Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Modal
2.1.1. Subjects
2.1.2. Study Protocol
2.1.3. Maximal Oxygen Uptake (VO2max)
2.1.4. Salivary Cortisol (sCT)
2.1.5. Serum Creatine Kinase (CK)
2.1.6. Maximal Isometric Muscle Strength
2.1.7. Maximal Muscle Power
2.1.8. One-Mile Timed Run
2.1.9. Perceptual Measures
2.1.10. Cross-Training Muscle Damaging Event
2.1.11. Statistical Analysis
2.2. Animal Modal
2.2.1. Animals and Protocol
2.2.2. Biochemical Analysis
2.2.3. Statistical Analysis
3. Results
3.1. Human Trial
3.1.1. Salivary Cortisol and Serum Creatine Kinase
3.1.2. Muscle Strength and Power
3.1.3. One Mile Timed Run
3.1.4. Perceptual Measures
3.2. Animal Modal
3.2.1. Muscle Damage
3.2.2. Intramuscular Antioxidant Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OCX | Oceanix |
MDA | Malonaldehyde |
TE | Trolox equivalency |
CK | Creatine kinase |
MYOB | Myoglobin |
IMTP | Isometric mid-thigh pull |
CMJ | Countermovement jump |
SJ | Squat jump |
E | Exercise |
E + Oc1 | Exercise + Oceanix 1 (2.55 mg/kg/day) |
E + Oc2 | Exercise + Oceanix 2 (5.1 mg/kg/day) |
SOD | Superoxide dismutase |
CAT | Catalase |
GSH-Px | Glutathione peroxidase |
PLA | Placebo |
sCT | Salivary cortisol |
BMI | Body mass index |
RPE | Rating of perceived exertion |
PRS | Perceived recovery status |
ANOVA | Analysis of variance |
ROS | Reactive oxygen species |
EDTA | Ethylenediaminetetraacetic acid |
m | Meters |
cm | Centimeters |
e | Each leg |
DB | Dumbbell |
KB | Kettlebell |
W | Prone shoulder internal/external rotation |
T | Prone horizontal shoulder abduction |
Y | Prone shoulder extension |
References
- Bandyopadhyay, A.; Bhattacharjee, I.; Sousana, P.K. Physiological perspective of endurance overtraining—A comprehensive update. Al Ameen J. Med. Sci. 2012, 5, 7–20. [Google Scholar]
- Meeusen, R.; Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F. Central fatigue: The serotonin hypothesis and beyond. Sports Med. 2006, 36, 881–909. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Nosaka, K.; Nunes, J.A.; Viveiros, L.; Jamurtas, A.Z.; Aoki, M.S. Changes in muscle damage markers in female basketball players. Biol. Sport 2014, 31, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margonis, K.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Douroudos, I.; Chatzinikolaou, A.; Mitrakou, A.; Mastorakos, G.; Papassotiriou, I.; Taxildaris, K.; et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic. Biol. Med. 2007, 43, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Tanskanen, M.; Atalay, M.; Uusitalo, A. Altered oxidative stress in overtrained athletes. J. Sports Sci. 2010, 28, 309–317. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: From basic research to clinical application. Am. J. Med. 1991, 91, 31S–38S. [Google Scholar] [CrossRef]
- Sen, C.K. Oxidants and antioxidants in exercise. J. Appl. Physiol. 1995, 79, 675–686. [Google Scholar] [CrossRef]
- Maughan, R.J.; Depiesse, F.; Geyer, H.; International Association of Athletics Federations. The use of dietary supplements by athletes. J. Sports Sci. 2007, 25 (Suppl. 1), S103–S113. [Google Scholar] [CrossRef]
- Sobal, J.; Marquart, L.F. Vitamin/mineral supplement use among athletes: A review of the literature. Int. J. Sport Nutr. 1994, 4, 320–334. [Google Scholar] [CrossRef]
- Alessio, H.M.; Goldfarb, A.H.; Cao, G. Exercise-induced oxidative stress before and after vitamin C supplementation. Int. J. Sport Nutr. 1997, 7, 1–9. [Google Scholar] [CrossRef]
- Meydani, M.; Evans, W.J.; Handelman, G.; Biddle, L.; Fielding, R.A.; Meydani, S.N.; Burrill, J.; Fiatarone, M.A.; Blumberg, J.B.; Cannon, J.G. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am. J. Physiol. 1993, 264, R992–R998. [Google Scholar] [CrossRef] [PubMed]
