Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Biochemical Analyses
2.3. Histopathology
2.4. Immunohistochemistry
2.5. Cell Count
2.6. RT-PCR
2.7. Malondialdehyde (MDA) Assay
2.8. Glutathione-S-S-Glutathione/Glutathione-SH (GSSG/GSH) Quantification
2.9. Western Blot
2.10. Statistical Analysis
3. Results
3.1. Dietary Iron Overload Exacerbates AA-Induced Acute Liver Injury, While it Suppresses CCl4-Induced Acute Liver Injury
3.1.1. Biochemical Findings
3.1.2. Pathological Findings
3.2. Enhanced Oxidative Stress is Involved in the Exacerbation of AA-Induced Liver Injury by Dietary Iron Overload, While Suppression of Apoptosis Can Be Involved in the Attenuation of CCl4-Induced Liver Injury
3.2.1. Changes in Oxidative Stress
3.2.2. Changes in Cell Death
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DILI | drug-induced liver injury |
CLD | chronic liver disease |
HCC | hepatocellular carcinoma |
NAFLD | non-alcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
NTBI | non-transferrin bound iron |
ROS | reactive oxygen species |
TAA | thioacetamide |
AA | allyl alcohol |
CCl4 | carbon tetrachloride |
HE | hematoxylin and eosin |
DAB | 3,3′-diaminobenzidine |
γH2A.X | phospho-histone H2A.X |
PBS | phosphate buffered saline |
MDA | malondialdehyde |
TBARS | thiobarbituric acid reacting substances |
GSSG | glutathione-S-S-glutathione |
GSH | glutathione-SH |
p-RIP3 | phosphorylated-receptor-interacting protein kinase 3 |
GPX4 | glutathione peroxidase 4 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
RES | reticuloendothelial system |
Nrf2 | nuclear factor-erythroid 2-related factor 2 |
HO-1 | heme oxygenase-1 |
References
- Alempijevic, T.; Zec, S.; Milosavljevic, T. Drug-induced liver injury: Do we know everything? World J. Hepatol. 2017, 9, 491–502. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL clinical practice guidelines: Drug-induced liver injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stine, J.G.; Lewis, J.H. Current and future directions in the treatment and prevention of drug-induced liver injury: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 517–536. [Google Scholar] [CrossRef] [Green Version]
- Embade, N.; Millet, O. Molecular Determinants of Chronic Liver Disease as Studied by NMR-Metabolomics. Curr. Top. Med. Chem. 2017, 17, 2752–2766. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Paik, J.M.; Golabi, P.; Younossi, Y.; Mishra, A.; Younossi, Z.M. Changes in the Global Burden of Chronic Liver Diseases From 2012 to 2017: The Growing Impact of Nonalcoholic Fatty Liver Disease. Hepatology 2020, 11. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of Liver Diseases in the World. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Coffey, R.; Ganz, T. Iron homeostasis: An anthropocentric perspective. J. Biol. Chem. 2017, 292, 12727–12734. [Google Scholar] [CrossRef] [Green Version]
- Philippe, M.A.; Ruddell, R.G.; Ramm, G.A. Role of iron in hepatic fibrosis: One piece in the puzzle. World J. Gastroenterol. 2007, 13, 4746–4754. [Google Scholar] [CrossRef]
- Milic, S.; Mikolasevic, I.; Orlic, L.; Devcic, E.; Starcevic-Cizmarevic, N.; Stimac, D.; Kapovic, M.; Ristic, S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med. Sci. Monit. 2016, 22, 2144–2151. [Google Scholar] [CrossRef] [Green Version]
