Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa?
Abstract
:1. Introduction
2. Aims of the Review
3. Results
3.1. A Brief Synopsis of the Metabolic Adaptations in Prolonged Semi-Starvation/Starvation
3.2. Body Weight and Muscle Mass after Prolonged Starvation
The Carnegie and Minnesota Semi-Starvation Experiments
3.3. Skeletal Muscle Function and Histological Features in Humans on Hypocaloric Diets and after Re-Nutrition
3.3.1. Electrophysiological Testing of Muscle Function in Undernutrition in Healthy Subjects, Malnourished Patients and Obese Individuals
3.3.2. Histological, Histochemical and Biochemical Analyses of Muscle Structure in Human Undernutrition
3.4. Physical Fitness and General Well-Being in Healthy Humans during Semi-Starvation
3.5. Anorexia Nervosa (AN): Energy, Macronutrient and Micronutrient Intake
3.6. Body Composition and Muscle Mass in AN
3.7. Skeletal Muscle Function and Histological Features in AN
3.7.1. Electrophysiological Testing of Muscle Function in AN
3.7.2. Histological, Histochemical and Biochemical Analyses of Muscle Structure in AN Patients
3.7.3. Metabolic Changes Related to Muscle
3.8. Work Performance and Aerobic Work Capacity in AN
3.9. Physical Fitness and Physical Activity in AN
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fichter, M.; Pirke, K. Hypothalamic pituitary function in starving healthy subjects. In The Psychobiology of Anorexia Nervosa; Pirke, K., Ploog, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 124–135. [Google Scholar]
- Fichter, M.; Pirke, K.; Holsboer, F. Weight loss causes neuroendocrine disturbances: Experimental study in healthy starving subjects. Psychiatry Res. 1986, 17, 61–72. [Google Scholar] [CrossRef]
- Steinhausen, H.C.; Jensen, C.M. Time trends in lifetime incidence rates of first-time diagnosed anorexia nervosa and bulimia nervosa across 16 years in a danish nationwide psychiatric registry study. Int. J. Eat. Disord. 2015. [Google Scholar] [CrossRef]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 2019, 179, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Lasègue, E. De l’anorexie hystérique. Arch. Gen. Med. 1873, 1, 385–403. [Google Scholar] [CrossRef]
- Janet, P. Obsessions et la Psychasthenie; Felix Alcan: Paris, France, 1903; Volume I, pp. 33–39. [Google Scholar]
- Kron, L.; Katz, J.; Gregory, G.; Weiner, H. Hyperactivity in anorexia nervosa: A fundamental clinical feature. Compr. Psychiatry 1978, 19, 433–440. [Google Scholar] [CrossRef]
- Davis, C.; Kaptein, S. Anorexia nervosa with excessive exercise: A phenotype with close links to obsessive-compulsive disorder. Psychiatry Res. 2006, 142, 209–217. [Google Scholar] [CrossRef]
- El Ghoch, M.; Calugi, S.; Pellegrini, M.; Milanese, C.; Busacchi, M.; Battistini, N.C.; Bernabe, J.; Dalle Grave, R. Measured physical activity in anorexia nervosa: Features and treatment outcome. Int. J. Eat. Disord. 2013, 46, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Casper, R.C.; Voderholzer, U.; Naab, S.; Schlegl, S. Increased urge for movement, physical and mental restlessness, fundamental symptoms of restricting anorexia nervosa? Brain Behav. 2020, 10, e01556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paslakis, G.; Fauck, V.; Roder, K.; Rauh, E.; Rauh, M.; Erim, Y. Virtual reality jogging as a novel exposure paradigm for the acute urge to be physically active in patients with eating disorders: Implications for treatment. Int. J. Eat. Disord. 