Serum Iron and Risk of Diabetic Retinopathy
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Definition of DR and Ophthalmic Examination
2.3. Measurement of Serum Iron, Lead, Cadmium, and Mercury
2.4. Covariates Assessment
2.5. Statistical Analysis
3. Results
3.1. Association between Lead, Cadmium, Mercury, and the Presence of DR
3.2. Description of the Study Sample Characteristics
3.3. Association between Iron, Ferritin, Transferrin Receptor, and the Presence of DR
3.4. Relationship of Different Quartiles of Iron with the Presence of DR
3.5. Cutoff Point of Iron and DR
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wong, T.Y.; Klein, R.; Klein, B.E.; Tielsch, J.M.; Hubbard, L.; Nieto, F.J. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv. Ophthalmol. 2001, 46, 59–80. [Google Scholar] [CrossRef]
- Tarr, J.M.; Kaul, K.; Chopra, M.; Kohner, E.M.; Chibber, R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. 2013, 2013, 343560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, C.P.; Ferris, F.L., 3rd; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef]
- Wong, T.Y.; Klein, R.; Islam, F.M.; Cotch, M.F.; Folsom, A.R.; Klein, B.E.; Sharrett, A.R.; Shea, S. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am. J. Ophthalmol. 2006, 141, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.; Wang, C.; Liu, D. Glycated hemoglobin A1C and vitamin D and their association with diabetic retinopathy severity. Nutr. Diabetes 2017, 7, e281. [Google Scholar] [CrossRef]
- Lima, V.C.; Cavalieri, G.C.; Lima, M.C.; Nazario, N.O.; Lima, G.C. Risk factors for diabetic retinopathy: A case-control study. Int. J. Retin. Vitr. 2016, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Esteves, J.; Laranjeira, A.F.; Roggia, M.F.; Dalpizol, M.; Scocco, C.; Kramer, C.K.; Azevedo, M.J.; Canani, L.H. Diabetic retinopathy risk factors. Arq. Bras. Endocrinol. Metabol. 2008, 52, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.T.; Manz, D.H.; Torti, F.M.; Torti, S.V. Mitochondria and Iron: Current questions. Expert Rev. Hematol. 2017, 10, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Poss, K.D.; Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 1997, 94, 10919–10924. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Dunaief, J.L. Retinal iron homeostasis in health and disease. Front. Aging Neurosci. 2013, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Hahn, P.; Iacovelli, J.; Wong, R.; King, C.; Bhisitkul, R.; Massaro-Giordano, M.; Dunaief, J.L. Iron homeostasis and toxicity in retinal degeneration. Prog. Retin. Eye. Res. 2007, 26, 649–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, K.; Promsote, W.; Ananth, S.; Veeranan-Karmegam, R.; Tawfik, A.; Arjunan, P.; Martin, P.; Smith, S.B.; Thangaraju, M.; Kisselev, O.; et al. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression. Sci. Rep. 2018, 8, 3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciudin, A.; Hernandez, C.; Simo, R. Iron overload in diabetic retinopathy: A cause or a consequence of impaired mechanisms? Exp. Diabetes Res. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Christy, A.L.; Manjrekar, P.A.; Babu, R.P.; Hegde, A.; Rukmini, M.S. Influence of iron deficiency anemia on hemoglobin A1c levels in diabetic individuals with controlled plasma glucose levels. Iran. Biomed. J. 2014, 18, 88–93. [Google Scholar] [CrossRef]
