had higher degrees of centrality in the left amygdala, right NAcc, and bilateral hippocampus than men with high BMI. Men with high BMI have higher centrality measures in the bilateral putamen than women with high BMI. Men with high BMI have greater centrality in the right putamen, hippocampus, and medial orbitofrontal gyrus relative to lean men. Women with high BMI have greater centrality in the left amygdala than lean women. |
Osadchiy et al. (2019) [45] | Normal BMI: 28.95 (11.15) High BMI: 33.42 (10.83) | 186 | 54.8 | BMI ≥ 25 kg/m2, YFAS * | Resting state fMRI | The association between the centrality of VTA and YFAS was positive in females but negative in males. The association between the centrality of the ventrolateral prefrontal cortex and YFAS was positive in males but negative in females. |
Gupta et al. (2018) [44] | Female: 29.84 (7.45) Male: 31.79 (10.62) | 86 | 50 | BMI ≥ 25 kg/m2 | Resting state fMRI | Slow-4 signal in the right globus pallidus and bilateral putamen was associated with BMI in the female cohort, but not in the male cohort. Slow-5 connectivity between the left globus pallidus and substantia nigra with the bilateral posterior mid cingulate cortex and frontal cortical regions was negatively associated with BMI among females. Slow-5 connectivity between the left globus pallidus and substantia nigra and the medial frontal cortex was positively associated with BMI in the male cohort. |
Paper | Age (years), Mean (SD) | Sample Size | Female% | Obesity Metrics | Neuro-Imaging Modality | Pertinent Findings |
---|---|---|---|---|---|---|
Cornier et al. (2015) [56] | Obese resistant: 30.4 (2.6) Obese prone: 30.2 (3.7) | 49 | 49.0 | Obesity proneness defined by history of diet and weight-gain | Task fMRI (cue anticipation task) | Obese-prone and -resistant males had greater neuronal response to the sucrose-associated visual cue in the right caudate nucleus relative to women. |
Geliebter et al. (2013) [57] | Female: 35(6.9) Male: 35(9.0) | 31 | 45.2 | BMI ≥ 30 kg/m2 | Task fMRI (cue reactivity task) | Male participants with obesity portrayed brain activation in response to high energy dense auditory food cues (rel. to low energy dense) in supplementary motor areas (precentral gyrus) in a sated state. Female participants showed activation in response to high energy dense auditory food cues (rel. to low energy dense) in parahippocampal gyrus in a fasted state. |
Atalayer et al. (2014) [58] | Female: 35 (6.9) Male: 35 (9.0) | 31 | 45.2 | BMI ≥ 30 kg/m2 | Task fMRI (cue reactivity task) | In a sated state, men demonstrated greater connectivity in the amygdala than women, while women displayed greater connectivity in the angular gyrus and precentral gyrus than men. In a fasted state, men displayed greater connectivity in the supplementary motor area, precentral gyrus, precuneus, cuneus, while women had greater connectivity in the inferior frontal gyrus. |
Haase et al. (2011) [15] | Female: 21.94 (1.9) Male: 22.25 (2.7) | 21 | 57.1 | N/A | Task fMRI (cue reactivity task) | Men had greater brain activation decreases than women in response to all four tastes in the middle frontal gyrus, insula, and cerebellum when changing from a hunger to satiety state. Men had greater activational changes relative to women in reaction to sucrose, citric acid, and caffeine in the inferior frontal gyrus; sucrose and NaCl within the parahippocampal gyrus, entorhinal cortex, perirhinal cortex, and amygdala; and sucrose within the dorsal striatum (caudate, putamen) and posterior cingulate. |