2017, 50, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Casper, R. Restless activation and drive for activity in anorexia nervosa may reflect a disorder of energy homeostasis. Int. J. Eat. Disord. 2016, 49, 750–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebebrand, J.; Milos, G.; Wabitsch, M.; Teufel, M.; Fuhrer, D.; Buhlmeier, J.; Libuda, L.; Ludwig, C.; Antel, J. Clinical Trials Required to Assess Potential Benefits and Side Effects of Treatment of Patients with Anorexia Nervosa with Recombinant Human Leptin. Front. Psychol. 2019, 10, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fery, F.; d’Attellis, N.P.; Balasse, E.O. Mechanisms of starvation diabetes: A study with double tracer and indirect calorimetry. Am. J. Physiol. 1990, 259, E770–E777. [Google Scholar] [CrossRef] [PubMed]
- Qvigstad, E.; Bjerve, K.S.; Grill, V. Effects of long-term fasting on insulin responses to fatty acids in man. Scand. J. Clin. Lab. Investig. 2002, 62, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Pozefsky, T.; Tancredi, R.G.; Moxley, R.T.; Dupre, J.; Tobin, J.D. Effects of brief starvation on muscle amino acid metabolism in nonobese man. J. Clin. Investig. 1976, 57, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Felig, P.; Pozefsky, T.; Marliss, E.; Cahill, G.F., Jr. Alanine: Key role in gluconeogenesis. Science 1970, 167, 1003–1004. [Google Scholar] [CrossRef]
- Barac-Nieto, M.; Spurr, G.B.; Lotero, H.; Maksud, M.G. Body composition in chronic undernutrition. Am. J. Clin. Nutr. 1978, 31, 23–40. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Olafson, R.P.; Kutner, M.H.; Nixon, D.W. A radiographic method of quantifying protein-calorie undernutrition. Am. J. Clin. Nutr. 1979, 32, 693–702. [Google Scholar] [CrossRef]
- Benedict, F.; Miles, W.R.; Roth, P.; Smith, H.M. Human Vitality and Efficiency under Prolonged Restricted Diet; Carnegie Institute: Washington, DC, USA, 1919. [Google Scholar]
- Keys, A.; Brozek, J.; Henschel, A.; Mickelsen, O.; Taylor, H. The Biology of Human Starvation; University of Minnesota Press: Minneapolis, MN, USA, 1950. [Google Scholar]
- Lennmarken, C.; Sandstedt, S.; Schenck, H.V.; Larsson, J. The effect of starvation on skeletal muscle function in man. Clin. Nutr. 1986, 5, 99–103. [Google Scholar] [CrossRef]
- Lopes, J.; Russell, D.M.; Whitwell, J.; Jeejeebhoy, K.N. Skeletal muscle function in malnutrition. Am. J. Clin. Nutr. 1982, 36, 602–610. [Google Scholar] [CrossRef]
- Russell, D.M.; Leiter, L.A.; Whitwell, J.; Marliss, E.B.; Jeejeebhoy, K.N. Skeletal muscle function during hypocaloric diets and fasting: A comparison with standard nutritional assessment parameters. Am. J. Clin. Nutr. 1983, 37, 133–138. [Google Scholar] [CrossRef]
- Newham, D.J.; Tomkins, A.M.; Clark, C.G. Contractile properties of the adductor pollicis in obese patients on a hypocaloric diet for two weeks. Am. J. Clin. Nutr. 1986, 44, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Dastur, D.D.S.; Manghani, D. Changes in muscle in human malnutrition with an emphasis on the fine structure in protein-calorie malnutrition. Prog. Neuropathol. 1979, 4, 299–318. [Google Scholar]