- Coban, E.; Ozdogan, M.; Timuragaoglu, A. Effect of iron deficiency anemia on the levels of hemoglobin A1c in nondiabetic patients. Acta Haematol. 2004, 112, 126–128. [Google Scholar] [CrossRef]
- Ohira, Y.; Chen, C.S.; Hegenauer, J.; Saltman, P. Adaptations of lactate metabolism in iron-deficient rats. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 1983, 173, 213–216. [Google Scholar] [CrossRef]
- Krisai, P.; Leib, S.; Aeschbacher, S.; Kofler, T.; Assadian, M.; Maseli, A.; Todd, J.; Estis, J.; Risch, M.; Risch, L.; et al. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults. Eur. J. Intern. Med. 2016, 32, 31–37. [Google Scholar] [CrossRef]
- Shorb, S.R. Anemia and diabetic retinopathy. Am. J. Ophthalmol. 1985, 100, 434–436. [Google Scholar] [CrossRef]
- Yu, D.Y.; Cringle, S.J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 2001, 20, 175–208. [Google Scholar] [CrossRef]
- Lee, M.-K.; Han, K.-D.; Lee, J.-H.; Sohn, S.-Y.; Jeong, J.-S.; Kim, M.-K.; Baek, K.-H.; Song, K.-H.; Kwon, H.-S. High hemoglobin levels are associated with decreased risk of diabetic retinopathy in Korean type 2 diabetes. Sci. Rep. 2018, 8, 5538. [Google Scholar] [CrossRef] [PubMed]
- Robach, P.; Cairo, G.; Gelfi, C.; Bernuzzi, F.; Pilegaard, H.; Viganò, A.; Santambrogio, P.; Cerretelli, P.; Calbet, J.A.L.; Moutereau, S.; et al. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood 2007, 109, 4724–4731. [Google Scholar] [CrossRef] [PubMed]
- Frise, M.C.; Cheng, H.-Y.; Nickol, A.H.; Curtis, M.K.; Pollard, K.A.; Roberts, D.J.; Ratcliffe, P.J.; Dorrington, K.L.; Robbins, P.A. Clinical iron deficiency disturbs normal human responses to hypoxia. J. Clin. Investig. 2016, 126, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Nagababu, E.; Gulyani, S.; Earley, C.J.; Cutler, R.G.; Mattson, M.P.; Rifkind, J.M. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic. Res. 2008, 42, 824–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [Green Version]
- Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De la Cruz, Z.D. Oxidative stress and diabetic retinopathy: Development and treatment. Eye (Lond.) 2017, 31, 1122–1130. [Google Scholar] [CrossRef]
- Thomas, M.C. Anemia in diabetes: Marker or mediator of microvascular disease? Nat. Clin. Pract. Nephrol. 2007, 3, 20–30. [Google Scholar] [CrossRef]
- Andrews, M.; Arredondo, M. Ferritin levels and hepcidin mRNA expression in peripheral mononuclear cells from anemic type 2 diabetic patients. Biol. Trace Elem. Res. 2012, 149, 1–4. [Google Scholar] [CrossRef]
Variables | Model 1 a OR (95% CI) | p Value | Model 2 a OR (95% CI) | p Value | Model 3 a OR (95% CI) | p Value |
---|---|---|---|---|---|---|
DR | ||||||
Iron | 0.995 (0.992–0.998) | 0.004 | 0.994 (0.991–0.998) | <0.001 | 0.995 (0.992–0.999) | 0.020 |
Lead | 1.037 (0.981–1.096) | 0.196 | 1.008 (0.948–1.071) | 0.798 | 1.023 (0.963–1.086) | 0.463 |
Cadmium | 0.893 (0.760–1.049) | 0.168 | 0.953 (0.811–1.121) | 0.563 | 0.930 (0.751–1.152) | 0.507 |
