Dietary Intake of Carotenoid-Rich Vegetables Reduces Visceral Adiposity in Obese Japanese men—A Randomized, Double-Blind Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Physical Assessment and Biochemical Analysis
2.3. Chemical Reagents
2.4. Plant Materials
2.5. Preparation of Beverages
2.6. Analysis of Dietary Fiber and Carotenoids in Beverages
2.7. HPLC Apparatus and Conditions
2.8. DNA Microarray Experiments and Data Analysis
2.9. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Carotenoids and Dietary Fiber of Beverages
3.3. Evaluation of Plasma Carotenoids Level
3.4. Physical Assessments
3.5. Biochemical Analysis of Blood
3.6. Changes in Gene Expression Profiles in Whole Blood
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yoshiike, N.; Miyoshi, M. Epidemiological aspects of overweight and obesity in Japan--international comparisons. Nihon Rinsho. Jpn. J. Clin. Med. 2013, 71, 207–216. [Google Scholar]
- Mottillo, S.; Filion, K.B.; Genest, J. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meydani, M. A Mediterranean-style diet and metabolic syndrome. Nutr. Rev. 2005, 63, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Monforte, M.; Sánchez, E.; Barrio, F.; Costa, B.; Flores-Mateo, G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017, 56, 925–947. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2019, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Khachik, F.; Spangler, C.J.; Smith, J.C.; Canfield, L.M.; Steck, A.; Pfander, H. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal. Chem. 1997, 69, 1873–1881. [Google Scholar] [CrossRef]
- Tang, G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr. 2010, 91, 1468S–1473S. [Google Scholar] [CrossRef] [Green Version]
- Kohlmeier, L.; Kark, J.D.; Gomez-Gracia, E.; Martin, B.C.; Steck, S.E.; Kardinaal, A.F.M.; Ringstad, J.; Thamm, M.; Masaev, V.; Riemersma, R.; et al. Lycopene and myocardial infarction risk in the EURAMIC Study. Am. J. Epidemiol. 1997, 146, 618–626. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2016, 174, 1290–1324. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases—A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 1868–1879. [Google Scholar] [CrossRef]
- Montonen, J.; Knekt, P.; Järvinen, R.; Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004, 27, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study. Br. J. Nutr. 2015, 114, 1674–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Yin, Y.; Lu, R.; Jiang, Z. Lycopene Ameliorated Oxidative Stress and Inflammation in Type 2 Diabetic Rats. J. Food Sci. 2019, 84, 1194–1200. [Google Scholar] [CrossRef]
- Bohn, T. Carotenoids, Chronic Disease Prevention and Dietary Recommendations. Int. J. Vitam. Nutr. Res. 2017, 87, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Riso, P.; Grande, S.; Galli, C.; Porrini, M. Protective activity of tomato products on in vivo markers of lipid oxidation. Eur. J. Nutr. 2003, 42, 201–206. [Google Scholar] [CrossRef]
- Sesso, H.D.; Liu, S.; Gaziano, J.M.; Buring, J.E. Dietary Lycopene, Tomato-Based Food Products and Cardiovascular Disease in Women. J. Nutr. 2003, 133, 2336–2341. [Google Scholar] [CrossRef] [Green Version]
- Palozza, P.; Catalano, A.; Simone, R.; Mele, C.; Cittadini, A. Effect of Lycopene and Tomato Products on Cholesterol Metabolism. Ann. Nutr. Metab. 2012, 61, 126–134. [Google Scholar] [CrossRef]
- McEneny, J.; Wade, L.; Young, I.S.; Masson, L.F.; Duthie, G.; McGinty, A.; McMaster, C.; Thies, F. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J. Nutr. Biochem. 2013, 24, 163–168. [Google Scholar] [CrossRef]