- Nassar, A.M.; Abd-El Hamid, J.; Sabour, M.S.; Awwaad, S.A.; Mahran, Z.Y. Ultrastructure of skeletal muscles in protein deficiency. J. Trop. Pediatr. Environ. Child Health 1974, 20, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.M.; Walker, P.M.; Leiter, L.A.; Sima, A.A.; Tanner, W.K.; Mickle, D.A.; Whitwell, J.; Marliss, E.B.; Jeejeebhoy, K.N. Metabolic and structural changes in skeletal muscle during hypocaloric dieting. Am. J. Clin. Nutr. 1984, 39, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Eckert, E.D.; Gottesman, I.; Swigart, S.E.; Casper, R.C. A 57-year follow-up investigation and review of the Minnesota Study on Human Starvation and its relevance to eating disorders. Arch. Psychol. 2018, 2, 1–19. [Google Scholar]
- Touyz, S.W.; Kopec-Schrader, E.M.; Beumont, P.J. Anorexia nervosa in males: A report of 12 cases. Aust. N. Z. J. Psychiatry 1993, 27, 512–517. [Google Scholar] [CrossRef]
- Essen, B.; Fohlin, L.; Thoren, C.; Saltin, B. Skeletal muscle fibre types and sizes in anorexia nervosa patients. Clin. Physiol. 1981, 1, 395–403. [Google Scholar] [CrossRef]
- Crisp, A.H. The possible significance of some behavioural correlates of weight and carbohydrate intake. J. Psychosom. Res. 1967, 11, 117–131. [Google Scholar] [CrossRef]
- Fernstrom, M.H.; Weltzin, T.E.; Neuberger, S.; Srinivasagam, N.; Kaye, W.H. Twenty-four-hour food intake in patients with anorexia nervosa and in healthy control subjects. Biol. Psychiatry 1994, 36, 696–702. [Google Scholar] [CrossRef]
- Russell, G.F. The nutritional disorder in anorexia nervosa. J. Psychosom. Res. 1967, 11, 141–149. [Google Scholar] [CrossRef]
- Moreiras-Varela, O.; Nunez, C.; Carbajal, A.; Morande, G. Nutritional status and food habits assessed by dietary intake and anthropometrical parameters in anorexia nervosa. Int. J. Vitam. Nutr. Res. 1990, 60, 267–274. [Google Scholar] [PubMed]
- Chiurazzi, C.; Cioffi, I.; De Caprio, C.; De Filippo, E.; Marra, M.; Sammarco, R.; Di Guglielmo, M.L.; Contaldo, F.; Pasanisi, F. Adequacy of nutrient intake in women with restrictive anorexia nervosa. Nutrition 2017, 38, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Hadigan, C.M.; Anderson, E.J.; Miller, K.K.; Hubbard, J.L.; Herzog, D.B.; Klibanski, A.; Grinspoon, S.K. Assessment of macronutrient and micronutrient intake in women with anorexia nervosa. Int. J. Eat. Disord. 2000, 28, 284–292. [Google Scholar] [CrossRef]
- Casper, R.; Kirschner, B.; Jacob, R.; Sandstead, H.; Davis, J. Zinc and copper status in anorexia nervosa. Psychopharmacol. Bull. 1978, 14, 53–55. [Google Scholar] [PubMed]
- Casper, R.; Kirschner, B.; Sandstead, H.; Jacob, R.; Davis, J. An evaluation of trace metals, vitamins and taste function in anorexia nervosa. Am. J. Clin. Nutr. 1980, 33, 1801–1808. [Google Scholar] [CrossRef]
- Hanachi, M.; Dicembre, M.; Rives-Lange, C.; Ropers, J.; Bemer, P.; Zazzo, J.F.; Poupon, J.; Dauvergne, A.; Melchior, J.C. Micronutrients Deficiencies in 374 Severely Malnourished Anorexia Nervosa Inpatients. Nutrients 2019, 11, 792. [Google Scholar] [CrossRef] [Green Version]
- Raatz, S.K.; Jahns, L.; Johnson, L.K.; Crosby, R.; Mitchell, J.E.; Crow, S.; Peterson, C.; Le Grange, D.; Wonderlich, S.A. Nutritional adequacy of dietary intake in women with anorexia nervosa. Nutrients 2015, 7, 3652–3665. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Coeffier, M.; Rimbert, A.; Charles, J.; Folope, V.; Petit, A.; Dechelotte, P.; Grigioni, S. Micronutrient Status in 153 Patients with Anorexia Nervosa. Nutrients 2017, 9, 225. [Google Scholar] [CrossRef]