- Peternelj, T.-T.; Coombes, J.S. Antioxidant supplementation during exercise training: Beneficial or detrimental? Sports Med. 2011, 41, 1043–1069. [Google Scholar] [CrossRef] [PubMed]
- McGinley, C.; Shafat, A.; Donnelly, A.E. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 2009, 39, 1011–1032. [Google Scholar] [CrossRef] [PubMed]
- Graeff-Hönninger, S.; Khajehei, F. The Demand for Superfoods: Consumers’ desire, production viability and bio-intelligent transition. In Food Tech Transitions: Reconnecting Agri-Food, Technology and Society; Piatti, C., Graeff-Hönninger, S., Khajehei, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 81–94. ISBN 978-3-030-21059-5. [Google Scholar]
- Ramirez, P.; Torres, S.; Lama, C.; Mantec&on, L.; Unamunzaga, C.; Infante, C. TetraSOD activates the antioxidant response pathway in human cells: An in vitro approach. AJB 2020, 19, 367–373. [Google Scholar] [CrossRef]
- Dekkers, J.C.; van Doornen, L.J.; Kemper, H.C. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med. 1996, 21, 213–238. [Google Scholar] [CrossRef]
- Jakeman, J.R.; Lambrick, D.M.; Wooley, B.; Babraj, J.A.; Faulkner, J.A. Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur. J. Appl. Physiol. 2017, 117, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Urso, M.L.; Clarkson, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003, 189, 41–54. [Google Scholar] [CrossRef]
- Wilson, J.; Wilson, S.; Loenneke, J.; Wray, M.; Norton, L.; Campbell, B.; Lowery, R.; Stout, J. Effects of amino acids and their metabolites on aerobic and anaerobic sports. Strength Cond. J. 2012, 34, 33–48. [Google Scholar] [CrossRef]
- Borg, G.A.V. Physical Performance and Perceived Exertion; University Lund: Oxford, UK, 1962. [Google Scholar]
- Howley, E.T.; Bassett, D.R.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef]
- Koutlianos, N.A.; Kouidi, E.J.; Metaxas, T.I.; Deligiannis, A.P. Non-invasive cardiac electrophysiological indices in soccer players with mitral valve prolapse. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 435–441. [Google Scholar] [CrossRef]
- Gibson, T.M.; Harrison, M.H.; Wellicome, R.M. An evaluation of a treadmill work test. Br. J. Sports Med. 1979, 13, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieli-Conwright, C.M.; Jensky, N.E.; Battaglia, G.M.; McCauley, S.A.; Schroeder, E.T. Validation of the CardioCoachCO2 for submaximal and maximal metabolic exercise testing. J. Strength Cond. Res. 2009, 23, 1316–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jehanli, A.; Dunbar, J.; Skelhorn, S. Development and validation of an oral fluid collection device and its use in the immunoassay of salivary steroids and immunoglobulins in sports persons. In Proceedings of the International Society of Exercise Immunology Symposium, Oxford, UK, 11–13 June 2011. [Google Scholar]
- Garnacho-Castaño, M.V.; López-Lastra, S.; Maté-Muñoz, J.L. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 2015, 14, 128–136. [Google Scholar] [PubMed]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjökvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A practical approach to monitoring recovery: Development of a perceived recovery status scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Chen, H.; Yu, L.; Kuo, Y.-M.; Wu, F.-S.; Chuang, J.-I.; Liao, P.-C.; Jen, C.J. Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol. Learn. Mem. 2008, 90, 81–89. [Google Scholar] [CrossRef]
- Rivas-Estany, E.; Sixto-Fernández, S.; Barrera-Sarduy, J.; Hernández-García, S.; González-Guerra, R.; Stusser-Beltranena, R. Effects of long-term exercise training on left ventricular function and remodeling in patients with anterior wall myocardial infarction. Arch. Cardiol. Mex. 2013, 83, 167–173. [Google Scholar] [CrossRef]
