Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors
Abstract
:1. Introduction
The Dopamine D4 Receptor
2. DRD4 and Drug Addiction
2.1. Polymorphism of DRD4 Gene and Drug Addiction
2.2. Preclinical Studies
Comparison Between DRD4 Antagonists and Agonists in Drug Addiction
3. DRD4 and Feeding Behavior
3.1. The Influence of the DRD4 Gene Polymorphism in Eating Disorders and Obesity
3.2. Preclinical Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lang, A.E.; Lozano, A.M. Parkinson’s disease. Second of two parts. N. Engl. J. Med. 1998, 339, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E.; Lozano, A.M. Parkinson’s disease. First of two parts. N. Engl. J. Med. 1998, 339, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Sanna, P.P.; Bloom, F.E. Neuroscience of addiction. Neuron 1998, 21, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Le Moal, M.; Simon, H. Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiol. Rev. 1991, 71, 155–234. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [Green Version]
- Maharajan, P.; Maharajan, V.; Ravagnan, G.; Paino, G. The weaver mutant mouse: A model to study the ontogeny of dopamine transmission systems and their role in drug addiction. Prog. Neurobiol. 2001, 64, 269–276. [Google Scholar] [CrossRef]
- Tarazi, F.I. Neuropharmacology of dopamine receptors: Implications in neuropsychiatric diseases. J. Sci. Res. Med. Sci. 2001, 3, 93–104. [Google Scholar]
- Vallone, D.; Picetti, R.; Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 2000, 24, 125–132. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [Green Version]
- Civelli, O.; Bunzow, J.R.; Grandy, D.K. Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 1993, 33, 281–307. [Google Scholar] [CrossRef]
- Ye, N.; Neumeyer, J.L.; Baldessarini, R.J.; Zhen, X.; Zhang, A. Update 1 of: Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2013, 113, PR123–PR178. [Google Scholar] [CrossRef] [PubMed]
- Meador-Woodruff, J.H.; Haroutunian, V.; Powchik, P.; Davidson, M.; Davis, K.L.; Watson, S.J. Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch. Gen. Psychiatry 1997, 54, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Sokoloff, P.; Schwartz, J.C. Novel dopamine receptors half a decade later. Trends Pharm. Sci. 1995, 16, 270–275. [Google Scholar] [CrossRef]
- Meador-Woodruff, J.H.; Mansour, A.; Grandy, D.K.; Damask, S.P.; Civelli, O.; Watson, S.J., Jr. Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci. Lett. 1992, 145, 209–212. [Google Scholar] [CrossRef] [Green Version]
- Rondou, P.; Haegeman, G.; Van Craenenbroeck, K. The dopamine D4 receptor: Biochemical and signalling properties. Cell. Mol. Life Sci. 2010, 67, 1971–1986. [Google Scholar] [CrossRef]
- Ding, Y.C.; Chi, H.C.; Grady, D.L.; Morishima, A.; Kidd, J.R.; Kidd, K.K.; Flodman, P.; Spence, M.A.; Schuck, S.; Swanson, J.M.; et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. USA 2002, 99, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Van Tol, H.H.; Wu, C.M.; Guan, H.C.; Ohara, K.; Bunzow, J.R.; Civelli, O.; Kennedy, J.; Seeman, P.; Niznik, H.B.; Jovanovic, V. Multiple dopamine D4 receptor variants in the human population. Nature 1992, 358, 149–152. [Google Scholar] [CrossRef]
- LaHoste, G.J.; Swanson, J.M.; Wigal, S.B.; Glabe, C.; Wigal, T.; King, N.; Kennedy, J.L. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol. Psychiatry 1996, 1, 121–124. [Google Scholar]
- Swanson, J.M.; Sunohara, G.A.; Kennedy, J.L.; Regino, R.; Fineberg, E.; Wigal, T.; Lerner, M.; Williams, L.; LaHoste, G.J.; Wigal, S. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): A family-based approach. Mol. Psychiatry 1998, 3, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, J.; Li, L.; Patterson, C.; Greenberg, B.D.; Murphy, D.L.; Hamer, D.H. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat. Genet. 1996, 12, 81–84. [Google Scholar] [CrossRef]
- Ebstein, R.P.; Novick, O.; Umansky, R.; Priel, B.; Osher, Y.; Blaine, D.; Bennett, E.R.; Nemanov, L.; Katz, M.; Belmaker, R.H. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat. Genet. 1996, 12, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P.; Guan, H.C.; Van Tol, H.H. Dopamine D4 receptors elevated in schizophrenia. Nature 1993, 365, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Tarazi, F.I.; Zhang, K.; Baldessarini, R.J. Dopamine D4 receptors: Beyond schizophrenia. J. Recept. Signal Transduct. Res. 2004, 24, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Di Ciano, P.; Grandy, D.K.; Le Foll, B. Dopamine D4 receptors in psychostimulant addiction. Adv. Pharmacol. 2014, 69, 301–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manki, H.; Kanba, S.; Muramatsu, T.; Higuchi, S.; Suzuki, E.; Matsushita, S.; Ono, Y.; Chiba, H.; Shintani, F.; Nakamura, M.; et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J. Affect. Disord. 1996, 40, 7–13. [Google Scholar] [CrossRef]
- Bachner-Melman, R.; Lerer, E.; Zohar, A.H.; Kremer, I.; Elizur, Y.; Nemanov, L.; Golan, M.; Blank, S.; Gritsenko, I.; Ebstein, R.P. Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am. J. Med Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2007, 144B, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.S.; Levitan, R.D.; Yilmaz, Z.; Davis, C.; Tharmalingam, S.; Kennedy, J.L. A DRD4/BDNF gene-gene interaction associated with maximum BMI in women with bulimia nervosa. Int. J. Eat. Disord. 2008, 41, 22–28. [Google Scholar] [CrossRef]
- Levitan, R.D.; Masellis, M.; Basile, V.S.; Lam, R.W.; Kaplan, A.S.; Davis, C.; Muglia, P.; Mackenzie, B.; Tharmalingam, S.; Kennedy, S.H.; et al. The dopamine-4 receptor gene associated with binge eating and weight gain in women with seasonal affective disorder: An evolutionary perspective. Biol. Psychiatry 2004, 56, 665–669. [Google Scholar] [CrossRef]
- Levitan, R.D.; Masellis, M.; Lam, R.W.; Muglia, P.; Basile, V.S.; Jain, U.; Kaplan, A.S.; Tharmalingam, S.; Kennedy, S.H.; Kennedy, J.L. Childhood inattention and dysphoria and adult obesity associated with the dopamine D4 receptor gene in overeating women with seasonal affective disorder. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2004, 29, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Poston, W.S., 2nd; Ericsson, M.; Linder, J.; Haddock, C.K.; Hanis, C.L.; Nilsson, T.; Astrom, M.; Foreyt, J.P. D4 dopamine receptor gene exon III polymorphism and obesity risk. Eat. Weight. Disord. EWD 1998, 3, 71–77. [Google Scholar] [CrossRef]
- Oak, J.N.; Oldenhof, J.; Van Tol, H.H. The dopamine D(4) receptor: One decade of research. Eur. J. Pharmacol. 2000, 405, 303–327. [Google Scholar] [CrossRef]
- Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; Jovanovic, V.; Van Tol, H.H. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem. 1995, 65, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Lanau, F.; Zenner, M.T.; Civelli, O.; Hartman, D.S. Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. J. Neurochem. 1997, 68, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Newman-Tancredi, A.; Audinot-Bouchez, V.; Gobert, A.; Millan, M.J. Noradrenaline and adrenaline are high affinity agonists at dopamine D4 receptors. Eur. J. Pharmacol. 1997, 319, 379–383. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hidaka, K.; Tada, S.; Tasaki, Y.; Yamaguchi, T. Full-length cDNA cloning and distribution of human dopamine D4 receptor. Brain Res. Mol. Brain Res. 1995, 29, 157–162. [Google Scholar] [CrossRef]
- Valerio, A.; Belloni, M.; Gorno, M.L.; Tinti, C.; Memo, M.; Spano, P. Dopamine D2, D3, and D4 receptor mRNA levels in rat brain and pituitary during aging. Neurobiol. Aging 1994, 15, 713–719. [Google Scholar] [CrossRef]
- Van Tol, H.H.; Bunzow, J.R.; Guan, H.C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991, 350, 610–614. [Google Scholar] [CrossRef]
- Lidow, M.S.; Wang, F.; Cao, Y.; Goldman-Rakic, P.S. Layer V neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex. Synapse 1998, 28, 10–20. [Google Scholar] [CrossRef]
- Meador-Woodruff, J.H.; Grandy, D.K.; Van Tol, H.H.; Damask, S.P.; Little, K.Y.; Civelli, O.; Watson, S.J., Jr. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 1994, 10, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Ariano, M.A.; Wang, J.; Noblett, K.L.; Larson, E.R.; Sibley, D.R. Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti-receptor antisera. Brain Res. 1997, 752, 26–34. [Google Scholar] [CrossRef]
