Association between Dairy Intake and Linear Growth in Chinese Pre-School Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Data Collection
2.4. Primary Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; De Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.H.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.P.S. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, Z.A.; Ahmed, T.; Black, R.E.; Cousens, S.; Dewey, K.; Giugliani, E.; Haider, B.A.; Kirkwood, B.; Morris, S.S.; Maternal and Child Undernutrition Study Group; et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 2008, 371, 417–440. [Google Scholar] [CrossRef]
- De Onis, M.; Branca, F. Childhood stunting: A global perspective. Matern. Child Nutr. 2016, 12 (Suppl. S1), 12–26. [Google Scholar] [CrossRef]
- UNICEF; World Health Organisation; World Bank. Levels and Trends in Child Malnutrition; UNICEF: New York, NY, USA, 2020. [Google Scholar]
- Global Nutrition Targets 2025. Available online: https://www.who.int/nutrition/global-target-2025/en/ (accessed on 22 June 2020).
- Hoppe, C.; Mølgaard, C.; Michaelsen, K.F. Cow’s Milk and Linear Growth in Industrialized and Developing Countries. Annu. Rev. Nutr. 2006, 26, 131–173. [Google Scholar] [CrossRef]
- Orr, J.B. Influence of Amount of Milk Consumption on the Rate of Growth of School Children. Br. Med. J. 1928, 1, 140–141. [Google Scholar] [CrossRef] [Green Version]
- Leighton, G.; Clark, M.L. Milk Consumption and the Growth of School Children: Second Preliminary Report on Tests to the Scottish Board of Health. Br. Med. J. 1929, 1, 23–25. [Google Scholar] [CrossRef] [Green Version]
- Lampl, M.; Johnston, F.E.; Malcolm, L.A. The effects of protein supplementation on the growth and skeletal maturation of New Guinean school children. Ann. Hum. Biol. 1978, 5, 219–227. [Google Scholar] [CrossRef]
- Lien, D.T.K.; Nhung, B.T.; Khan, N.C.; Hop, L.T.; Nga, N.T.Q.; Hung, N.T.; Kiers, J.; Shigeru, Y.; Biesebeke, R.T. Impact of milk consumption on performance and health of primary school children in rural Vietnam. Asia Pac. J. Clin. Nutr. 2009, 18, 326–344. [Google Scholar]
- Grillenberger, M.; Neumann, C.G.; Murphy, S.P.; Bwibo, N.O.; Van’t Veer, P.; Hautvast, J.G.A.J.; West, C.E. Food Supplements Have a Positive Impact on Weight Gain and the Addition of Animal Source Foods Increases Lean Body Mass of Kenyan Schoolchildren. J. Nutr. 2003, 133, 3957S–3964S. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.Y.; He, Y.N. The Series Report of Chinese National Nutrition and Health Survey: The Status of Dietary and Nutrients Intake in 2010–2013; People’s Medical Publishing House: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.S.; Springston, E.E.; Warrier, M.R.; Smith, B.; Kumar, R.; Pongracic, J.; Holl, J.L. The Prevalence, Severity, and Distribution of Childhood Food Allergy in the United States. Pediatrics 2011, 128, e9–e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyman, M.B.; Committee on Nutrition. Lactose Intolerance in Infants, Children, and Adolescents. Pediatrics 2006, 118, 1279–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; He, M.; Cui, H.; Bian, L. Study on the incidence of lactose intolerance of children in China. J. Hyg. Res. 1999, 28, 44–46. [Google Scholar]