- Feng, R.; Wang, L.; Li, Z.; Yang, R.; Liang, Y.; Sun, Y.; Yu, Q.; Ghartey-Kwansah, G.; Sun, Y.; Wu, Y.; et al. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci. 2019, 217, 128–140. [Google Scholar] [CrossRef]
- Slattery, K.; Bentley, D.; Coutts, A.J. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: Implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015, 45, 453–471. [Google Scholar] [CrossRef]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.C.; Loenneke, J.P.; Anderson, J.C. Concurrent training: A meta-analysis examining interference of aerobic and resistance exercises. J. Strength Cond Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef]
- Smith, M.M.; Sommer, A.J.; Starkoff, B.E.; Devor, S.T. Crossfit-based high-intensity power training improves maximal aerobic fitness and body composition. J. Strength Cond. Res. 2013, 27, 3159–3172. [Google Scholar] [CrossRef] [Green Version]
- Robbins, D.W.; Docherty, D. Effect of loading on enhancement of power performance over three consecutive trials. J. Strength Cond. Res. 2005, 19, 898–902. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1—biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Leveritt, M.; Abernethy, P.J. Acute effects of high-intensity endurance exercise on subsequent resistance activity. J. Strength Cond. Res. 1999, 13, 47–51. [Google Scholar]
- Brentano, M.A.; Martins Kruel, L.F. A review on strength exercise-induced muscle damage: Applications, adaptation mechanisms and limitations. J. Sports Med. Phys. Fitness 2011, 51, 1–10. [Google Scholar] [PubMed]
- Harrison, A.J.; Gaffney, S.D. Effects of muscle damage on stretch-shortening cycle function and muscle stiffness control. J. Strength Cond. Res. 2004, 18, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Flanagan, E.P. The role of elastic energy in activities with high force and power requirements: A brief review. J. Strength Cond. Res. 2008, 22, 1705–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Jamurtas, A.Z. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 2009, 490, 77–84. [Google Scholar] [CrossRef]
- Sakellariou, G.K.; Jackson, M.J.; Vasilaki, A. Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic. Res. 2014, 48, 12–29. [Google Scholar] [CrossRef]
- Bryer, S.C.; Goldfarb, A.H. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 270–280. [Google Scholar] [CrossRef]
- Silva, L.A.; Pinho, C.A.; Silveira, P.C.L.; Tuon, T.; De Souza, C.T.; Dal-Pizzol, F.; Pinho, R.A. Vitamin E supplementation decreases muscular and oxidative damage but not inflammatory response induced by eccentric contraction. J. Physiol. Sci. 2010, 60, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.L.; Sumners, D.P.; Dyer, A.; Fox, P.; Mileva, K.N. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med. Sci. Sports Exerc. 2011, 43, 1544–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazato, K.; Ochi, E.; Waga, T. Dietary apple polyphenols have preventive effects against lengthening contraction-induced muscle injuries. Mol. Nutr. Food Res. 2010, 54, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Ji, L.L.; Leeuwenburgh, C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: A brief review. Med. Sci. Sports Exerc. 1999, 31, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Dillard, C.J.; Litov, R.E.; Savin, W.M.; Dumelin, E.E.; Tappel, A.L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 45, 927–932. [Google Scholar] [CrossRef]
- Jessup, J.V.; Horne, C.; Yarandi, H.; Quindry, J. The Effects of Endurance Exercise and Vitamin E on Oxidative Stress in the Elderly. Biol. Res. Nur. 2003, 5, 47–55. [Google Scholar] [CrossRef]
- Sacheck, J.M.; Milbury, P.E.; Cannon, J.G.; Roubenoff, R.; Blumberg, J.B. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic. Biol. Med. 2003, 34, 1575–1588. [Google Scholar] [CrossRef]