- Defagot, M.C.; Antonelli, M.C. Autoradiographic localization of the putative D4 dopamine receptor in rat brain. Neurochem. Res. 1997, 22, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Gutierrez, A.; Martin, R.; Penafiel, A.; Rivera, A.; De La Calle, A. Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comp. Neurol. 1998, 402, 353–371. [Google Scholar] [CrossRef]
- Mrzljak, L.; Bergson, C.; Pappy, M.; Huff, R.; Levenson, R.; Goldman-Rakic, P.S. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 1996, 381, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Rivera, A.; Cuellar, B.; Giron, F.J.; Grandy, D.K.; De la Calle, A.; Moratalla, R. Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J. Neurochem. 2002, 80, 219–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, A.; Bronzetti, E.; Fedele, F.; Ferrante, F.; Zaccheo, D.; Amenta, F. Pharmacological characterization and autoradiographic localization of a putative dopamine D4 receptor in the heart. J. Auton. Pharmacol. 1998, 18, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Bondy, B.; De Jonge, S.; Pander, S.; Primbs, J.; Ackenheil, M. Identification of dopamine D4 receptor mRNA in circulating human lymphocytes using nested polymerase chain reaction. J. Neuroimmunol. 1996, 71, 139–144. [Google Scholar] [CrossRef]
- Sun, D.; Wilborn, T.W.; Schafer, J.A. Dopamine D4 receptor isoform mRNA and protein are expressed in the rat cortical collecting duct. Am. J. Physiol. 1998, 275, F742–F751. [Google Scholar] [CrossRef] [Green Version]
- Primus, R.J.; Thurkauf, A.; Xu, J.; Yevich, E.; McInerney, S.; Shaw, K.; Tallman, J.F.; Gallagher, D.W., II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94–1. Pharmacol. Exp. Ther. 1997, 282, 1020–1027. [Google Scholar]
- Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 1995, 14, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [Green Version]
- Lauzon, N.M.; Laviolette, S.R. Dopamine D4-receptor modulation of cortical neuronal network activity and emotional processing: Implications for neuropsychiatric disorders. Behav. Brain Res. 2010, 208, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Svingos, A.L.; Periasamy, S.; Pickel, V.M. Dopamine D4 receptors are strategically localized for primary involvement in the presynaptic effects of dopamine in the rat nucleus accumbens shell. Ann. N. Y. Acad. Sci. 1999, 877, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Tarazi, F.I.; Campbell, A.; Yeghiayan, S.K.; Baldessarini, R.J. Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: Comparison of D1-, D2-, and D4-like receptors. Neuroscience 1998, 83, 169–176. [Google Scholar] [CrossRef]
- Bonaventura, J.; Quiroz, C.; Cai, N.S.; Rubinstein, M.; Tanda, G.; Ferre, S. Key role of the dopamine D4 receptor in the modulation of corticostriatal glutamatergic neurotransmission. Sci. Adv. 2017, 3, e1601631. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, M.; Cepeda, C.; Hurst, R.S.; Flores-Hernandez, J.; Ariano, M.A.; Falzone, T.L.; Kozell, L.B.; Meshul, C.K.; Bunzow, J.R.; Low, M.J.; et al. Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 3756–3763. [Google Scholar] [CrossRef] [Green Version]
- Falzone, T.L.; Gelman, D.M.; Young, J.I.; Grandy, D.K.; Low, M.J.; Rubinstein, M. Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear. Eur. J. Neurosci. 2002, 15, 158–164. [Google Scholar] [CrossRef]
- Wise, R.A. Roles for nigrostriatal--not just mesocorticolimbic--dopamine in reward and addiction. Trends Neurosci. 2009, 32, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Di Chiara, G.; Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA 1988, 85, 5274–5278. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Baler, R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 2009, 56 (Suppl. 1), 3–8. [Google Scholar] [CrossRef] [Green Version]
- McClure, S.M.; Daw, N.D.; Montague, P.R. A computational substrate for incentive salience. Trends Neurosci. 2003, 26, 423–428. [Google Scholar] [CrossRef]
- Berridge, K.C.; Robinson, T.E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 1998, 28, 309–369. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Telang, F.; Baler, R. Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays 2010, 32, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D. Addiction circuitry in the human brain. Annu Rev. Pharmacol. Toxicol. 2012, 52, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Y.; Posner, M.I.; Rothbart, M.K.; Volkow, N.D. Circuitry of self-control and its role in reducing addiction. Trends Cogn. Sci. 2015, 19, 439–444. [Google Scholar] [CrossRef]
- Murray, E.A.; Rudebeck, P.H. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat. Rev. Neurosci. 2018, 19, 404–417. [Google Scholar] [CrossRef]
- Chau, B.K.H.; Jarvis, H.; Law, C.K.; Chong, T.T. Dopamine and reward: A view from the prefrontal cortex. Behav. Pharmacol. 2018, 29, 569–583. [Google Scholar] [CrossRef]
- Geisler, S.; Wise, R.A. Functional implications of glutamatergic projections to the ventral tegmental area. Rev. Neurosci. 2008, 19, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Volkow, N.D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Ceci, A.; Brambilla, A.; Duranti, P.; Grauert, M.; Grippa, N.; Borsini, F. Effect of antipsychotic drugs and selective dopaminergic antagonists on dopamine-induced facilitatory activity in prelimbic cortical pyramidal neurons. An In Vitro study. Neuroscience 1999, 93, 107–115. [Google Scholar] [CrossRef]
- Floresco, S.B.; Tse, M.T. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 2045–2057. [Google Scholar] [CrossRef] [Green Version]
- Lauzon, N.M.; Bishop, S.F.; Laviolette, S.R. Dopamine D1 versus D4 receptors differentially modulate the encoding of salient versus nonsalient emotional information in the medial prefrontal cortex. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 4836–4845. [Google Scholar] [CrossRef] [Green Version]
- Laviolette, S.R.; Lipski, W.J.; Grace, A.A. A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 6066–6075. [Google Scholar] [CrossRef] [Green Version]
- Noain, D.; Avale, M.E.; Wedemeyer, C.; Calvo, D.; Peper, M.; Rubinstein, M. Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice. Eur. J. Neurosci. 2006, 24, 2429–2438. [Google Scholar] [CrossRef]
- Ptacek, R.; Kuzelova, H.; Stefano, G.B. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Med. Sci. Monit. 2011, 17, RA215–RA220. [Google Scholar] [CrossRef] [Green Version]
- Mallard, T.T.; Doorley, J.; Esposito-Smythers, C.L.; McGeary, J.E. Dopamine D4 receptor VNTR polymorphism associated with greater risk for substance abuse among adolescents with disruptive behavior disorders: Preliminary results. Am. J. Addict. 2016, 25, 56–61. [Google Scholar] [CrossRef] [Green Version]
- McGeary, J. The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: A review. Pharmacol. Biochem. Behav. 2009, 93, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Patriquin, M.A.; Bauer, I.E.; Soares, J.C.; Graham, D.P.; Nielsen, D.A. Addiction pharmacogenetics: A systematic review of the genetic variation of the dopaminergic system. Psychiatr. Genet. 2015, 25, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, K.E.; McGeary, J.; Smolen, A.; Bryan, A.; Swift, R.M. The DRD4 VNTR polymorphism moderates craving after alcohol consumption. Health Psychol. 2002, 21, 139–146. [Google Scholar] [CrossRef]
- Hutchison, K.E.; Ray, L.; Sandman, E.; Rutter, M.C.; Peters, A.; Davidson, D.; Swift, R. The effect of olanzapine on craving and alcohol consumption. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2006, 31, 1310–1317. [Google Scholar] [CrossRef]
- Hutchison, K.E.; Wooden, A.; Swift, R.M.; Smolen, A.; McGeary, J.; Adler, L.; Paris, L. Olanzapine reduces craving for alcohol: A DRD4 VNTR polymorphism by pharmacotherapy interaction. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2003, 28, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Olsen, R.W. Alcohol use disorders and current pharmacological therapies: The role of GABA(A) receptors. Acta Pharmacol. Sin. 2014, 35, 981–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, R., Jr.; Treloar Padovano, H.; Gray, J.C.; Wemm, S.E.; Blanchard, A. Real-time assessment of alcohol craving and naltrexone treatment responsiveness in a randomized clinical trial. Addict. Behav. 2018, 83, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Tidey, J.W.; Monti, P.M.; Rohsenow, D.J.; Gwaltney, C.J.; Miranda, R., Jr.; McGeary, J.E.; MacKillop, J.; Swift, R.M.; Abrams, D.B.; Shiffman, S.; et al. Moderators of naltrexone’s effects on drinking, urge, and alcohol effects in non-treatment-seeking heavy drinkers in the natural environment. Alcohol. Clin. Exp. Res. 2008, 32, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filbey, F.M.; Ray, L.; Smolen, A.; Claus, E.D.; Audette, A.; Hutchison, K.E. Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcohol. Clin. Exp. Res. 2008, 32, 1113–1123. [Google Scholar] [CrossRef] [Green Version]