- Yu, D.M.; Zhao, L.Y.; Yang, Z.Y.; Chang, S.Y.; Yu, W.T.; Fang, H.Y.; Wang, X.; Yu, D.; Guo, Q.Y.; Xu, X.L.; et al. Comparison of Undernutrition Prevalence of Children under 5 Years in China between 2002 and 2013. Biomed. Environ. Sci. 2016, 29, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Sari, M.; De Pee, S.; Bloem, M.W.; Sun, K.; Thorne-Lyman, A.L.; Moench-Pfanner, R.; Akhter, N.; Kraemer, K.; Semba, R.D. Higher Household Expenditure on Animal-Source and Nongrain Foods Lowers the Risk of Stunting among Children 0–59 Months Old in Indonesia: Implications of Rising Food Prices. J. Nutr. 2009, 140, 195S–200S. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Headey, D.D. Household dairy production and child growth: Evidence from Bangladesh. Econ. Hum. Biol. 2018, 30, 150–161. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Huang, Z.-P.; Zhang, X.; He, L.; Willett, W.; Wang, J.; Hasegawa, K.; Chen, J.-S. Reproducibility and Validity of a Chinese Food Frequency Questionnaire. Biomed. Environ. Sci. 2010, 23, 1–38. [Google Scholar] [CrossRef]
- World Health Organization. WHO Child Growth Standards: Length/Height-For-Age, Weight-For-Age, Weight-For-Length, Weight-For-Height and Body Mass Index-For-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Black, R.E.; Heidkamp, R. Causes of Stunting and Preventive Dietary Interventions in Pregnancy and Early Childhood. Nestle Nutr. Inst. Workshop Ser. 2018, 89, 105–113. [Google Scholar] [CrossRef]
- Branca, F.; Ferrari, M. Impact of micronutrient deficiencies on growth: The stunting syndrome. Ann. Nutr. Metab. 2002, 46 (Suppl. S1), 8–17. [Google Scholar] [CrossRef]
- Bogin, B. Milk and human development: An essay on the milk hypothesis. Antropol. Port. 1998, 15, 23–36. [Google Scholar]
- Berkey, C.S.; Colditz, G.A.; Rockett, H.R.; Frazier, A.L.; Willett, W.C. Dairy consumption and female height growth: Prospective cohort study. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1881–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, M.; Stenberg, M.; Frid, A.H.; Holst, J.J.; Bjorck, I.M. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: The role of plasma amino acids and incretins. Am. J. Clin. Nutr. 2004, 80, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, C.; Mølgaard, C.; Vaag, A.; Michaelsen, K.F. The effect of seven-day supplementation with milk protein fractions and milk minerals on IGFs and glucose-insulin metabolism. Scand. J. Food Nutr. 2006, 50, 46. [Google Scholar]
- Outwater, J.L.; Nicholson, A.; Barnard, N. Dairy products and breast cancer: The IGF-I, estrogen, and bGH hypothesis. Med. Hypotheses 1997, 48, 453–461. [Google Scholar] [CrossRef]
- Wiley, A.S. Consumption of milk, but not other dairy products, is associated with height among US preschool children in NHANES 1999–2002. Ann. Hum. Biol. 2009, 36, 125–138. [Google Scholar] [CrossRef]
- Cameron, N. Human Growth and Development; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Kelly, O.; Cusack, S.; Cashman, K.D. The effect of bovine whey protein on ectopic bone formation in young growing rats. Br. J. Nutr. 2003, 90, 557–564. [Google Scholar] [CrossRef]
- Holmes, M.D.; Pollak, M.N.; Willett, W.C.; Hankinson, S.E. Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol. Biomark. Prev. 2002, 11, 852–861. [Google Scholar]