- Sikorska, K.; Stalke, P.; Romanowski, T.; Rzepko, R.; Bielawski, K.P. Liver steatosis correlates with iron overload but not with HFE gene mutations in chronic hepatitis C. Hepatobiliary Pancreat Dis. Int. 2013, 12, 377–384. [Google Scholar] [CrossRef]
- Sikorska, K.; Bernat, A.; Wroblewska, A. Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis. Hepatobiliary Pancreat Dis. Int. 2016, 15, 461–479. [Google Scholar] [CrossRef]
- Niemelä, O.; Parkkila, S.; Britton, R.S.; Brunt, E.; Janney, C.; Bacon, B. Hepatic lipid peroxidation in hereditary hemochromatosis and alcoholic liver injury. J. Lab. Clin. Med. 1999, 133, 451–460. [Google Scholar] [CrossRef]
- Atarashi, M.; Izawa, T.; Mori, M.; Inai, Y.; Kuwamura, M.; Yamate, J. Dietary Iron Overload Abrogates Chemically-Induced Liver Cirrhosis in Rats. Nutrients 2018, 10, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoller, H.; McFarlane, I.; Theurl, I.; Stadlmann, S.; Nemeth, E.; Oxley, D.; Ganz, T.; Halsall, D.J.; Cox, T.M.; Vogel, W. Primary iron overload with inappropriate hepcidin expression in V162del ferroportin disease. Hepatology 2005, 42, 466–472. [Google Scholar] [CrossRef]
- Duarte, T.L.; Caldas, C.; Santos, A.G.; Silva-Gomes, S.; Santos-Gonçalves, A.; Martins, M.J.; Porto, G.; Lopes, J.M. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol. 2017, 11, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Rahman, N.; Pervin, M.; Kuramochi, M.; Karim, M.R.; Izawa, T.; Kuwamura, M.; Yamate, J. M1/M2-macrophage Polarization-based Hepatotoxicity in d-galactosamine-induced Acute Liver Injury in Rats. Toxicol. Pathol. 2018, 46, 764–776. [Google Scholar] [CrossRef] [Green Version]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA Double-Stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef] [Green Version]
- Blatt, N.B.; Glick, G.D. Signaling Pathways and Effector Mechanisms Pre-Programmed Cell Death. Bioorg Med. Chem. 2001, 9, 1371–1384. [Google Scholar] [CrossRef]
- Zhou, W.; Yuan, J. Necroptosis in health and diseases. Semin. Cell Dev. Biol. 2014, 35, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeschke, H.; Duan, L.; Akakpo, J.Y.; Farhood, A.; Ramachandran, A. The role of apoptosis in acetaminophen hepatotoxicity. Food Chem. Toxicol. 2018, 118, 709–718. [Google Scholar] [CrossRef]
- Nelson, J.E.; Wilson, L.; Brunt, E.M.; Yeh, M.M.; Kleiner, D.E.; Unalp-Arida, A.; Kowdley, K.V. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 2011, 53, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.M.; O’Brien, P.J. Allyl alcohol-and acrolein-induced toxicity in isolated rat hepatocytes. Arch. Biochem. Biophys. 1989, 275, 551–558. [Google Scholar] [CrossRef]
- Kohgo, Y.; Ikuta, K.; Ohtake, T.; Torimoto, Y.; Kato, J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 2008, 88, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; An, P.; Xie, E.; Wu, Q.; Fang, X.; Gao, H.; Zhang, Z.; Li, Y.; Wang, X.; Zhang, J.; et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 2017, 66, 449–465. [Google Scholar] [CrossRef]
- Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef] [Green Version]
- Brattin, W.J.; Glende, E.A., Jr.; Recknagel, R.O. Pathological mechanisms in carbon tetrachloride hepatotoxicity. J. Free. Radic. Biol. Med. 1985, 1, 27–38. [Google Scholar] [CrossRef]
- Wong, F.W.; Chan, W.Y.; Lee, S.S. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol. Appl. Pharmacol. 1998, 153, 109–118. [Google Scholar] [CrossRef]