- Laucht, M.; Becker, K.; Blomeyer, D.; Schmidt, M.H. Novelty seeking involved in mediating the association between the dopamine D4 receptor gene exon III polymorphism and heavy drinking in male adolescents: Results from a high-risk community sample. Biol. Psychiatry 2007, 61, 87–92. [Google Scholar] [CrossRef]
- Ray, L.A.; Bryan, A.; Mackillop, J.; McGeary, J.; Hesterberg, K.; Hutchison, K.E. The dopamine D Receptor (DRD4) gene exon III polymorphism, problematic alcohol use and novelty seeking: Direct and mediated genetic effects. Addict. Biol. 2009, 14, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Laucht, M.; Becker, K.; El-Faddagh, M.; Hohm, E.; Schmidt, M.H. Association of the DRD4 exon III polymorphism with smoking in fifteen-year-olds: A mediating role for novelty seeking? J. Am. Acad. Child Adolesc. Psychiatry 2005, 44, 477–484. [Google Scholar] [CrossRef]
- Mackillop, J.; Menges, D.P.; McGeary, J.E.; Lisman, S.A. Effects of craving and DRD4 VNTR genotype on the relative value of alcohol: An initial human laboratory study. Behav. Brain Funct. 2007, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Van den Wildenberg, E.; Janssen, R.G.; Hutchison, K.E.; Van Breukelen, G.J.; Wiers, R.W. Polymorphisms of the dopamine D4 receptor gene (DRD4 VNTR) and cannabinoid CB1 receptor gene (CNR1) are not strongly related to cue-reactivity after alcohol exposure. Addict. Biol. 2007, 12, 210–220. [Google Scholar] [CrossRef]
- Shields, P.G.; Lerman, C.; Audrain, J.; Bowman, E.D.; Main, D.; Boyd, N.R.; Caporaso, N.E. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol. Biomark. Prev. 1998, 7, 453–458. [Google Scholar]
- McClernon, F.J.; Hutchison, K.E.; Rose, J.E.; Kozink, R.V. DRD4 VNTR polymorphism is associated with transient fMRI-BOLD responses to smoking cues. Psychopharmacology 2007, 194, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, K.E.; LaChance, H.; Niaura, R.; Bryan, A.; Smolen, A. The DRD4 VNTR polymorphism influences reactivity to smoking cues. J. Abnorm. Psychol. 2002, 111, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Brody, A.L.; Mandelkern, M.A.; Olmstead, R.E.; Scheibal, D.; Hahn, E.; Shiraga, S.; Zamora-Paja, E.; Farahi, J.; Saxena, S.; London, E.D.; et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch. Gen. Psychiatry 2006, 63, 808–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.P.; Munafo, M.R.; Murphy, M.F.; Proctor, M.; Walton, R.T.; Johnstone, E.C. Genetic variation in the dopamine D4 receptor (DRD4) gene and smoking cessation: Follow-up of a randomised clinical trial of transdermal nicotine patch. Pharm. J. 2008, 8, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Ton, T.G.; Rossing, M.A.; Bowen, D.J.; Srinouanprachan, S.; Wicklund, K.; Farin, F.M. Genetic polymorphisms in dopamine-related genes and smoking cessation in women: A prospective cohort study. Behav. Brain Funct. 2007, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Munafo, M.R.; Johnstone, E.C. Smoking status moderates the association of the dopamine D4 receptor (DRD4) gene VNTR polymorphism with selective processing of smoking-related cues. Addict. Biol. 2008, 13, 435–439. [Google Scholar] [CrossRef]
- Shao, C.; Li, Y.; Jiang, K.; Zhang, D.; Xu, Y.; Lin, L.; Wang, Q.; Zhao, M.; Jin, L. Dopamine D4 receptor polymorphism modulates cue-elicited heroin craving in Chinese. Psychopharmacology 2006, 186, 185–190. [Google Scholar] [CrossRef]
- Kotler, M.; Cohen, H.; Segman, R.; Gritsenko, I.; Nemanov, L.; Lerer, B.; Kramer, I.; Zer-Zion, M.; Kletz, I.; Ebstein, R.P. Excess dopamine D4 receptor (D4DR) exon III seven repeat allele in opioid-dependent subjects. Mol. Psychiatry 1997, 2, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, F.; Shang, Q.; Song, X.; Miao, X.; Wang, Z. Association between polymorphisms of DRD2 and DRD4 and opioid dependence: Evidence from the current studies. Am. J. Med Genet. Part. B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2011, 156B, 661–670. [Google Scholar] [CrossRef]
- Chen, C.K.; Hu, X.; Lin, S.K.; Sham, P.C.; Loh el, W.; Li, T.; Murray, R.M.; Ball, D.M. Association analysis of dopamine D2-like receptor genes and methamphetamine abuse. Psychiatr. Genet. 2004, 14, 223–226. [Google Scholar] [CrossRef]
- Tsai, S.J.; Cheng, C.Y.; Shu, L.R.; Yang, C.Y.; Pan, C.W.; Liou, Y.J.; Hong, C.J. No association for D2 and D4 dopamine receptor polymorphisms and methamphetamine abuse in Chinese males. Psychiatr. Genet. 2002, 12, 29–33. [Google Scholar] [CrossRef]
- Comings, D.E.; Blum, K. Reward deficiency syndrome: Genetic aspects of behavioral disorders. Prog. Brain Res. 2000, 126, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Phillips, T.J.; Bunzow, J.R.; Falzone, T.L.; Dziewczapolski, G.; Zhang, G.; Fang, Y.; Larson, J.L.; McDougall, J.A.; Chester, J.A.; et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 1997, 90, 991–1001. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.A.; Bozarth, M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987, 94, 469–492. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.L.; Chausmer, A.L.; Elmer, G.I.; Rubinstein, M.; Low, M.J.; Grandy, D.K. Cocaine-induced locomotor activity and cocaine discrimination in dopamine D4 receptor mutant mice. Psychopharmacology 2003, 170, 108–114. [Google Scholar] [CrossRef]
- Keck, T.M.; Suchland, K.L.; Jimenez, C.C.; Grandy, D.K. Dopamine D4 receptor deficiency in mice alters behavioral responses to anxiogenic stimuli and the psychostimulant methylphenidate. Pharmacol. Biochem. Behav. 2013, 103, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Kruzich, P.J.; Suchland, K.L.; Grandy, D.K. Dopamine D4 receptor-deficient mice, congenic on the C57BL/6J background, are hypersensitive to amphetamine. Synapse 2004, 53, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.J.; Grandy, D.K.; Volkow, N.D. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors. J. Psychopharmacol. 2010, 24, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Prus, A.J.; James, J.R.; Rosecrans, J.A. Conditioned Place Preference. In Methods of Behavior Analysis in Neuroscience, 2nd ed.; Buccafusco, J.J., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA.
- Ananth, M.; Hetelekides, E.M.; Hamilton, J.; Thanos, P.K. Dopamine D4 receptor gene expression plays important role in extinction and reinstatement of cocaine-seeking behavior in mice. Behav. Brain Res. 2019, 365, 1–6. [Google Scholar] [CrossRef]
- Belin, D.; Deroche-Gamonet, V. Responses to novelty and vulnerability to cocaine addiction: Contribution of a multi-symptomatic animal model. Cold Spring Harb. Perspect. Med. 2012, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, M.M.; Mendelsohn, D.; Stamp, J.A. The HR/LR model: Further evidence as an animal model of sensation seeking. Neurosci. Biobehav. Rev. 2009, 33, 1145–1154. [Google Scholar] [CrossRef]
- Piazza, P.V.; Deminiere, J.M.; Le Moal, M.; Simon, H. Factors that predict individual vulnerability to amphetamine self-administration. Science 1989, 245, 1511–1513. [Google Scholar] [CrossRef]
- Dulawa, S.C.; Grandy, D.K.; Low, M.J.; Paulus, M.P.; Geyer, M.A. Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 9550–9556. [Google Scholar] [CrossRef]
- Powell, S.B.; Paulus, M.P.; Hartman, D.S.; Godel, T.; Geyer, M.A. RO-10–5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology 2003, 44, 473–481. [Google Scholar] [CrossRef]
- Helms, C.M.; Gubner, N.R.; Wilhelm, C.J.; Mitchell, S.H.; Grandy, D.K. D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking. Pharmacol. Biochem. Behav. 2008, 90, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Thanos, P.K.; Roushdy, K.; Sarwar, Z.; Rice, O.; Ashby, C.R., Jr.; Grandy, D.K. The effect of dopamine D4 receptor density on novelty seeking, activity, social interaction, and alcohol binge drinking in adult mice. Synapse 2015, 69, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Roozen, H.G.; Wetering, B.J.; Franken, I.H. Does alcohol craving mediate the impulsivity-aggression relationship in recently detoxified alcohol-dependent patients? Am. J. Drug Alcohol Abus. 2013, 39, 57–60. [Google Scholar] [CrossRef]