- Garnett, S.P.; Cowell, C.; Bradford, D.; Lee, J.; Tao, C.; Petrauskas, V.; Fay, R.; Baur, L.A. Effects of gender, body composition and birth size on IGF-I in 7- and 8-year-old children. Horm. Res. 1999, 52, 221–229. [Google Scholar] [CrossRef]
- Rogers, I.; Emmett, P.; Gunnell, D.; Dunger, D.; Holly, J. Milk as a food for growth? The insulin-like growth factors link. Public Health Nutr. 2006, 9, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Cadogan, J.; Eastell, R.; Jones, N.; Barker, M.E. Milk intake and bone mineral acquisition in adolescent girls: Randomised, controlled intervention trial. BMJ 1997, 315, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Greenfield, H.; Zhang, Q.; Ma, G.; Zhang, Z.; Hu, X.; Fraser, D.R. Bone mineral accretion and growth in Chinese adolescent girls following the withdrawal of school milk intervention: Preliminary results after two years. Asia Pac. J. Clin. Nutr. 2004, 13, S83. [Google Scholar]
- Dibba, B.; Prentice, A.; Ceesay, M.; Stirling, D.M.; Cole, T.J.; Poskitt, E.M. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am. J. Clin. Nutr. 2000, 71, 544–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonjour, J.P.; Chevalley, T.; Ammann, P.; Slosman, D.; Rizzoli, R. Gain in bone mineral mass in prepubertal girls 3–5 years after discontinuation of calcium supplementation: A follow-up study. Lancet 2001, 358, 1208–1212. [Google Scholar] [CrossRef]
- Cameron, M.A.; Paton, L.M.; Nowson, C.A.; Margerison, C.; Frame, M.; Wark, J.D. The Effect of Calcium Supplementation on Bone Density in Premenarcheal Females: A Co-Twin Approach. J. Clin. Endocrinol. Metab. 2004, 89, 4916–4922. [Google Scholar] [CrossRef]
- Gibbons, M.J.; Gilchrist, N.L.; Frampton, C.; Maguire, P.; Reilly, P.H.; March, R.L.; Wall, C.R. The effects of a high calcium dairy food on bone health in pre-pubertal children in New Zealand. Asia Pac. J. Clin. Nutr. 2004, 13, 341–347. [Google Scholar]
- Winzenberg, T.; Shaw, K.; Fryer, J.; Jones, G. Calcium Supplements in Healthy Children Do Not Affect Weight Gain, Height, or Body Composition. Obesity 2007, 15, 1789–1798. [Google Scholar] [CrossRef]
- Alharbi, O.; El-Sohemy, A. Lactose Intolerance (LCT-13910C> T) Genotype Is Associated with Plasma 25-Hydroxyvitamin D Concentrations in Caucasians: A Mendelian Randomization Study. J. Nutr. 2017, 147, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Travis, R.C.; Appleby, P.N.; Siddiq, A.; Allen, N.E.; Kaaks, R.; Canzian, F.; Feller, S.; Tjønneland, A.; Johnsen, N.F.; Overvad, K.; et al. Genetic variation in thelactasegene, dairy product intake and risk for prostate cancer in the European prospective investigation into cancer and nutrition. Int. J. Cancer 2013, 132, 1901–1910. [Google Scholar] [CrossRef] [Green Version]