Mercury | 0.955 (0.895–1.020) | 0.174 | 0.951 (0.890–1.017) | 0.143 | 0.977 (0.915–1.043) | 0.483 |
Variables | DR (+) | DR (−) | p-Value |
---|---|---|---|
Continuous variables, mean (SD) | |||
Age (years) | 62.43 (11.79) | 58.96 (12.42) | <0.001 |
Serum Iron (ug/dL) | 81.34 (31.20) | 85.76 (35.43) | 0.008 |
Ferritin (ng/dL) | 57.09 (70.56) | 62.92 (70.16) | 0.717 |
Transferrin Receptor (mg/L) | 4.74 (2.76) | 4.00 (2.38) | 0.195 |
Fasting Plasma Glucose (mg/dL) | 135.83 (71.79) | 102.67 (31.91) | <0.001 |
ALT (U/L) | 26.19 (34.73) | 25.53 (16.95) | 0.004 |
Hemoglobin (g/dL) | 14.07 (1.68) | 14.29 (1.52) | <0.001 |
Category Variables, (%) | |||
Gender (male) | 389 (14.7) | 2257 (85.3) | 0.002 |
Mexican American | 127 (15.3) | 701 (84.7) | <0.001 |
Other Hispanic | 54 (14.6) | 316 (85.4) | |
Non-Hispanic White | 298 (10.4) | 2560 (89.6) | |
Non-Hispanic Black | 211 (19.4) | 878 (80.6) | |
Others | 20 (11.4) | 156 (88.6) | |
Cigarette smoking | 120 (12.8) | 817 (87.2) | 0.853 |
Variables | Model 1 a OR (95% CI) | p Value | Model 2 a OR (95% CI) | p Value | Model 3 a OR (95% CI) | p Value |
---|---|---|---|---|---|---|
DR | ||||||
Iron | 0.995 (0.992–0.998) | 0.004 | 0.994 (0.991–0.998) | <0.001 | 0.995 (0.992–0.999) | 0.020 |
Ferritin | 1.000 (0.994–1.006) | 0.995 | 1.000 (0.994–1.006) | 0.998 | 0.998 (0.991–1.005) | 0.524 |
Transferrin Receptor | 0.988 (0.805–1.214) | 0.909 | 0.988 (0.803–1.215) | 0.908 | 1.052 (0.780–1.417) | 0.741 |
Variables | Model 1 a OR (95% CI) | p Value | Model 2 a OR (95% CI) | p Value | Model 3 a OR (95% CI) | p Value | |
---|---|---|---|---|---|---|---|
DR | |||||||
Iron | Q1 vs. Q4 | 0.796 (0.586–1.082) | 0.145 | 0.753 (0.553–1.027) | 0.074 | 0.790 (0.568–1.100) | 0.163 |
Q2 vs. Q4 | 0.853 (0.627–1.161) | 0.312 | 0.795 (0.582–1.086) | 0.149 | 0.833 (0.593–1.170) | 0.293 | |
Q3 vs. Q4 | 0.583 (0.424–0.802) | <0.001 | 0.541 (0.390–0.750) | <0.001 | 0.601 (0.418–0.863) | 0.006 |
AUC (95%CI) | 0.535 (0.512–0.558) |
Sensitivity | 56.5% |
Specificity | 50% |
p-value | <0.001 |
Cutoff value | 76.5 |
Variables | Model 1 a OR (95% CI) | p Value | Model 2 a OR (95% CI) | p Value | Model 3 a OR (95% CI) | p Value |
---|---|---|---|---|---|---|
DR | ||||||
Cutoff Points of Iron (76.5 ug/dL) | 0.737 (0.589–0.923) | 0.008 | 0.701 (0.557–0.881) | 0.002 | 0.766 (0.597–0.984) | 0.037 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-J.; Chen, J.-T.; Tai, M.-C.; Liang, C.-M.; Chen, Y.-Y.; Chen, W.-L. Serum Iron and Risk of Diabetic Retinopathy. Nutrients 2020, 12, 2297. https://doi.org/10.3390/nu12082297
Chen Y-J, Chen J-T, Tai M-C, Liang C-M, Chen Y-Y, Chen W-L. Serum Iron and Risk of Diabetic Retinopathy. Nutrients. 2020; 12(8):2297. https://doi.org/10.3390/nu12082297
Chicago/Turabian StyleChen, Ying-Jen, Jiann-Torng Chen, Ming-Cheng Tai, Chang-Min Liang, Yuan-Yuei Chen, and Wei-Liang Chen. 2020. "Serum Iron and Risk of Diabetic Retinopathy" Nutrients 12, no. 8: 2297. https://doi.org/10.3390/nu12082297
APA StyleChen, Y. -J., Chen, J. -T., Tai, M. -C., Liang, C. -M., Chen, Y. -Y., & Chen, W. -L. (2020). Serum Iron and Risk of Diabetic Retinopathy. Nutrients, 12(8), 2297. https://doi.org/10.3390/nu12082297