- Gan, L.; Falzone, T.L.; Zhang, K.; Rubinstein, M.; Baldessarini, R.J.; Tarazi, F.I. Enhanced expression of dopamine D(1) and glutamate NMDA receptors in dopamine D(4) receptor knockout mice. J. Mol. Neurosci. MN 2004, 22, 167–178. [Google Scholar] [CrossRef]
- Kulagowski, J.J.; Broughton, H.B.; Curtis, N.R.; Mawer, I.M.; Ridgill, M.P.; Baker, R.; Emms, F.; Freedman, S.B.; Marwood, R.; Patel, S.; et al. 3-((4-(4-Chlorophenyl)piperazin-1-yl)-methyl)-1H-pyrrolo-2,3-b-pyridine: An antagonist with high affinity and selectivity for the human dopamine D4 receptor. J. Med. Chem. 1996, 39, 1941–1942. [Google Scholar] [CrossRef]
- Patel, S.; Freedman, S.; Chapman, K.L.; Emms, F.; Fletcher, A.E.; Knowles, M.; Marwood, R.; McAllister, G.; Myers, J.; Curtis, N.; et al. Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J. Pharmacol. Exp. Ther. 1997, 283, 636–647. [Google Scholar] [PubMed]
- Caine, S.B.; Negus, S.S.; Mello, N.K.; Patel, S.; Bristow, L.; Kulagowski, J.; Vallone, D.; Saiardi, A.; Borrelli, E. Role of dopamine D2-like receptors in cocaine self-administration: Studies with D2 receptor mutant mice and novel D2 receptor antagonists. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 2977–2988. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.M.; Terry, P. The dopamine D4 receptor antagonist L-745,870: Effects in rats discriminating cocaine from saline. Eur. J. Pharmacol. 1998, 345, 129–132. [Google Scholar] [CrossRef]
- Yan, Y.; Mizuno, T.; Nitta, A.; Yamada, K.; Nabeshima, T. Nefiracetam attenuates methamphetamine-induced discriminative stimulus effects in rats. Ann. N. Y. Acad. Sci. 2004, 1025, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Nitta, A.; Mizuno, T.; Nakajima, A.; Yamada, K.; Nabeshima, T. Discriminative-stimulus effects of methamphetamine and morphine in rats are attenuated by cAMP-related compounds. Behav. Brain Res. 2006, 173, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Mamiya, T.; Matsumura, T.; Ukai, M. Effects of L-745,870, a dopamine D4 receptor antagonist, on naloxone-induced morphine dependence in mice. Ann. N. Y. Acad. Sci. 2004, 1025, 424–429. [Google Scholar] [CrossRef]
- Kim, A.; Di Ciano, P.; Pushparaj, A.; Leca, J.; Le Foll, B. The effects of dopamine D4 receptor ligands on operant alcohol self-administration and cue- and stress-induced reinstatement in rats. Eur. J. Pharmacol. 2020, 867, 172838. [Google Scholar] [CrossRef]
- Yan, Y.; Pushparaj, A.; Le Strat, Y.; Gamaleddin, I.; Barnes, C.; Justinova, Z.; Goldberg, S.R.; Le Foll, B. Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2012, 37, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Forget, B.; Pushparaj, A.; Le Foll, B. Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biol. Psychiatry 2010, 68, 265–271. [Google Scholar] [CrossRef]
- Naqvi, N.H.; Rudrauf, D.; Damasio, H.; Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007, 315, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Patel, S.; Marwood, R.; Emms, F.; Marston, D.; Leeson, P.D.; Curtis, N.R.; Kulagowski, J.J.; Freedman, S.B. Identification and pharmacological characterization of [125I]L-750,667, a novel radioligand for the dopamine D4 receptor. Mol. Pharmacol. 1996, 50, 1658–1664. [Google Scholar]
- Anderson, S.M.; Schmidt, H.D.; Pierce, R.C. Administration of the D2 dopamine receptor antagonist sulpiride into the shell, but not the core, of the nucleus accumbens attenuates cocaine priming-induced reinstatement of drug seeking. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2006, 31, 1452–1461. [Google Scholar] [CrossRef] [Green Version]
- Feldpausch, D.L.; Needham, L.M.; Stone, M.P.; Althaus, J.S.; Yamamoto, B.K.; Svensson, K.A.; Merchant, K.M. The role of dopamine D4 receptor in the induction of behavioral sensitization to amphetamine and accompanying biochemical and molecular adaptations. J. Pharmacol. Exp. Ther. 1998, 286, 497–508. [Google Scholar] [PubMed]
- Glase, S.A.; Akunne, H.C.; Georgic, L.M.; Heffner, T.G.; MacKenzie, R.G.; Manley, P.J.; Pugsley, T.A.; Wise, L.D. Substituted [(4-phenylpiperazinyl)-methyl]benzamides: Selective dopamine D4 agonists. J. Med. Chem. 1997, 40, 1771–1772. [Google Scholar] [CrossRef] [PubMed]
- Moreland, R.B.; Patel, M.; Hsieh, G.C.; Wetter, J.M.; Marsh, K.; Brioni, J.D. A-412997 is a selective dopamine D4 receptor agonist in rats. Pharmacol. Biochem. Behav. 2005, 82, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Rivera, A.; Gago, B.; Suarez-Boomgaard, D.; Yoshitake, T.; Roales-Bujan, R.; Valderrama-Carvajal, A.; Bilbao, A.; Medina-Luque, J.; Diaz-Cabiale, Z.; Craenenbroeck, K.V.; et al. Dopamine D4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: Relevance for drug addiction. Addict. Biol. 2017, 22, 1232–1245. [Google Scholar] [CrossRef] [PubMed]
- Fuxe, K.; Marcellino, D.; Rivera, A.; Diaz-Cabiale, Z.; Filip, M.; Gago, B.; Roberts, D.C.; Langel, U.; Genedani, S.; Ferraro, L.; et al. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res. Rev. 2008, 58, 415–452. [Google Scholar] [CrossRef]
- Rivera, A.; Trias, S.; Penafiel, A.; Angel Narvaez, J.; Diaz-Cabiale, Z.; Moratalla, R.; De la Calle, A. Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Res. 2003, 989, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Gago, B.; Fuxe, K.; Brene, S.; Diaz-Cabiale, Z.; Reina-Sanchez, M.D.; Suarez-Boomgaard, D.; Roales-Bujan, R.; Valderrama-Carvajal, A.; De la Calle, A.; Rivera, A. Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen. J. Neurosci. Res. 2013, 91, 1533–1540. [Google Scholar] [CrossRef]
- Gago, B.; Suarez-Boomgaard, D.; Fuxe, K.; Brene, S.; Reina-Sanchez, M.D.; Rodriguez-Perez, L.M.; Agnati, L.F.; De la Calle, A.; Rivera, A. Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. Brain Res. 2011, 1407, 47–61. [Google Scholar] [CrossRef]
- Negrete-Diaz, J.V.; Shumilov, K.; Real, M.A.; Medina-Luque, J.; Valderrama-Carvajal, A.; Flores, G.; Rodriguez-Moreno, A.; Rivera, A. Pharmacological activation of dopamine D4 receptor modulates morphine-induced changes in the expression of GAD65/67 and GABAB receptors in the basal ganglia. Neuropharmacology 2019, 152, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Boomgaard, D.; Gago, B.; Valderrama-Carvajal, A.; Roales-Bujan, R.; Van Craenenbroeck, K.; Duchou, J.; Borroto-Escuela, D.O.; Medina-Luque, J.; De la Calle, A.; Fuxe, K.; et al. Dopamine D(4) receptor counteracts morphine-induced changes in micro opioid receptor signaling in the striosomes of the rat caudate putamen. Int. J. Mol. Sci. 2014, 15, 1481–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koffarnus, M.N.; Collins, G.T.; Rice, K.C.; Chen, J.; Woods, J.H.; Winger, G. Self-administration of agonists selective for dopamine D2, D3, and D4 receptors by rhesus monkeys. Behav. Pharmacol. 2012, 23, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolley, M.L.; Waters, K.A.; Reavill, C.; Bull, S.; Lacroix, L.P.; Martyn, A.J.; Hutcheson, D.M.; Valerio, E.; Bate, S.; Jones, D.N.; et al. Selective dopamine D4 receptor agonist (A-412997) improves cognitive performance and stimulates motor activity without influencing reward-related behaviour in rat. Behav. Pharmacol. 2008, 19, 765–776. [Google Scholar] [CrossRef]
- Sobik, L.; Hutchison, K.; Craighead, L. Cue-elicited craving for food: A fresh approach to the study of binge eating. Appetite 2005, 44, 253–261. [Google Scholar] [CrossRef]
- Avena, N.M.; Bocarsly, M.E.; Hoebel, B.G.; Gold, M.S. Overlaps in the nosology of substance abuse and overeating: The translational implications of “food addiction”. Curr. Drug Abus. Rev. 2011, 4, 133–139. [Google Scholar] [CrossRef]
- D’Addario, C.; Micioni Di Bonaventura, M.V.; Pucci, M.; Romano, A.; Gaetani, S.; Ciccocioppo, R.; Cifani, C.; Maccarrone, M. Endocannabinoid signaling and food addiction. Neurosci. Biobehav. Rev. 2014, 47, 203–224. [Google Scholar] [CrossRef]
- Kenny, P.J.; Voren, G.; Johnson, P.M. Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr. Opin. Neurobiol. 2013, 23, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Swanson, J.M. Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Mol. Psychiatry 2004, 9, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef]
- Hernandez, L.; Hoebel, B.G. Feeding can enhance dopamine turnover in the prefrontal cortex. Brain Res. Bull. 1990, 25, 975–979. [Google Scholar] [CrossRef]
- Gabbott, P.L.; Warner, T.A.; Jays, P.R.; Salway, P.; Busby, S.J. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol. 2005, 492, 145–177. [Google Scholar] [CrossRef] [PubMed]
- Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004, 51, 32–58. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Kiriike, N.; Okuno, M.; Fujisaki, Y.; Kurioka, M.; Iwasaki, S.; Yamagami, S. Prefrontal and striatal dopamine metabolism during enhanced rebound hyperphagia induced by space restriction--a rat model of binge eating. Biol. Psychiatry 1998, 44, 1329–1336. [Google Scholar] [CrossRef]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Gluck, M.E.; Viswanath, P.; Stinson, E.J. Obesity, appetite, and the prefrontal cortex. Curr. Obes. Rep. 2017, 6, 380–388. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, M.V.; Martinelli, I.; Moruzzi, M.; Micioni Di Bonaventura, E.; Giusepponi, M.E.; Polidori, C.; Lupidi, G.; Tayebati, S.K.; Amenta, F.; Cifani, C.; et al. Brain alterations in high fat diet induced obesity: Effects of tart cherry seeds and juice. Nutrients 2020, 12, 0623. [Google Scholar] [CrossRef] [Green Version]
- Tomassoni, D.; Martinelli, I.; Moruzzi, M.; Micioni Di Bonaventura, M.V.; Cifani, C.; Amenta, F.; Tayebati, S.K. Obesity and age-related changes in the brain of the Zucker Lepr (fa/fa) rats. Nutrients 2020, 12, 1356. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Thanos, P.K.; Logan, J.; Alexoff, D.; Ding, Y.S.; Wong, C.; Ma, Y.; et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. NeuroImage 2008, 42, 1537–1543. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, I.E.; Rolls, E.T.; Kringelbach, M.L.; McGlone, F.; Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 2003, 18, 2059–2068. [Google Scholar] [CrossRef] [Green Version]
- Felsted, J.A.; Ren, X.; Chouinard-Decorte, F.; Small, D.M. Genetically determined differences in brain response to a primary food reward. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 2428–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.J.; Volkow, N.D.; Telang, F.; Jayne, M.; Ma, J.; Rao, M.; Zhu, W.; Wong, C.T.; Pappas, N.R.; Geliebter, A.; et al. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage 2004, 21, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Cifani, C.; Koya, E.; Navarre, B.M.; Calu, D.J.; Baumann, M.H.; Marchant, N.J.; Liu, Q.R.; Khuc, T.; Pickel, J.; Lupica, C.R.; et al. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: A study using c-fos-GFP transgenic female rats. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 8480–8490. [Google Scholar] [CrossRef]
- Nair, S.G.; Navarre, B.M.; Cifani, C.; Pickens, C.L.; Bossert, J.M.; Shaham, Y. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2011, 36, 497–510. [Google Scholar] [CrossRef]
- Bedse, G.; Romano, A.; Tempesta, B.; Lavecchia, M.A.; Pace, L.; Bellomo, A.; Duranti, A.; Micioni Di Bonaventura, M.V.; Cifani, C.; Cassano, T.; et al. Inhibition of anandamide hydrolysis enhances noradrenergic and GABAergic transmission in the prefrontal cortex and basolateral amygdala of rats subjected to acute swim stress. J. Neurosci. Res. 2015, 93, 777–787. [Google Scholar] [CrossRef]
- Radley, J.J.; Arias, C.M.; Sawchenko, P.E. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 12967–12976. [Google Scholar] [CrossRef]
- Jankord, R.; Herman, J.P. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 2008, 1148, 64–73. [Google Scholar] [CrossRef]
- Armbruster, D.; Mueller, A.; Moser, D.A.; Lesch, K.P.; Brocke, B.; Kirschbaum, C. Interaction effect of D4 dopamine receptor gene and serotonin transporter promoter polymorphism on the cortisol stress response. Behavioral Neurosci. 2009, 123, 1288–1295. [Google Scholar] [CrossRef]
- Cifani, C.; Di Bonaventura, M.V.M.; Ciccocioppo, R.; Massi, M. Binge eating in female rats induced by yo-yo dieting and stress. In Animal Models of Eating Disorders; Springer, Humana Press: Totowa, NJ, USA, 2013; pp. 27–49. [Google Scholar]
- Cifani, C.; Micioni Di, B.M.; Vitale, G.; Ruggieri, V.; Ciccocioppo, R.; Massi, M. Effect of salidroside, active principle of Rhodiola rosea extract, on binge eating. Physiol. Behav. 2010, 101, 555–562. [Google Scholar] [CrossRef]
- Cifani, C.; Polidori, C.; Melotto, S.; Ciccocioppo, R.; Massi, M. A preclinical model of binge eating elicited by yo-yo dieting and stressful exposure to food: Effect of sibutramine, fluoxetine, topiramate, and midazolam. Psychopharmacology 2009, 204, 113–125. [Google Scholar] [CrossRef]
- Coutinho, W.F.; Moreira, R.O.; Spagnol, C.; Appolinario, J.C. Does binge eating disorder alter cortisol secretion in obese women? Eat. Behav. 2007, 8, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Gluck, M.E.; Geliebter, A.; Lorence, M. Cortisol stress response is positively correlated with central obesity in obese women with binge eating disorder (BED) before and after cognitive-behavioral treatment. Ann. N. Y. Acad. Sci. 2004, 1032, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Micioni Di Bonaventura, M.V.; Vitale, G.; Massi, M.; Cifani, C. Effect of Hypericum perforatum Extract in an Experimental Model of Binge Eating in Female Rats. J. Obes. 2012, 2012, 956137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epel, E.; Lapidus, R.; McEwen, B.; Brownell, K. Stress may add bite to appetite in women: A laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 2001, 26, 37–49. [Google Scholar] [CrossRef]
- Cottone, P.; Sabino, V.; Roberto, M.; Bajo, M.; Pockros, L.; Frihauf, J.B.; Fekete, E.M.; Steardo, L.; Rice, K.C.; Grigoriadis, D.E.; et al. CRF system recruitment mediates dark side of compulsive eating. Proc. Natl. Acad. Sci. USA 2009, 106, 20016–20020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, D.H.; Kennedy, A.P.; Furnari, M.; Heilig, M.; Shaham, Y.; Phillips, K.A.; Preston, K.L. Effect of the CRF1-receptor antagonist pexacerfont on stress-induced eating and food craving. Psychopharmacology 2016, 233, 3921–3932. [Google Scholar] [CrossRef] [Green Version]
- Iemolo, A.; Blasio, A.; St Cyr, S.A.; Jiang, F.; Rice, K.C.; Sabino, V.; Cottone, P. CRF-CRF1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2013, 38, 2456–2466. [Google Scholar] [CrossRef] [Green Version]
- Micioni Di Bonaventura, M.V.; Ciccocioppo, R.; Romano, A.; Bossert, J.M.; Rice, K.C.; Ubaldi, M.; St Laurent, R.; Gaetani, S.; Massi, M.; Shaham, Y.; et al. Role of bed nucleus of the stria terminalis corticotrophin-releasing factor receptors in frustration stress-induced binge-like palatable food consumption in female rats with a history of food restriction. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 11316–11324. [Google Scholar] [CrossRef] [Green Version]
- Micioni Di Bonaventura, M.V.; Ubaldi, M.; Giusepponi, M.E.; Rice, K.C.; Massi, M.; Ciccocioppo, R.; Cifani, C. Hypothalamic CRF1 receptor mechanisms are not sufficient to account for binge-like palatable food consumption in female rats. Int. J. Eat. Disord. 2017, 50, 1194–1204. [Google Scholar] [CrossRef]
- Parylak, S.L.; Cottone, P.; Sabino, V.; Rice, K.C.; Zorrilla, E.P. Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: Lack of withdrawal-like responses. Physiol. Behav. 2012, 107, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Pucci, M.; Micioni Di Bonaventura, M.V.; Giusepponi, M.E.; Romano, A.; Filaferro, M.; Maccarrone, M.; Ciccocioppo, R.; Cifani, C.; D’Addario, C. Epigenetic regulation of nociceptin/orphanin FQ and corticotropin-releasing factor system genes in frustration stress-induced binge-like palatable food consumption. Addict. Biol. 2016, 21, 1168–1185. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Micioni Di Bonaventura, M.V.; Gallelli, C.A.; Koczwara, J.B.; Smeets, D.; Giusepponi, M.E.; De Ceglia, M.; Friuli, M.; Micioni Di Bonaventura, E.; Scuderi, C.; et al. Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: A novel potential treatment for binge eating disorder. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Filaferro, M.; Ruggieri, V.; Novi, C.; Calo, G.; Cifani, C.; Micioni Di Bonaventura, M.V.; Sandrini, M.; Vitale, G. Functional antagonism between nociceptin/orphanin FQ and corticotropin-releasing factor in rat anxiety-related behaviors: Involvement of the serotonergic system. Neuropeptides 2014, 48, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Bulik, C.M.; Kleiman, S.C.; Yilmaz, Z. Genetic epidemiology of eating disorders. Curr. Opin. Psychiatry 2016, 29, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Hubel, C.; Marzi, S.J.; Breen, G.; Bulik, C.M. Epigenetics in eating disorders: A systematic review. Mol. Psychiatry 2019, 24, 901–915. [Google Scholar] [CrossRef]