- Bergholdt, H.K.; Nordestgaard, B.G.; Ellervik, C. Milk intake is not associated with low risk of diabetes or overweight-obesity: A Mendelian randomization study in 97,811 Danish individuals. Am. J. Clin. Nutr. 2015, 102, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Lamri, A.; Poli, A.; Emery, N.; Bellili, N.; Velho, G.; Lantieri, O.; Balkau, B.; Marre, M.; Fumeron, F. The lactase persistence genotype is associated with body mass index and dairy consumption in the D.E.S.I.R. study. Metabolism 2013, 62, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lin, S.L.; Au Yeung, S.L.; Kwok, M.K.; Xu, L.; Leung, G.M.; Schooling, C.M. Genetically predicted milk consumption and bone health, ischemic heart disease and type 2 diabetes: A Mendelian randomization study. Eur. J. Clin. Nutr. 2017, 71, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, C.; Guarrera, S.; Smith, G.D.; Grioni, S.; Krogh, V.; Masala, G.; Mattiello, A.; Palli, D.; Panico, S.; Tumino, R.; et al. Lactase Persistence and Bitter Taste Response: Instrumental Variables and Mendelian Randomization in Epidemiologic Studies of Dietary Factors and Cancer Risk. Am. J. Epidemiol. 2007, 166, 576–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enattah, N.S.; Sulkava, R.; Halonen, P.; Kontula, K.; Järvelä, I. Genetic Variant of Lactase-Persistent C/T-13910 Is Associated with Bone Fractures in Very Old Age. J. Am. Geriatr. Soc. 2005, 53, 79–82. [Google Scholar] [CrossRef]
- Chin, E.L.; Huang, L.; Bouzid, Y.Y.; Kirschke, C.P.; Durbin-Johnson, B.; Baldiviez, L.M.; Bonnel, E.L.; Keim, N.L.; Korf, I.F.; Stephensen, C.B.; et al. Association of Lactase Persistence Genotypes (rs4988235) and Ethnicity with Dairy Intake in a Healthy U.S. Population. Nutrients 2019, 11, 1860. [Google Scholar] [CrossRef] [Green Version]
- De Beer, H. Dairy products and physical stature: A systematic review and meta-analysis of controlled trials. Econ. Hum. Biol. 2012, 10, 299–309. [Google Scholar] [CrossRef]
- Herber, C.; Bogler, L.; Subramanian, S.V.; Vollmer, S. Association between milk consumption and child growth for children aged 6–59 months. Sci. Rep. 2020, 10, 6730. [Google Scholar] [CrossRef] [Green Version]
- Prentice, A.M.; Ward, K.A.; Goldberg, G.R.; Jarjou, L.M.; Moore, S.E.; Fulford, A.J.; Prentice, A. Critical windows for nutritional interventions against stunting. Am. J. Clin. Nutr. 2013, 97, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Noor Hafizah, Y.; Ang, L.C.; Yap, F.; Nurul Najwa, W.; Cheah, W.L.; Ruzita, A.T.; Jumuddin, F.A.; Koh, D.; Lee, J.A.C.; Essau, C.A.; et al. Validity and Reliability of a Food Frequency Questionnaire (FFQ) to Assess Dietary Intake of Preschool Children. Int. J. Environ. Res. Public Health 2019, 16, 4722. [Google Scholar] [CrossRef] [Green Version]
Variables | % (n/N) | HAZ (Mean ± SD) | p-Value 1 | Prevalence of Stunting (%) | p-Value 2 |
---|---|---|---|---|---|
Residential area | |||||
Urban—metropolis | 21.1% (2561/12,153) | 0.28 ± 1.12 | <0.001 | 2.0 | <0.001 |
Urban—middle or small cities | 27.9% (3386/12,153) | 0.01 ± 1.15 | 4.0 | ||
Rural—non-poor areas | 32.9% (3997/12,153) | −0.20 ± 1.16 | 6.0 | ||
Rural—poor areas | 18.2% (2209/12,153) | −0.82 ± 1.23 | 16.3 | ||
Age group (years) | |||||
2~ | 31.8% (3858/12,153) | −0.11 ± 1.27 | 0.016 | 7.0 | 0.076 |
3~ | 33.5% (4073/12,153) | −0.18 ± 1.22 | 6.7 | ||
4~ | 34.7% (4222/12,153) | −0.17 ± 1.17 | 5.8 | ||
Gender | |||||
Male | 51.5% (6261/12,153) | −0.14 ± 1.24 | 0.083 | 6.8 | 0.148 |
Female | 48.5% (5892/12,153) | −0.17 ± 1.19 | 6.1 | ||
Ethnicity | |||||
Han | 85.1% (10,346/12,153) | −0.06 ± 1.19 | <0.001 | 4.9 | <0.001 |
Minority | 14.9% (1807/12,153) | −0.71 ± 1.26 | 15.2 | ||
Maternal education | |||||
Primary or below | 15.3% (1783/11,695) | −0.63 ± 1.19 | <0.001 | 11.8 | <0.001 |