- Mattar, L.; Godart, N.; Melchior, J.C.; Pichard, C. Anorexia nervosa and nutritional assessment: Contribution of body composition measurements. Nutr. Res. Rev. 2011, 24, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Polito, A.; Cuzzolaro, M.; Raguzzini, A.; Censi, L.; Ferro-Luzzi, A. Body composition changes in anorexia nervosa. Eur. J. Clin. Nutr. 1998, 52, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Biko, J.; Schlamp, D.; Trott, G.E.; Badura, F.; Warnke, A.; Reiners, C. Comparison of total and regional body composition in adolescent patients with anorexia nervosa and pair-matched controls. Eat. Weight Disord. 1998, 3, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Sauchelli, S.; Arcelus, J.; Sanchez, I.; Riesco, N.; Jimenez-Murcia, S.; Granero, R.; Gunnard, K.; Banos, R.; Botella, C.; de la Torre, R.; et al. Physical activity in anorexia nervosa: How relevant is it to therapy response? Eur. Psychiatry 2015, 30, 924–931. [Google Scholar] [CrossRef]
- Kerruish, K.P.; O’Connor, J.; Humphries, I.R.; Kohn, M.R.; Clarke, S.D.; Briody, J.N.; Thomson, E.J.; Wright, K.A.; Gaskin, K.J.; Baur, L.A. Body composition in adolescents with anorexia nervosa. Am. J. Clin. Nutr. 2002, 75, 31–37. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, D.M.; Spargo, E.; Wassif, W.S.; Newham, D.J.; Peters, T.J.; Lantos, P.L.; Russell, G.F. Structural and functional changes in skeletal muscle in anorexia nervosa. Acta Neuropathol. 1998, 95, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Melchiorri, G.; Rainoldi, A. Mechanical and myoelectric manifestations of fatigue in subjects with anorexia nervosa. J. Electromyogr. Kinesiol. 2008, 18, 291–297. [Google Scholar] [CrossRef]
- Lindboe, C.F.; Askevold, F.; Slettebo, M. Changes in skeletal muscles of young women with anorexia nervosa. An enzyme histochemical study. Acta Neuropathol. 1982, 56, 299–302. [Google Scholar] [CrossRef]
- Slettebo, M.; Lindboe, C.F.; Askevold, F. The neuromuscular system in patients with anorexia nervosa: Electrophysiological and histologic studies. Clin. Neuropathol. 1984, 3, 217–224. [Google Scholar]
- McLoughlin, D.M.; Wassif, W.S.; Morton, J.; Spargo, E.; Peters, T.J.; Russell, G.F. Metabolic abnormalities associated with skeletal myopathy in severe anorexia nervosa. Nutrition 2000, 16, 192–196. [Google Scholar] [CrossRef]
- Harber, V.J.; Petersen, S.R.; Chilibeck, P.D. Thyroid hormone concentrations and skeletal muscle metabolism during exercise in anorexic females. Can. J. Physiol. Pharmacol. 1997, 75, 1197–1202. [Google Scholar] [CrossRef]
- Lennmarken, C.S.S.; Croner, S.; Symreng, T.; Larsson, J. Muscle metabolic changes in severe malnutrition-effect of total parenteral nutrition. Clin. Nutr. 1984, 3, 41–45. [Google Scholar] [CrossRef]
- Morton, J.; McLoughlin, D.M.; Whiting, S.; Russell, G.F. Carnitine levels in patients with skeletal myopathy due to anorexia nervosa before and after refeeding. Int. J. Eat. Disord. 1999, 26, 341–344. [Google Scholar] [CrossRef]
- Davies, C.T.; von Dobeln, W.; Fohlin, L.; Freyschuss, U.; Thoren, C. Total body potassium fat free weight and maximal aerobic power in children with anorexia nervosa. Acta Paediatr. Scand. 1978, 67, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Lennon, D.E.J.; Hanson, P.; Nagle, F. Abnormal plasma carnitine derivatives reflecting an altered metabolic state in anorexic women at rest and following maximal effort treadmill exercise. Int. J. Eat. Disord. 1987, 6, 281–291. [Google Scholar] [CrossRef]