- Mayhew, A.J.; Pigeyre, M.; Couturier, J.; Meyre, D. An Evolutionary Genetic Perspective of Eating Disorders. Neuroendocrinology 2018, 106, 292–306. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, M.V.; Micioni Di Bonaventura, E.; Polidori, C.; Cifani, C. Preclinical Models of Stress and Environmental Influences on Binge Eating; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 85–101. [Google Scholar] [CrossRef]
- Gervasini, G.; Gonzalez, L.M.; Gamero-Villarroel, C.; Mota-Zamorano, S.; Carrillo, J.A.; Flores, I.; Garcia-Herraiz, A. Effect of dopamine receptor D4 (DRD4) haplotypes on general psychopathology in patients with eating disorders. Gene 2018, 654, 43–48. [Google Scholar] [CrossRef]
- American Psychiatric, A. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Bulik, C.M.; Sullivan, P.F.; Kendler, K.S. Medical and psychiatric morbidity in obese women with and without binge eating. Int. J. Eat. Disord. 2002, 32, 72–78. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Baler, R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011, 15, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Dallman, M.F.; Pecoraro, N.; Akana, S.F.; La Fleur, S.E.; Gomez, F.; Houshyar, H.; Bell, M.E.; Bhatnagar, S.; Laugero, K.D.; Manalo, S. Chronic stress and obesity: A new view of “comfort food”. Proc. Natl. Acad. Sci. USA 2003, 100, 11696–11701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecoraro, N.; Reyes, F.; Gomez, F.; Bhargava, A.; Dallman, M.F. Chronic stress promotes palatable feeding, which reduces signs of stress: Feedforward and feedback effects of chronic stress. Endocrinology 2004, 145, 3754–3762. [Google Scholar] [CrossRef] [PubMed]
- Teegarden, S.L.; Bale, T.L. Effects of stress on dietary preference and intake are dependent on access and stress sensitivity. Physiol. Behav. 2008, 93, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Parylak, S.L.; Koob, G.F.; Zorrilla, E.P. The dark side of food addiction. Physiol. Behav. 2011, 104, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donofry, S.D.; Roecklein, K.A.; Rohan, K.J.; Wildes, J.E.; Kamarck, M.L. Prevalence and correlates of binge eating in seasonal affective disorder. Psychiatry Res. 2014, 217, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Kurlansik, S.L.; Ibay, A.D. Seasonal affective disorder. Am. Fam. Physician 2012, 86, 1037–1041. [Google Scholar]
- Krauchi, K.; Reich, S.; Wirz-Justice, A. Eating style in seasonal affective disorder: Who will gain weight in winter? Compr. Psychiatry 1997, 38, 80–87. [Google Scholar] [CrossRef]
- Rosenthal, N.E.; Genhart, M.; Jacobsen, F.M.; Skwerer, R.G.; Wehr, T.A. Disturbances of appetite and weight regulation in seasonal affective disorder. Ann. N. Y. Acad. Sci. 1987, 499, 216–230. [Google Scholar] [CrossRef]
- Thaler, L.; Groleau, P.; Badawi, G.; Sycz, L.; Zeramdini, N.; Too, A.; Israel, M.; Joober, R.; Bruce, K.R.; Steiger, H. Epistatic interactions implicating dopaminergic genes in bulimia nervosa (BN): Relationships to eating- and personality-related psychopathology. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 39, 120–128. [Google Scholar] [CrossRef]
- Hoek, H.W.; Van Hoeken, D. Review of the prevalence and incidence of eating disorders. Int. J. Eat. Disord. 2003, 34, 383–396. [Google Scholar] [CrossRef]
- Keel, P.K.; Baxter, M.G.; Heatherton, T.F.; Joiner, T.E., Jr. A 20-year longitudinal study of body weight, dieting, and eating disorder symptoms. J. Abnorm. Psychol. 2007, 116, 422–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, M.; Gese, A.; Czypicki, R.; Gasior, M.; Tretyn, A.; Chojnowski, J.; Bielinski, M.; Jaracz, M.; Kaminska, A.; Junik, R.; et al. Correlations between polymorphisms in genes coding elements of dopaminergic pathways and body mass index in overweight and obese women. Endokrynol. Pol. 2013, 64, 101–107. [Google Scholar] [PubMed]
- Wang, G.J.; Volkow, N.D.; Fowler, J.S. The role of dopamine in motivation for food in humans: Implications for obesity. Expert Opin. Ther. Targets 2002, 6, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Levitan, R.D.; Masellis, M.; Lam, R.W.; Kaplan, A.S.; Davis, C.; Tharmalingam, S.; Mackenzie, B.; Basile, V.S.; Kennedy, J.L. A birth-season/DRD4 gene interaction predicts weight gain and obesity in women with seasonal affective disorder: A seasonal thrifty phenotype hypothesis. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2006, 31, 2498–2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitan, R.D.; Kaplan, A.S.; Davis, C.; Lam, R.W.; Kennedy, J.L. A season-of-birth/DRD4 interaction predicts maximal body mass index in women with bulimia nervosa. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2010, 35, 1729–1733. [Google Scholar] [CrossRef] [Green Version]
- Van Strien, T.; Levitan, R.D.; Engels, R.C.; Homberg, J.R. Season of birth, the dopamine D4 receptor gene and emotional eating in males and females. Evidence of a genetic plasticity factor? Appetite 2015, 90, 51–57. [Google Scholar] [CrossRef]
- Van Strien, T.; Cebolla, A.; Etchemendy, E.; Gutierrez-Maldonado, J.; Ferrer-Garcia, M.; Botella, C.; Banos, R. Emotional eating and food intake after sadness and joy. Appetite 2013, 66, 20–25. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, M.V.; Lutz, T.A.; Romano, A.; Pucci, M.; Geary, N.; Asarian, L.; Cifani, C. Estrogenic suppression of binge-like eating elicited by cyclic food restriction and frustrative-nonreward stress in female rats. Int. J. Eat. Disord. 2017, 50, 624–635. [Google Scholar] [CrossRef]
- Turton, R.; Chami, R.; Treasure, J. Emotional Eating, Binge Eating and Animal Models of Binge-Type Eating Disorders. Curr. Obes. Rep. 2017, 6, 217–228. [Google Scholar] [CrossRef]
- Van Strien, T. Causes of Emotional Eating and Matched Treatment of Obesity. Curr. Diabetes Rep. 2018, 18, 35. [Google Scholar] [CrossRef] [Green Version]
- Silveira, P.P.; Portella, A.K.; Kennedy, J.L.; Gaudreau, H.; Davis, C.; Steiner, M.; Soares, C.N.; Matthews, S.G.; Sokolowski, M.B.; Dube, L.; et al. Association between the seven-repeat allele of the dopamine-4 receptor gene (DRD4) and spontaneous food intake in pre-school children. Appetite 2014, 73, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, P.P.; Gaudreau, H.; Atkinson, L.; Fleming, A.S.; Sokolowski, M.B.; Steiner, M.; Kennedy, J.L.; Meaney, M.J.; Levitan, R.D.; Dube, L. Genetic Differential Susceptibility to Socioeconomic Status and Childhood Obesogenic Behavior: Why Targeted Prevention May Be the Best Societal Investment. JAMA Pediatrics 2016, 170, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, B.; Bizarro, L.; Miguel, P.M.; Dube, L.; Levitan, R.; O’Donnell, K.; Meaney, M.J.; Silveira, P.P. Genetically predicted gene expression of prefrontal DRD4 gene and the differential susceptibility to childhood emotional eating in response to positive environment. Appetite 2020, 148, 104594. [Google Scholar] [CrossRef] [PubMed]
- Levitan, R.D.; Jansen, P.; Wendland, B.; Tiemeier, H.; Jaddoe, V.W.; Silveira, P.P.; Kennedy, J.L.; Atkinson, L.; Fleming, A.; Sokolowski, M.; et al. A DRD4 gene by maternal sensitivity interaction predicts risk for overweight or obesity in two independent cohorts of preschool children. J. Child Psychol. Psychiatry Allied Discip. 2017, 58, 180–188. [Google Scholar] [CrossRef]
- Stice, E.; Yokum, S.; Bohon, C.; Marti, N.; Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: Moderating effects of DRD2 and DRD4. NeuroImage 2010, 50, 1618–1625. [Google Scholar] [CrossRef] [Green Version]
- Stice, E.; Spoor, S.; Bohon, C.; Veldhuizen, M.G.; Small, D.M. Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. J. Abnorm. Psychol. 2008, 117, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Stice, E.; Yokum, S.; Burger, K.; Epstein, L.; Smolen, A. Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 10093–10100. [Google Scholar] [CrossRef] [Green Version]
- Gervasini, G.; Gordillo, I.; Garcia-Herraiz, A.; Flores, I.; Jimenez, M.; Monge, M.; Carrillo, J.A. Influence of dopamine polymorphisms on the risk for anorexia nervosa and associated psychopathological features. J. Clin. Psychopharmacol. 2013, 33, 551–555. [Google Scholar] [CrossRef]
- Rask-Andersen, M.; Olszewski, P.K.; Levine, A.S.; Schioth, H.B. Molecular mechanisms underlying anorexia nervosa: Focus on human gene association studies and systems controlling food intake. Brain Res. Rev. 2010, 62, 147–164. [Google Scholar] [CrossRef]
- Hinney, A.; Schneider, J.; Ziegler, A.; Lehmkuhl, G.; Poustka, F.; Schmidt, M.H.; Mayer, H.; Siegfried, W.; Remschmidt, H.; Hebebrand, J. No evidence for involvement of polymorphisms of the dopamine D4 receptor gene in anorexia nervosa, underweight, and obesity. Am. J. Med. Genet. 1999, 88, 594–597. [Google Scholar] [CrossRef]