- Renzi-Hammond, L.M.; Bovier, E.R.; Fletcher, L.M.; Miller, L.S.; Mewborn, C.M.; Lindbergh, C.A.; Baxter, J.H.; Hammond, B.R. Effects of a Lutein and Zeaxanthin Intervention on Cognitive Function: A Randomized, Double-Masked, Placebo-Controlled Trial of Younger Healthy Adults. Nutrients 2017, 9, 1246. [Google Scholar] [CrossRef] [Green Version]
- Stringham, N.T.; Holmes, P.V.; Stringham, J.M. Lutein Supplementation Increases Serum Brain-Derived Neurotrophic Factor (BDNF) in Humans. FASEB J. 2016, 30, 689-3. [Google Scholar]
- Erdman, J.J.W.; Smith, J.W.; Kuchan, M.J.; Mohn, E.S.; Johnson, E.J.; Rubakhin, S.S.; Wang, L.; Sweedler, J.V.; Neuringer, M. Lutein and Brain Function. Foods 2015, 4, 547–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Liu, R.; Du, J.; Liu, T.; Wu, S.S.; Liu, X. Lutein, Zeaxanthin and Meso-zeaxanthin Supplementation Associated with Macular Pigment Optical Density. Nutrients 2016, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Vachali, P.; Frederick, J.M.; Bernstein, P.S. Identification of StARD3 as a Lutein-Binding Protein in the Macula of the Primate Retina. Biochemistry 2011, 50, 2541–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leermakers, E.T.M.; Darweesh, S.K.; Baena, C.P.; Moreira, E.M.; Van Lent, D.M.; Tielemans, M.J.; Muka, T.; Vitezova, A.; Chowdhury, R.; Bramer, W.M.; et al. The effects of lutein on cardiometabolic health across the life course: A systematic review and meta-analysis, 2. Am. J. Clin. Nutr. 2016, 103, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Bovier, E.R.; Lewis, R.D.; Hammond, B.R. The Relationship between Lutein and Zeaxanthin Status and Body Fat. Nutrients 2013, 5, 750–757. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.; MacGregor, G.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet 2006, 367, 320–326. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [Green Version]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2008, 53, S194–S218. [Google Scholar] [CrossRef]
- Ryo, M.; Maeda, K.; Onda, T.; Katashima, M.; Okumiya, A.; Nishida, M.; Yamaguchi, T.; Funahashi, T.; Matsuzawa, Y.; Nakamura, T.; et al. A New Simple Method for the Measurement of Visceral Fat Accumulation by Bioelectrical Impedance. Diabetes Care 2005, 28, 451–453. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Yamamoto, Y. Simultaneous Detection of Ubiquinol and Ubiquinone in Human Plasma as a Marker of Oxidative Stress. Anal. Biochem. 1997, 250, 66–73. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V. Dietary fibre analysis. Proc. Nutr. Soc. 2003, 62, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Clevert, D.-A.; Obermayer, K. A new summarization method for affymetrix probe level data. Bioinformatics 2006, 22, 943–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Boil. 2004, 5, R80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachigan, S. Statistical Analysis: An Interdisciplinary Introduction to Univariate & Multivariate Methods; Radius Press: New York, NY, USA, 1986. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2018, 77, 32–45. [Google Scholar] [CrossRef]