Junior high | 49.2% (5750/11,695) | −0.27 ± 1.20 | 7.4 | ||
Senior high or above | 35.6% (4162/11,695) | 0.23 ± 1.15 | 2.7 | ||
Paternal education | |||||
Primary or below | 11.1% (1274/11,501) | −0.71 ± 1.21 | <0.001 | 13.8 | <0.001 |
Junior high | 49.3% (5672/11,501) | −0.30 ± 1.19 | 7.5 | ||
Senior high or above | 39.6% (4555/11,501) | 0.19 ± 1.15 | 3.1 | ||
Maternal age group (years) | |||||
≤26 | 20.7% (2421/11,708) | −0.35 ± 1.23 | <0.001 | 9.0 | <0.001 |
27–30 | 31.2% (3650/11,708) | −0.14 ± 1.22 | 6.3 | ||
31–34 | 25.6% (2991/11,708) | −0.04 ± 1.19 | 5.2 | ||
≥35 | 22.6% (2646/11,708) | −0.10 ± 1.21 | 5.6 | ||
Paternal age group (years) | |||||
≤28 | 23.0% (2643/11,516) | −0.23 ±1.23 | <0.001 | 8.0 | 0.003 |
29–32 | 28.1% (3233/11,516) | −0.12 ± 1.22 | 5.9 | ||
33–36 | 23.5% (2706/11,516) | −0.11 ± 1.20 | 5.9 | ||
≥37 | 25.5% (2934/11,516) | −0.15 ± 1.21 | 6.1 | ||
Maternal occupation | |||||
Unemployed | 34.8% (4072/11,689) | −0.20 ± 1.19 | <0.001 | 6.3 | <0.001 |
Farmer | 17.1% (1999/11,689) | −0.63 ± 1.24 | 13.6 | ||
Others | 48.1% (5618/11,689) | 0.06 ± 1.18 | 4.0 | ||
Paternal occupation | |||||
Unemployed | 6.1% (701/11,526) | −0.43 ± 1.19 | <0.001 | 9.4 | <0.001 |
Farmer | 23.1% (2660/11,526) | −0.56 ±1.25 | 12.5 | ||
Others | 70.8% (8165/11,526) | 0.00 ± 1.17 | 4.3 | ||
Annual household income (per capita CNY *) | |||||
≥15,000 | 35.3% (4282/12,147) | 0.03 ± 1.18 | <0.001 | 4.4 | <0.001 |
10,000–14,999 | 17.7% (2155/12,147) | −0.16 ± 1.19 | 6.0 | ||
5000–9999 | 19.9% (2420/12,147) | −0.31 ± 1.25 | 8.8 | ||
<5000 | 16.8% (2035/12,147) | −0.47 ± 1.25 | 10.3 | ||
refuse | 10.3% (1255/12,147) | 0.03 ± 1.15 | 3.6 | ||
Maternal migrant status | |||||
Migrant mother | 15.0% (1824/12,153) | −0.45 ± 1.22 | <0.001 | 10.8 | <0.001 |
Mother living at home | 85.0% (10,329/12,153) | −0.10 ± 1.21 | 5.7 | ||
Paternal migrant status | |||||
Migrant father | 24.0% (2919/12,153) | −0.36 ± 1.22 | <0.001 | 8.7 | <0.001 |
Father living at home | 76.0% (9234/12,153) | −0.09 ± 1.21 | 5.7 |
Variables | % (n/N) | HAZ (Mean ± SD) | p-Value 1 | Prevalence of Stunting (%) | p-Value 2 |
---|---|---|---|---|---|
Birth weight (g) | |||||
<2500 | 3.6% (436/12,142) | −0.64 ± 1.27 | <0.001 | 12.6 | <0.001 |
2500–3200 | 41.3% (5013/12,142) | −0.33 ± 1.19 | 8.0 | ||
3201–3999 | 40.4% (4909/12,142) | 0.06 ± 1.18 | 4.2 | ||
≥4000 | 7.5% (915/12,142) | 0.29 ± 1.18 | 3.4 | ||
Unknown | 7.2% (869/12,142) | −0.54 ± 1.25 | 10.6 | ||
Birth length (cm) | |||||
<50 | 12.8% (1549/12,133) | −0.23 ± 1.17 | <0.001 | 6.7 | <0.001 |
=50 | 36.4% (4410/12,133) | −0.01 ± 1.15 | 4.5 | ||
>50 | 19.5% (2365/12,133) | 0.18 ± 1.23 | 4.1 | ||
Unknown | 31.4% (3809/12,133) | −0.50 ± 1.22 | 10.1 | ||
Premature | |||||
Yes | 9.9% (1179/11,958) | −0.21 ± 1.16 | 0.055 | 6.0 | 0.656 |
No | 90.1% (10,779/11,958) | −0.14 ± 1.22 | 6.4 | ||
Incidence of respiratory system disease in the last two weeks | |||||
Yes | 24.5% (2973/12,109) | −0.06 ± 1.15 | <0.001 | 4.3 | <0.001 |
No | 75.5% (9136/12,109) | −0.18 ± 1.24 | 7.2 | ||
Incidence of diarrhea in the last two weeks | |||||
Yes | 4.9% (597/12,122) | −0.15 ± 1.10 | 0.997 | 4.7 | 0.073 |
No | 95.1% (11,525/12,122) | −0.15 ± 1.22 | 6.5 | ||
Major caretaker | |||||