- Guo, G.; North, K.; Choi, S. DRD4 gene variant associated with body mass: The National Longitudinal Study of Adolescent Health. Hum. Mutat. 2006, 27, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; North, K.E.; Gorden-Larsen, P.; Bulik, C.M.; Choi, S. Body mass, DRD4, physical activity, sedentary behavior, and family socioeconomic status: The add health study. Obesity 2007, 15, 1199–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, C.; Vitolo, M.R.; Campagnolo, P.D.; Mattevi, V.S.; Genro, J.P.; Almeida, S. DRD4 and SLC6A3 gene polymorphisms are associated with food intake and nutritional status in children in early stages of development. J. Nutr. Biochem. 2015, 26, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Fuemmeler, B.F.; Agurs-Collins, T.D.; McClernon, F.J.; Kollins, S.H.; Kail, M.E.; Bergen, A.W.; Ashley-Koch, A.E. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity 2008, 16, 348–355. [Google Scholar] [CrossRef]
- Yokum, S.; Marti, C.N.; Smolen, A.; Stice, E. Relation of the multilocus genetic composite reflecting high dopamine signaling capacity to future increases in BMI. Appetite 2015, 87, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Karwautz, A.; Rabe-Hesketh, S.; Hu, X.; Zhao, J.; Sham, P.; Collier, D.A.; Treasure, J.L. Individual-specific risk factors for anorexia nervosa: A pilot study using a discordant sister-pair design. Psychol. Med. 2001, 31, 317–329. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Kaplan, A.S.; Levitan, R.D.; Zai, C.C.; Kennedy, J.L. Possible association of the DRD4 gene with a history of attention-deficit/hyperactivity disorder in women with bulimia nervosa. Int. J. Eat. Disord. 2012, 45, 622–625. [Google Scholar] [CrossRef]
- Frieling, H.; Romer, K.D.; Scholz, S.; Mittelbach, F.; Wilhelm, J.; De Zwaan, M.; Jacoby, G.E.; Kornhuber, J.; Hillemacher, T.; Bleich, S. Epigenetic dysregulation of dopaminergic genes in eating disorders. Int. J. Eat. Disord. 2010, 43, 577–583. [Google Scholar] [CrossRef]
- Thanos, P.K.; Habibi, R.; Michaelides, M.; Patel, U.B.; Suchland, K.; Anderson, B.J.; Robinson, J.K.; Wang, G.J.; Grandy, D.K.; Volkow, N.D. Dopamine D4 receptor (D4R) deletion in mice does not affect operant responding for food or cocaine. Behav. Brain Res. 2010, 207, 508–511. [Google Scholar] [CrossRef] [Green Version]
- Soto, P.L.; Hiranita, T.; Xu, M.; Hursh, S.R.; Grandy, D.K.; Katz, J.L. Dopamine D(2)-Like Receptors and Behavioral Economics of Food Reinforcement. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2016, 41, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.D.; Clifton, P.G. Meal patterns of free feeding rats treated with clozapine, olanzapine, or haloperidol. Pharmacol. Biochem. Behav. 2002, 71, 147–154. [Google Scholar] [CrossRef]
- Kaur, G.; Kulkarni, S.K. Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2002, 26, 277–285. [Google Scholar] [CrossRef]
- Bromel, T.; Blum, W.F.; Ziegler, A.; Schulz, E.; Bender, M.; Fleischhaker, C.; Remschmidt, H.; Krieg, J.C.; Hebebrand, J. Serum leptin levels increase rapidly after initiation of clozapine therapy. Mol. Psychiatry 1998, 3, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theisen, F.M.; Linden, A.; Konig, I.R.; Martin, M.; Remschmidt, H.; Hebebrand, J. Spectrum of binge eating symptomatology in patients treated with clozapine and olanzapine. J. Neural Transm. 2003, 110, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Leadbetter, R.; Shutty, M.; Pavalonis, D.; Vieweg, V.; Higgins, P.; Downs, M. Clozapine-induced weight gain: Prevalence and clinical relevance. Am. J. Psychiatry 1992, 149, 68–72. [Google Scholar] [CrossRef]
- Moore, N.A. Behavioural pharmacology of the new generation of antipsychotic agents. Br. J. Psychiatry Suppl. 1999, 5–11. [Google Scholar] [CrossRef]
- Baptista, T. Body weight gain induced by antipsychotic drugs: Mechanisms and management. Acta Psychiatr. Scand. 1999, 100, 3–16. [Google Scholar] [CrossRef]
- Huang, X.F.; Yu, Y.; Zavitsanou, K.; Han, M.; Storlien, L. Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity. Brain Res. Mol. Brain Res. 2005, 135, 150–161. [Google Scholar] [CrossRef]
- Cifani, C.; Micioni Di Bonaventura, M.V.; Pucci, M.; Giusepponi, M.E.; Romano, A.; Di Francesco, A.; Maccarrone, M.; D’Addario, C. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: Possible targets for obesity prediction? Front. Neurosci. 2015, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, I.; Hochberg, Z. Expanding the definition of hypothalamic obesity. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2010, 11, 709–721. [Google Scholar] [CrossRef]
- Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 2006, 443, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Micioni Di Bonaventura, M.V.; Micioni Di Bonaventura, E.; Cifani, C.; Polidori, C. N/OFQ-NOP System in Food Intake. Handb. Exp. Pharmacol. 2019, 254, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Micioni Di Bonaventura, M.V.; Ubaldi, M.; Liberati, S.; Ciccocioppo, R.; Massi, M.; Cifani, C. Caloric restriction increases the sensitivity to the hyperphagic effect of nociceptin/orphanin FQ limiting its ability to reduce binge eating in female rats. Psychopharmacology 2013, 228, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Alboni, S.; Micioni Di Bonaventura, M.V.; Benatti, C.; Giusepponi, M.E.; Brunello, N.; Cifani, C. Hypothalamic expression of inflammatory mediators in an animal model of binge eating. Behav. Brain Res. 2017, 320, 420–430. [Google Scholar] [CrossRef]
- Cifani, C.; Micioni Di Bonaventura, M.V.; Cannella, N.; Fedeli, A.; Guerrini, R.; Calo, G.; Ciccocioppo, R.; Ubaldi, M. Effect of neuropeptide S receptor antagonists and partial agonists on palatable food consumption in the rat. Peptides 2011, 32, 44–50. [Google Scholar] [CrossRef]
- Kania, A.; Szlaga, A.; Sambak, P.; Gugula, A.; Blasiak, E.; Micioni Di Bonaventura, M.V.; Hossain, M.A.; Cifani, C.; Hess, G.; Gundlach, A.L.; et al. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 5362–5375. [Google Scholar] [CrossRef]
- Piccoli, L.; Micioni Di Bonaventura, M.V.; Cifani, C.; Costantini, V.J.; Massagrande, M.; Montanari, D.; Martinelli, P.; Antolini, M.; Ciccocioppo, R.; Massi, M.; et al. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2012, 37, 1999–2011. [Google Scholar] [CrossRef] [Green Version]
- Pucci, M.; Micioni Di Bonaventura, M.V.; Vezzoli, V.; Zaplatic, E.; Massimini, M.; Mai, S.; Sartorio, A.; Scacchi, M.; Persani, L.; Maccarrone, M.; et al. Preclinical and Clinical Evidence for a Distinct Regulation of Mu Opioid and Type 1 Cannabinoid Receptor Genes Expression in Obesity. Front. Genet. 2019, 10, 523. [Google Scholar] [CrossRef]
- Pucci, M.; Micioni Di Bonaventura, M.V.; Zaplatic, E.; Bellia, F.; Maccarrone, M.; Cifani, C.; D’Addario, C. Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int. J. Eat. Disord. 2019. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; Karimian Azari, E.; Tempesta, B.; Mansouri, A.; Micioni Di Bonaventura, M.V.; Ramachandran, D.; Lutz, T.A.; Bedse, G.; Langhans, W.; Gaetani, S. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol. Behav. 2014, 136, 55–62. [Google Scholar] [CrossRef]
- Saper, C.B.; Lowell, B.B. The hypothalamus. Curr. Biol. CB 2014, 24, R1111–R1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazhan, N.; Zelena, D. Food-intake regulation during stress by the hypothalamo-pituitary-adrenal axis. Brain Res. Bull. 2013, 95, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, S.J. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front. Neurosci. 2013, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calo, G.; Rizzi, A.; Cifani, C.; Micioni Di Bonaventura, M.V.; Regoli, D.; Massi, M.; Salvadori, S.; Lambert, D.G.; Guerrini, R. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci. Ther. 2011, 17, 178–198. [Google Scholar] [CrossRef] [PubMed]
- Tejas-Juarez, J.G.; Cruz-Martinez, A.M.; Lopez-Alonso, V.E.; Garcia-Iglesias, B.; Mancilla-Diaz, J.M.; Floran-Garduno, B.; Escartin-Perez, R.E. Stimulation of dopamine D4 receptors in the paraventricular nucleus of the hypothalamus of male rats induces hyperphagia: Involvement of glutamate. Physiol. Behav. 2014, 133, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Aubry, J.M.; Bartanusz, V.; Pagliusi, S.; Schulz, P.; Kiss, J.Z. Expression of ionotropic glutamate receptor subunit mRNAs by paraventricular corticotropin-releasing factor (CRF) neurons. Neurosci. Lett. 1996, 205, 95–98. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.O.; Ferraro, L.; Narvaez, M.; Tanganelli, S.; Beggiato, S.; Liu, F.; Rivera, A.; Fuxe, K. Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor complexes in the brain and their role in schizophrenia. Cells 2020, 9, 1077. [Google Scholar] [CrossRef]