- Rigaud, D.; Moukaddem, M.; Cohen, B.; Malon, D.; Reveillard, V.; Mignon, M. Refeeding improves muscle performance without normalization of muscle mass and oxygen consumption in anorexia nervosa patients. Am. J. Clin. Nutr. 1997, 65, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Levine, J.A. Nonexercise activity thermogenesis—Liberating the life-force. J. Intern. Med. 2007, 262, 273–287. [Google Scholar] [CrossRef]
- Levine, J.A. Sick of sitting. Diabetologia 2015, 58, 1751–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotz, C.M.; Perez-Leighton, C.E.; Teske, J.A.; Billington, C.J. Spontaneous Physical Activity Defends against Obesity. Curr. Obes. Rep. 2017, 6, 362–370. [Google Scholar] [CrossRef]
- Kemmer, M.; Correll, C.U.; Hofmann, T.; Stengel, A.; Grosser, J.; Haas, V. Assessment of Physical Activity Patterns in Adolescent Patients with Anorexia Nervosa and Their Effect on Weight Gain. J. Clin. Med. 2020, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Casper, R. Not the Function of Eating, but Spontaneous Activity and Energy Expenditure, Reflected in “Restlessness” and a “Drive for Activity” Appear to Be Dysregulated in Anorexia Nervosa: Treatment Implications. Front. Psychol. 2018, 9, 2303. [Google Scholar] [CrossRef]
- Biederman, J.; Rivinus, T.; Kemper, K.; Hamilton, D.; MacFayden, J.; Harmatz, J. Depressive disorders in relatives of anorexia nervosa patients with and without a current episode of nonbipolar major depression. Am. J. Psychiatry 1985, 128, 1495–1496. [Google Scholar]
- Sjodin, A.; Hellstrom, F.; Sehlstedt, E.; Svensson, M.; Buren, J. Effects of a Ketogenic Diet on Muscle Fatigue in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2020, 12, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everaert, I.; Taes, Y.; De Heer, E.; Baelde, H.; Zutinic, A.; Yard, B.; Sauerhofer, S.; Vanhee, L.; Delanghe, J.; Aldini, G.; et al. Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am. J. Physiol. Renal. Physiol. 2012, 302, F1537–F1544. [Google Scholar] [CrossRef] [PubMed]
- Klump, K.L.; Miller, K.B.; Keel, P.K.; McGue, M.; Iacono, W.G. Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychol. Med. 2001, 31, 737–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experimental Starvation | Anorexia Nervosa | |
---|---|---|
Body weight loss | 12–25% | 20–40% |
Muscle mass loss | 20–41% | 20–30% |
Muscle morphology | fiber atrophy, ↓↓ type II | fiber atrophy, ↓↓ type II |
Muscle physiology | ↑ contractility 10 Hz | ↑ contractility 10 Hz |
Muscle innervation | intact | intact, unless BMI~12.5 |
Work capacity | ↓ 20–40% | ↓ 30–49% |
VO2 max | ↓ | ↓ |
Endurance | ↓ | ↓ |
Increased urge to move | absent | present |
Motor restlessness | rare, short-lived | continuous |
Daily activity level | reduced | maintained, unless BMI~12.5 |
Psychological changes | present | present |
Psychopathology | absent | present, multiform |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casper, R.C. Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa? Nutrients 2020, 12, 2060. https://doi.org/10.3390/nu12072060
Casper RC. Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa? Nutrients. 2020; 12(7):2060. https://doi.org/10.3390/nu12072060
Chicago/Turabian StyleCasper, Regina C. 2020. "Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa?" Nutrients 12, no. 7: 2060. https://doi.org/10.3390/nu12072060
APA StyleCasper, R. C. (2020). Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa? Nutrients, 12(7), 2060. https://doi.org/10.3390/nu12072060