Wang et al. (2016) [59] | 46.5 (9.3) | 13 | 61.5 | 1991 NIH guidelines for obesity surgery * | Task fMRI (cue anticipation task) | Participants had decreased response in the reward center (including NAcc, caudate nucleus, VTA, OFC, and prefrontal cortex) in response to sucrose after gastric bypass and increased response in the same region in response to NaCl. |
Paper | Age (years), Mean (SD) | Sample Size | Female% | Obesity Metrics | Neuro-Imaging Modality | Pertinent Findings |
---|---|---|---|---|---|---|
Adams et al. (2004) [82] | Female: 47.4 (19.6) Male: 45.4 (20.1) | 52 | 42.31 | N/A | PET [18F]altanserin 5-HT2A | No sex differences in 5-HT2A binding Positive correlation between 5-HT2A binding and BMI |
Erritzoe et al. (2010) [89] | 35.7(18.2) | 60 | 38.33 | Overweight BMI > 25 kg/m2 Obese BMI ≥ 30 kg/m2 | PET [11C]DASB 5-HTT | Negative correlation between 5-HTT binding and BMI Females > males in midbrain 5-HTT binding No interactions between BMI and gender |
Koskela et al. (2008) [90] | 25.42 (1.29) | 32 (16 mono-zygotic twin pairs) | 50 | N/A | SPECT [123I]nor-β-CIT 5-HTT | Female, but not male, monozygotic twins with higher BMIs had higher 5-HTT binding in the hypothalamus and thalamus than their leaner co-twins |
Wang et al. (2011) [106] | Lean: 37.5 (5.9) Obese: 38.9 (7.3) | 20 | 40 | Severely obese BMI > 40 kg/m2 | PET [11C]raclopride D2/D3 | Obese < controls in striatal D2/D3 receptor binding; positive correlation between D2/D3 receptor binding and BMI No sex differences |
Burghardt et al. (2015) [121] | Lean: 51.43 (11.18) Obese: 52.43 (8.98) | 14 | 0 | ND Obese group mean BMI = 37.96 (1.83) kg/m2 | PET [11C]carfentanil MOR | Obese < lean in MOR binding Partial recovery of MOR binding after restricted-calorie intervention in sample with obesity |
Joutsa et al. (2018) [122] | Morbidly obese: 41.8 (10.3) Controls for morbidly obese: 44.9 (12.9) BED: 49.4 (5.1) Controls for BED: 43.1 (11.4) | 56 | 100 | ND Obese group mean BMI = 40.7 (3.8) kg/m2 BED group mean BMI = 30.9 (6.6) kg/m2 | PET [11C]carfentanil MOR | Morbid obesity and BED < controls in MOR binding No differences in MOR binding between morbidly obese group and BED group |
Karlsson et al. (2015) [108] | Lean: 44.86 (12.88) Obese: 39.08 (10.74) | 27 | 100 | ND Obese group mean BMI = 41.89 (3.88) kg/m2 | PET [11C]carfentanil MOR [11C]raclopride D2/D3 | Obese < control in MOR binding No differences in D2/D3 receptor binding |
Tuominen et al. (2015) [123] | Lean: 42.00 (13.20) Morbidly obese: 41.24 (9.17) | 45 | 100 | ND Morbidly obese mean BMI = 41.30 (4.14) kg/m2 mean fat percentage = 50.34 (3.69) | PET [11C]carfentanil MOR [11C]raclopride D2/D3 | Obese < control in MOR binding Positive correlation between MOR and D2/D3 receptor binding in ventral striatum in control, but not morbidly obese group |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroll, D.S.; Feldman, D.E.; Biesecker, C.L.; McPherson, K.L.; Manza, P.; Joseph, P.V.; Volkow, N.D.; Wang, G.-J. Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission. Nutrients 2020, 12, 1942. https://doi.org/10.3390/nu12071942
Kroll DS, Feldman DE, Biesecker CL, McPherson KL, Manza P, Joseph PV, Volkow ND, Wang G-J. Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission. Nutrients. 2020; 12(7):1942. https://doi.org/10.3390/nu12071942
Chicago/Turabian StyleKroll, Danielle S., Dana E. Feldman, Catherine L. Biesecker, Katherine L. McPherson, Peter Manza, Paule Valery Joseph, Nora D. Volkow, and Gene-Jack Wang. 2020. "Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission" Nutrients 12, no. 7: 1942. https://doi.org/10.3390/nu12071942
APA StyleKroll, D. S., Feldman, D. E., Biesecker, C. L., McPherson, K. L., Manza, P., Joseph, P. V., Volkow, N. D., & Wang, G.-J. (2020). Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission. Nutrients, 12(7), 1942. https://doi.org/10.3390/nu12071942