- Fuxe, K.; Marcellino, D.; Borroto-Escuela, D.O.; Guescini, M.; Fernandez-Duenas, V.; Tanganelli, S.; Rivera, A.; Ciruela, F.; Agnati, L.F. Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci. Ther. 2010, 16, e18–e42. [Google Scholar] [CrossRef]
- Woods, A.S. The dopamine D(4) receptor, the ultimate disordered protein. J. Recept. Signal Transduct. Res. 2010, 30, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Filip, M.; Zaniewska, M.; Frankowska, M.; Wydra, K.; Fuxe, K. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction. Curr. Med. Chem. 2012, 19, 317–355. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, M.V.; Cifani, C.; Lambertucci, C.; Volpini, R.; Cristalli, G.; Froldi, R.; Massi, M. Effects of A(2)A adenosine receptor blockade or stimulation on alcohol intake in alcohol-preferring rats. Psychopharmacology 2012, 219, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Micioni Di Bonaventura, M.V.; Cifani, C.; Lambertucci, C.; Volpini, R.; Cristalli, G.; Massi, M. A2A adenosine receptor agonists reduce both high-palatability and low-palatability food intake in female rats. Behav. Pharmacol. 2012, 23, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Micioni Di Bonaventura, M.V.; Pucci, M.; Giusepponi, M.E.; Romano, A.; Lambertucci, C.; Volpini, R.; Micioni Di Bonaventura, E.; Gaetani, S.; Maccarrone, M.; D’Addario, C.; et al. Regulation of adenosine A2A receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. J. Psychopharmacol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wydra, K.; Gawlinski, D.; Gawlinska, K.; Frankowska, M.; Borroto-Escuela, D.O.; Fuxe, K.; Filip, M. Adenosine A2AReceptors in substance use disorders: A focus on cocaine. Cells 2020, 9, 1372. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.T.; Chen, S.; Schetz, J.A. An unambiguous assay for the cloned human sigma1 receptor reveals high affinity interactions with dopamine D4 receptor selective compounds and a distinct structure-affinity relationship for butyrophenones. Eur. J. Pharmacol. 2008, 578, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Del Bello, F.; Bonifazi, A.; Giorgioni, G.; Cifani, C.; Micioni Di Bonaventura, M.V.; Petrelli, R.; Piergentili, A.; Fontana, S.; Mammoli, V.; Yano, H.; et al. 1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a model for the rational design of a novel class of brain penetrant ligands with high affinity and selectivity for dopamine d4 receptor. J. Med. Chem. 2018, 61, 3712–3725. [Google Scholar] [CrossRef]
- Cottone, P.; Wang, X.; Park, J.W.; Valenza, M.; Blasio, A.; Kwak, J.; Iyer, M.R.; Steardo, L.; Rice, K.C.; Hayashi, T.; et al. Antagonism of sigma-1 receptors blocks compulsive-like eating. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 2012, 37, 2593–2604. [Google Scholar] [CrossRef]
- Del Bello, F.; Micioni Di Bonaventura, M.V.; Bonifazi, A.; Wunsch, B.; Schepmann, D.; Giancola, J.B.; Di Bonaventura, E.M.; Vistoli, G.; Giorgioni, G.; Quaglia, W.; et al. Investigation of the role of chirality in the interaction with sigma receptors and effect on binge eating episode of a potent sigma1 antagonist analogue of spipethiane. ACS Chem. Neurosci. 2019. [Google Scholar] [CrossRef]
- Quadir, S.G.; Cottone, P.; Sabino, V. Role of sigma receptors in alcohol addiction. Front. Pharmacol. 2019, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Sabino, V.; Hicks, C.; Cottone, P. Sigma receptors and substance use disorders. Adv. Exp. Med. Biol. 2017, 964, 177–199. [Google Scholar] [CrossRef]
Compounds | Type of Interaction | Species | Effect | References |
---|---|---|---|---|
L-745,870 | Antagonist | Rats | Reduction of methamphetamine-induced discriminative effect | [125] |
Mice | Reduction of morphine-induced withdrawal | [127] | ||
Rats | Reduction of reinstatement of both nicotine- and cue-induced nicotine seeking behavior | [129] | ||
Rats | Reduction of alcohol self-administration and stress-induced reinstatement | [128] | ||
L-750,667 | Antagonist | Rats | Does not attenuate reinstatement of cocaine-seeking behaviors | [133] |
PNU-101387G | Antagonist | Rats | Prevention of amphetamine induced-behavioral sensitization | [134] |
ABT-724 | Partial Agonist | Rhesus Monkeys | Does not maintain the rates of cocaine self-administration behavior | [144] |
PD-168,077 | Agonist | Rats | Decrease of morphine-induced hyperlocomotion, reward and withdrawal syndrome | [137] |
A-412997 | Agonist | Rats | Does not induce CPP compared to amphetamine and methamphetamine | [145] |
Subjects of Study | Genotype | Result | Reference |
---|---|---|---|
Patients with BMI >30 | DRD4 L vs. DRD4 S | Dysfunctional eating patterns that promote obesity | [30] |
SAD women | 7R vs. no 7R allele | Binge eating behavior and increased BMI | [28,29] |
BN women | 7R vs. no 7R allele | Increased BMI | [27] |
BN patients | 7R vs. no 7R allele | Affect personality-related psychopathologies | [203] |
BN patients | 7R vs. no 7R allele | Affect personality-related psychopathologies | [190] |
Women | DRD4 L vs. DRD4 S | Increased BMI | [206] |
SAD women | 7R vs. no 7R allele | Weight gain and obesity in SAD women born in spring | [208] |
BN women | 7R vs. no 7R allele | High BMI in BN women born in fall | [209] |
Young women | 7R vs. no 7R allele | Emotional eating in young women born in fall | [210] |
4 years old children | 7R vs. no 7R allele | Susceptibility to develop weight gain and ED | [215] |
Preschooler children | 7R vs. no 7R allele | Risk of obesity in women with history of low maternal sensitivity | [218] |
Individuals with and without symptoms of binge eating | DRD4 L vs. DRD4 S | Craving predisposing to binge eating behavior | [146] |
Lean to obese adolescent female | 7R vs. no 7R allele | Unhealthy weight gain | [219] |
AN women | 7R vs. no 7R allele | Risk to develop AN | [222] |
AN women | 7R vs. no 7R allele | Affect personality-related psychopathologies | [26] |
Subjects of Study | Genotype | Result | Reference |
---|---|---|---|
Adolescent and young adult patients with acute AN; underweight students; children and adolescents with obesity | Allelic variants of DRD4 gene | No evidence in etiology of AN and obesity | [224] |
Adolescents and young adults | 7R vs. no 7R allele | Reduction in BMI in African American and Hispanic individuals | [225,226] |
Children | 7R vs. no 7R allele | Lower BMI, energy intake and waist circumference | [227] |
Overweight and obese compared to normal weight adolescents | 7R vs. no 7R allele | No evidence in increased BMI and risk of obesity | [228] |
Adolescents from lean to obese | DRD4 L vs. DRD4 S | No evidence in increased BMI and risk of obesity | [229] |
Sister pairs: one with AN and the other one with no history of any form of ED | Allelic variants of DRD4 gene | No correlation with AN | [230] |
Women with current or past BN purging subtype, and a subgroup of them with a childhood ADHD | 7R vs. no 7R allele | No correlation with BN, if not associated with ADHD | [231] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botticelli, L.; Micioni Di Bonaventura, E.; Del Bello, F.; Giorgioni, G.; Piergentili, A.; Romano, A.; Quaglia, W.; Cifani, C.; Micioni Di Bonaventura, M.V. Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020, 12, 2288. https://doi.org/10.3390/nu12082288
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Romano A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients. 2020; 12(8):2288. https://doi.org/10.3390/nu12082288
Chicago/Turabian StyleBotticelli, Luca, Emanuela Micioni Di Bonaventura, Fabio Del Bello, Gianfabio Giorgioni, Alessandro Piergentili, Adele Romano, Wilma Quaglia, Carlo Cifani, and Maria Vittoria Micioni Di Bonaventura. 2020. "Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors" Nutrients 12, no. 8: 2288. https://doi.org/10.3390/nu12082288
APA StyleBotticelli, L., Micioni Di Bonaventura, E., Del Bello, F., Giorgioni, G., Piergentili, A., Romano, A., Quaglia, W., Cifani, C., & Micioni Di Bonaventura, M. V. (2020). Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients, 12(8), 2288. https://doi.org/10.3390/nu12082288