- Brinkley, T.E.; Wang, X.; Kume, N.; Mitsuoka, H.; Nicklas, B.J. Caloric restriction, aerobic exercise training and soluble lectin-like oxidized LDL receptor-1 levels in overweight and obese post-menopausal women. Int. J. Obes. 2010, 35, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Nomata, Y.; Kume, N.; Sasai, H.; Katayama, Y.; Nakata, Y.; Okura, T.; Tanaka, K. Weight reduction can decrease circulating soluble lectin-like oxidized low-density lipoprotein receptor–1 levels in overweight middle-aged men. Metabolism 2009, 58, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Claessens, A.J.; Yeung, C.K.; Risler, L.J.; Phillips, B.R.; Himmelfarb, J.; Shen, D. Rapid and sensitive analysis of reduced and oxidized coenzyme Q10 in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and application to studies in healthy human subjects. Ann. Clin. Biochem. Int. J. Lab. Med. 2015, 53, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, J.; Nagase, M.; Yamamoto, Y.; Sakurai, A.; Kubo, A.; Mitsuhashi, H.; Matsuoka, M.; Ihara, S.; Kinoshita, K. Increased oxidative stress and renal injury in patients with sepsis. J. Clin. Biochem. Nutr. 2018, 63, 137–143. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
(A) High Lycopene + High Lutein (HLyHLu Group) (TCH-722 Carrot + TCL-499 Kale) | (B) High Lycopene + Low Lutein (HLyLLu Group) (TCH-722 Carrot + ‘Shibuki’ Cabbage) | (C) Low Lycopene + High Lutein (LLyHLu Group) (‘Kinbi’ Carrot + TCL-499 Kale) | (D) Low Lycopene + Low Lutein (LLyLLu Group) (‘Kinbi’ Carrot + ‘Shibuki’ Cabbage) | |
---|---|---|---|---|
α-carotene (mg/day) | 1.88 | 1.8 | 0.12 | 0.12 |
β-carotene (mg/day) | 13.44 | 10.92 | 6.92 | 3.72 |
Lycopen (mg/day) | 7.56 | 8.6 | 0 | 0 |
Lutein (mg/day) | 1.96 | 0.12 | 2.48 | 0.16 |
Fiber (g/day) | 6.4 | 4.4 | 6.8 | 4 |
(A) High Lycopene + High Lutein (HLyHLu Group) (TCH-722 Carrot + TCL-499 Kale) | (B) High Lycopene + Low Lutein (HLyLLu Group) (TCH-722 Carrot + ‘Shibuki’ Cabbage) | (C) Low Lycopene + High Lutein (LLyHLu Group) (‘Kinbi’ Carrot + TCL-499 Kale) | (D) Low Lycopene + Low Lutein (LLyLLu Group) (‘Kinbi’ Carrot + ‘Shibuki’ Cabbage) | |||||
---|---|---|---|---|---|---|---|---|
0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | |
α-carotene (μg/dL) | 5.0 ± 4.93 | 14.1 ± 5.42 ** | 5.2 ± 5.44 | 14.1 ± 5.51 * | 7.1 ± 8.17 | 8.1 ± 7.28 | 5.12 ± 5.11 | 4.02 ± 3.19 |
β-carotene (μg/dL) | 15.6 ± 14.34 | 52.5 ± 38.37 ** | 10.7 ± 7.99 | 30.3 ± 13.53 ** | 21.0 ± 14.50 | 52.0 ± 32.52 ** | 16.4 ± 6.90 | 26.5 ± 11.02 * |
Lycopen (μg/dL) | 45.0 ± 28.90 | 74.1 ± 27.28 ** | 35.0 ± 26.42 | 54.7 ± 28.40 | 38.4 ± 28.05 | 47.6 ± 46.21 | 35.5 ± 28.56 | 39.52 ± 42.57 |
Lutein (μg/dL) | 39.6 ± 11.10 | 66.5 ± 22.64 ** | 33.7 ± 10.34 | 44.1 ± 19.32 | 37.9 ± 7.82 | 69.3 ± 27.34 | 41.3 ± 28.05 | 38.1 ± 26.19 |
(A) High Lycopene + High Lutein (HLyHLu Group) (TCH-722 Carrot + TCL-499 Kale) | (B) High Lycopene + Low Lutein (HLyLLu Group) (TCH-722 Carrot + ‘Shibuki’ Cabbage) | (C) Low Lycopene + High Lutein (LLyHLu Group) (‘Kinbi’ Carrot + TCL-499 Kale) | (D) Low Lycopene + Low Lutein (LLyLLu Group) (‘Kinbi’ Carrot + ‘Shibuki’ Cabbage) | |||||
---|---|---|---|---|---|---|---|---|
0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | |
Body Weight (kg) | 81.3 ± 10.48 | 81.5 ± 10.16 | 80.6 ± 4.08 | 80.4 ± 3.98 | 86.5 ± 13.49 | 86.7 ± 13.70 | 95.8 ± 18.63 | 96.6 ± 18.54 |
Waist Circumference (cm) | 96.9 ± 8.23 | 96.7 ± 9.41 | 98.0 ± 5.00 | 95.8 ± 4.66 * | 97.4 ± 7.32 | 97.6 ± 9.08 | 104.4 ± 14.94 | 105.4 ± 16.67 |
Body Mass Index (BMI) | 28.1 ± 3.09 | 28.2 ± 3.07 | 27.9 ± 1.78 | 27.8 ± 1.72 | 28.2 ± 3.05 | 28.2 ± 3.16 | 31.4 ± 5.42 | 31.6 ± 5.45 |
Visceral Fat Level | 15.2 ± 1.89 | 14.2 ± 2.25 ** | 14.8 ± 1.52 | 14.0 ± 1.27 ** | 14.6 ± 2.59 | 13.8 ± 2.91 * | 17.0 ± 2.72 | 16.4 ± 2.75 ** |