Grandmothers | 18.0% (2187/12,153) | −0.30 ± 1.20 | <0.001 | 8.4 | <0.001 |
Mother and father | 42.9% (5219/12,153) | −0.07 ± 1.23 | 5.7 | ||
Mother | 36.8% (4470/12,153) | −0.16 ± 1.21 | 6.1 | ||
Father | 1.6% (198/12,153) | −0.58 ± 1.23 | 10.6 | ||
Others | 0.7% (79/12,153) | −0.57 ± 1.24 | 15.2 | ||
Regular growth monitoring | |||||
Yes | 72.6% (8819/12,141) | −0.01 ± 1.18 | <0.001 | 4.8 | <0.001 |
No | 27.4% (3322/12,141) | −0.52 ± 1.23 | 10.8 | ||
Sleep duration (hours) | |||||
<10 | 13.8% (1678/12,141) | −0.23 ± 1.26 | 0.010 | 7.6 | <0.001 |
10 to <10.5 | 33.8% (4104/12,141) | −0.15 ± 1.19 | 5.4 | ||
10.5 to <12 | 25.5% (3098/12,141) | −0.11 ± 1.19 | 6.2 | ||
≥12 | 26.9% (3261/12,141) | −0.16 ± 1.25 | 7.5 | ||
Duration of daytime outdoors (minutes) | |||||
≤90 | 25.1% (3049/12,134) | 0.03 ± 1.24 | <0.001 | 5.1 | <0.001 |
91–150 | 26.8% (3257/12,134) | −0.06 ± 1.20 | 5.7 | ||
151–240 | 34.7% (4212/12,134) | −0.27 ± 1.21 | 7.3 | ||
>240 | 13.3% (1616/12,134) | −0.37 ± 1.17 | 8.6 | ||
Have been breastfed in the last 24 h | |||||
Yes | 1.4% (164/12,136) | −0.24 ± 1.30 | 0.355 | 9.8 | 0.083 |
No | 98.7% (11,972/12,136) | −0.15 ± 1.22 | 6.4 | ||
Cow‘s milk allergy | |||||
Yes | 0.8% (93/12,081) | −0.27 ± 1.27 | 0.344 | 8.6 | 0.388 |
No | 99.2% (11,988/12,081) | −0.15 ± 1.22 | 6.4 | ||
Frequency of egg consumption | |||||
Daily | 36.0% (4369/12,153) | 0.11 ± 1.17 | <0.001 | 3.8 | <0.001 |
Weekly | 48.5% (5898/12,153) | −0.23 ±1.20 | 6.7 | ||
None | 15.5% (1886/12,153) | −0.52 ± 1.23 | 11.8 | ||
Frequency of fruit consumption | |||||
Daily | 56.1% (6812/12,153) | −0.01 ± 1.18 | <0.001 | 4.6 | <0.001 |
Weekly | 38.3% (4657/12,153) | −0.33 ± 1.23 | 8.4 | ||
None | 5.6% (684/12,153) | −0.43 ± 1.34 | 11.8 |
Frequency of Dairy Consumption | HAZ (Mean ± SD) | β # | SE | t | p-Value |
---|---|---|---|---|---|
Daily | 0.13 ± 1.14 | 0.11 | 0.03 | 4.23 | <0.001 |
Weekly | −0.01 ± 1.16 | 0.13 | 0.04 | 3.64 | <0.001 |
None | −0.42 ± 1.23 | Ref. | - | - | - |
Frequency of Dairy Consumption | Prevalence of Stunting (%) | Crude OR (95% CI) | Adjusted OR # (95% CI) | p-Value |
---|---|---|---|---|
Daily | 3.2 | 0.32 (0.26, 0.38) | 0.72 (0.58,0.90) | 0.003 |
Weekly | 4.1 | 0.78 (0.57, 1.05) | 1.03 (0.74, 1.42) | 0.875 |
None | 9.6 | 1.00 | 1.00 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Pang, X.; Yang, Z.; Wang, J.; Jiang, S.; Bi, Y.; Wang, S.; Zhang, H.; Lai, J. Association between Dairy Intake and Linear Growth in Chinese Pre-School Children. Nutrients 2020, 12, 2576. https://doi.org/10.3390/nu12092576
Duan Y, Pang X, Yang Z, Wang J, Jiang S, Bi Y, Wang S, Zhang H, Lai J. Association between Dairy Intake and Linear Growth in Chinese Pre-School Children. Nutrients. 2020; 12(9):2576. https://doi.org/10.3390/nu12092576
Chicago/Turabian StyleDuan, Yifan, Xuehong Pang, Zhenyu Yang, Jie Wang, Shan Jiang, Ye Bi, Shuxia Wang, Huanmei Zhang, and Jianqiang Lai. 2020. "Association between Dairy Intake and Linear Growth in Chinese Pre-School Children" Nutrients 12, no. 9: 2576. https://doi.org/10.3390/nu12092576
APA StyleDuan, Y., Pang, X., Yang, Z., Wang, J., Jiang, S., Bi, Y., Wang, S., Zhang, H., & Lai, J. (2020). Association between Dairy Intake and Linear Growth in Chinese Pre-School Children. Nutrients, 12(9), 2576. https://doi.org/10.3390/nu12092576