- Tauler, P.; Aguiló, A.; Gimeno, I.; Fuentespina, E.; Tur, J.A.; Pons, A. Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch. 2003, 446, 658–664. [Google Scholar] [CrossRef]
- Di Giacomo, C.; Acquaviva, R.; Sorrenti, V.; Vanella, A.; Grasso, S.; Barcellona, M.L.; Galvano, F.; Vanella, L.; Renis, M. Oxidative and antioxidant status in plasma of runners: Effect of oral supplementation with natural antioxidants. J. Med. Food 2009, 12, 145–150. [Google Scholar] [CrossRef]
- Sumida, S.; Doi, T.; Sakurai, M.; Yoshioka, Y.; Okamura, K. Effect of a single bout of exercise and beta-carotene supplementation on the urinary excretion of 8-hydroxy-deoxyguanosine in humans. Free Radic. Res. 1997, 27, 607–618. [Google Scholar] [CrossRef]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Alway, S.E. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shireen, K.F.; Pace, R.D.; Mahboob, M.; Khan, A.T. Effects of dietary vitamin E, C and soybean oil supplementation on antioxidant enzyme activities in liver and muscles of rats. Food Chem. Toxicol. 2008, 46, 3290–3294. [Google Scholar] [CrossRef] [PubMed]
- Sands, W.A. Thinking sensibly about recovery. In Strength and Conditioning for Sports Performance; Routledge: New York, NY, USA, 2016; Chapter 18; pp. 451–483. [Google Scholar]
Variable | OCX (n = 9) | PLA (n = 9) |
---|---|---|
Age (years) | 38 ± 1 | 36 ± 2 |
Height (cm) | 171.3 ± 3.6 | 168.5 ± 2.8 |
Body Mass (kg) | 73.0 ± 4.5 | 69.1 ± 3.3 |
BMI (kg/m2) | 24.8 ± 1.0 | 24.4 ± 1.1 |
Body Fat (%) | 27.2 ± 2.4 | 26.7 ± 2.4 |
VO2max (mL/kg/min) | 46.0 ± 2.5 | 47.7 ± 2.9 |
OCX = Oceanix; PLA = Placebo; BMI = body mass index |
Warm-up | Block 1 | Block 2 |
---|---|---|
World’s Greatest Stretch 45 m | A1. Bulgarian Split Squat × 10e | A1. Goblet Squat × 10 |
Hamstring Scoops 45 m | A2. 45 m Sled Push | A2. 300 m Row |
Lunge w/Overhead Reach 45 m | A3. Unilateral BW Calf Raise × 20e | A3. KB Swing × 10 |
High Knees 45 m | ||
Butt Kicks 45 m | B1. Med Ball Slam × 10 | B1. DB Squat Thrusters × 10 |
Lateral Shuffle 45 m | B2. Inverted BW Row × 10 | B2. 35 cm Drop Jump × 10 |
Shoulder Bilateral “T”, “W”, “Y” × 10 | B3. 45 cm Step-up × 10e | B3. Reverse Lunge × 10e |
Sample | Groups | |||
---|---|---|---|---|
Control | Exercise | E + Oc1 | E + Oc2 | |
MDA (µmol/L) | 0.76 ± 0.02 a | 0.68 ± 0.01 b | 0.61 ± 0.03 b | 0.46 ± 0.02 c |
SOD (U/mL) | 70.88 ± 1.57 d | 82.28 ± 1.82 c | 97.68 ± 2.36 b | 113.46 ± 1.26 a |
CAT (U/mL) | 140.82 ± 2.80 c | 153.00 ± 2.85 b | 164.92 ± 2.12 a | 175.79 ± 3.91 a |
GSH-Px (U/mL) | 71.13 ± 1.97 d | 82.00 ± 2.61 c | 95.29 ± 1.52 b | 107.10 ± 1.77 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharp, M.; Sahin, K.; Stefan, M.; Orhan, C.; Gheith, R.; Reber, D.; Sahin, N.; Tuzcu, M.; Lowery, R.; Durkee, S.; et al. Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal. Nutrients 2020, 12, 1990. https://doi.org/10.3390/nu12071990
Sharp M, Sahin K, Stefan M, Orhan C, Gheith R, Reber D, Sahin N, Tuzcu M, Lowery R, Durkee S, et al. Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal. Nutrients. 2020; 12(7):1990. https://doi.org/10.3390/nu12071990
Chicago/Turabian StyleSharp, Matthew, Kazim Sahin, Matthew Stefan, Cemal Orhan, Raad Gheith, Dallen Reber, Nurhan Sahin, Mehmet Tuzcu, Ryan Lowery, Shane Durkee, and et al. 2020. "Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal" Nutrients 12, no. 7: 1990. https://doi.org/10.3390/nu12071990
APA StyleSharp, M., Sahin, K., Stefan, M., Orhan, C., Gheith, R., Reber, D., Sahin, N., Tuzcu, M., Lowery, R., Durkee, S., & Wilson, J. (2020). Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal. Nutrients, 12(7), 1990. https://doi.org/10.3390/nu12071990