(A) High Lycopene + High Lutein (HLyHLu Group) (TCH-722 Carrot + TCL-499 Kale) | (B) High Lycopene + Low Lutein (HLyLLu Group) (TCH-722 Carrot + ‘Shibuki’ Cabbage) | (C) Low Lycopene + High Lutein (LLyHLu Group) (‘Kinbi’ Carrot + TCL-499 Kale) | (D) Low Lycopene + Low Lutein (LLyLLu Group) (‘Kinbi’ Carrot + ‘Shibuki’ Cabbage) | |||||
---|---|---|---|---|---|---|---|---|
0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | |
Fasting glucose (mg/dL) | 94.0 ± 11.42 | 89.3 ± 7.70 | 92.0 ± 11.40 | 91.0 ± 9.38 | 93.4 ± 6.00 | 92.7 ± 5.65 | 88.2 ± 9.36 | 94.8 ± 9.23 |
HDL cholesterol (mg/dL) | 46.1 ± 6.41 | 45.7 ± 8.62 | 59.4 ± 30.29 | 53.8 ± 22.59 | 46.9 ± 5.84 | 48.4 ± 6.37 | 41.8 ± 6.83 | 39.4 ± 9.15 |
LDL cholesterol (mg/dL) | 146.1 ± 30.47 | 153.9 ± 30.32 | 121.0 ± 39.56 | 130.4 ± 28.05 | 136.0 ± 34.73 | 149.7 ± 38.25 * | 158.0 ± 20.16 | 153.2 ± 46.80 |
Total cholesterol (mg/dL) | 219.3 ± 31.98 | 225.1 ± 27.22 | 210.2 ± 13.61 | 211.4 ± 11.06 | 205.6 ± 38.41 | 213.9 ± 42.53 | 246.6 ± 35.24 | 230.6 ± 42.0 |
Triglycerides (mg/dL) | 165.1 ± 66.87 | 203.1 ± 71.30 | 149.2 ± 112.92 | 180.4 ± 112.53 | 111.1 ± 42.53 | 135.1 ± 30.46 | 212.8 ± 105.55 | 323.8 ± 261.61 |
(A) High Lycopene + High Lutein (HLyHLu Group) (TCH-722 Carrot + TCL-499 Kale) | (B) High Lycopene + Low Lutein (HLyLLu Group) (TCH-722 Carrot + ‘Shibuki’ Cabbage) | (C) Low Lycopene + High Lutein (LLyHLu Group) (‘Kinbi’ Carrot + TCL-499 Kale) | (D) Low Lycopene + Low Lutein (LLyLLu Group) (‘Kinbi’ Carrot + ‘Shibuki’ Cabbage) | |||||
---|---|---|---|---|---|---|---|---|
0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | 0 wks | 8 wks | |
sLOX-1 (ng/L) | 525.9 ±185.61 | 606.9 ± 272.91 | 525.9 ± 212.21 | 439.3 ± 143.26 | 465.6 ± 245.41 | 391.3 ± 160.98 | 643.3 ± 263.59 | 684.7 ± 283.55 |
%CoQ10 (%) | 10.7 ± 1.47 | 8.0 ± 1.73 * | 9.4 ± 1.38 | 7.2 ± 2.09 * | 10.6 ± 1.17 | 7.5 ± 1.34 ** | 13.1 ± 4.96 | 8.9 ± 2.70 * |
IL-6 (pg/mL) | 1.3 ± 1.1 | 1.1 ±0.62 | 1.2 ± 1.09 | 1.3 ± 1.32 | 1.1 ± 1.35 | 0.9 ± 1.09 | 1.0 ± 0.71 | 1.2 ± 0.6 |
TNF-α (pg/mL) | 1.4 ± 0.47 | 1.3 ± 0.47 | 1.2 ± 0.12 | 1.0 ± 0.20 | 1.4 ± 0.38 | 1.1 ± 0.23 | 1.5 ± 0.48 | 1.3 ± 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takagi, T.; Hayashi, R.; Nakai, Y.; Okada, S.; Miyashita, R.; Yamada, M.; Mihara, Y.; Mizushima, K.; Morita, M.; Uchiyama, K.; et al. Dietary Intake of Carotenoid-Rich Vegetables Reduces Visceral Adiposity in Obese Japanese men—A Randomized, Double-Blind Trial. Nutrients 2020, 12, 2342. https://doi.org/10.3390/nu12082342
Takagi T, Hayashi R, Nakai Y, Okada S, Miyashita R, Yamada M, Mihara Y, Mizushima K, Morita M, Uchiyama K, et al. Dietary Intake of Carotenoid-Rich Vegetables Reduces Visceral Adiposity in Obese Japanese men—A Randomized, Double-Blind Trial. Nutrients. 2020; 12(8):2342. https://doi.org/10.3390/nu12082342
Chicago/Turabian StyleTakagi, Tomohisa, Ryotaro Hayashi, Yuji Nakai, Shinji Okada, Rumiko Miyashita, Mayumi Yamada, Yoichi Mihara, Katsura Mizushima, Mayuko Morita, Kazuhiko Uchiyama, and et al. 2020. "Dietary Intake of Carotenoid-Rich Vegetables Reduces Visceral Adiposity in Obese Japanese men—A Randomized, Double-Blind Trial" Nutrients 12, no. 8: 2342. https://doi.org/10.3390/nu12082342
APA StyleTakagi, T., Hayashi, R., Nakai, Y., Okada, S., Miyashita, R., Yamada, M., Mihara, Y., Mizushima, K., Morita, M., Uchiyama, K., Naito, Y., & Itoh, Y. (2020). Dietary Intake of Carotenoid-Rich Vegetables Reduces Visceral Adiposity in Obese Japanese men—A Randomized, Double-Blind Trial. Nutrients, 12(8), 2342. https://doi.org/10.3390/nu12082342