- Sagai, M.; Bocci, V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med. Gas. Res. 2011, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Eid, R.; Arab, N.T.; Greenwood, M.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 399–430. [Google Scholar] [CrossRef]
- Munoz, J.P.; Chiong, M.; Garcia, L.; Troncoso, R.; Toro, B.; Pedrozo, Z.; Diaz-Elizondo, J.; Salas, D.; Parra, V.; Nunez, M.T.; et al. Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. Free. Radic. Biol. Med. 2010, 48, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, P.; Elli, F.; Braidotti, P.; Falleni, M.; Tosi, D.; Bulfamante, G.; Block, G.A.; Cozzolino, M. Iron citrate reduces high phosphate-induced vascular calcification by inhibiting apoptosis. Atherosclerosis 2016, 254, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Rouault, T.A. Mitochondrial iron overload: Causes and consequences. Curr. Opin. Genet. Dev. 2016, 38, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Ferrali, M.; Ciccoli, L.; Comporti, M. Allyl alcohol-induced hemolysis and its relation to iron release and lipid peroxidation. Biochem. Pharmacol. 1989, 38, 1819–1825. [Google Scholar] [CrossRef]
- Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016, 26, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Faa, G.; Sciot, R.; Farci, A.M.; Callea, F.; Ambu, R.; Congiu, T.; van Eyken, P.; Cappai, G.; Marras, A.; Costa, V.; et al. Iron concentration and distribution in the newborn liver. Liver 1994, 14, 193–199. [Google Scholar] [CrossRef]
- Lu, J.P.; Hayashi, K. Transferrin receptor distribution and iron deposition in the hepatic lobule of iron-overloaded rats. Pathol. Int. 1995, 45, 202–206. [Google Scholar] [CrossRef]
- Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9–17. [Google Scholar] [CrossRef]
Antibody (Clone Name) | Type | Dilution | Pretreatment | Source | Code |
---|---|---|---|---|---|
CD3 (F7.2.38) | Mouse monoclonal | 1:500 | Microwaving in 10 mM Tris-EDTA (pH 9.0) for 20 min | Dako | M7254 |
CD68 (ED-1) | Mouse monoclonal | 1:500 | ProK (100 μg/mL) for 10 min | Millipore | MAB1435 |
γH2A.X (20E3) | Rabbit monoclonal | 1:500 | Microwaving in 10 mM citrate buffer (pH 6.0) for 20 min | Cell Signaling Technology | #9718 |
Symbol | Gene | Probe Assay ID | Amplicon Length (bp) |
---|---|---|---|
TNF-α | Tumor necrosis factor-α | Rn01525859_gl | 92 |
CCl2 | C-C motif chemokine ligand 2 | Rn00580555_m1 | 95 |
IL-6 | Interleukin-6 | Rn01410330_ml | 121 |
IL-4 | Interleukin-4 | Rn01456866_m1 | 128 |
IFN-γ | Interferon-γ | Rn00594078_m1 | 91 |
IL-10 | Interleukin-10 | Rn00563409_m1 | 70 |
IL-1β | Interleukin-1β | Rn00580432_ml | 74 |
CXCL1 | C-X-C motif chemokine ligand 1 | Rn00578225_m1 | 102 |
TGF-β | Transforming growth factor-β | Rn00572010_ml | 65 |
Ribosomal 18 s | Eukaryotic 18 s rRNA | Hs99999901_s1 | 187 |
Antibody (Clone Name) | Type | Dilution | Source | Code |
---|---|---|---|---|
Cleaved caspase-3 (5A1E) | Rabbit monoclonal | 1:1000 | Cell Signaling Technology | #9664 |
Total caspase-3 (8G10) | Rabbit monoclonal | 1:1000 | Cell Signaling Technology | #9665 |
p-RIP3 (EPR9516(N)-25) | Rabbit monoclonal | 1:1000 | Abcam | ab195117 |
GPX4 (EPNCIR144) | Rabbit monoclonal | 1:1000 | Abcam | ab125066 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, M.; Izawa, T.; Inai, Y.; Fujiwara, S.; Aikawa, R.; Kuwamura, M.; Yamate, J. Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats. Nutrients 2020, 12, 2784. https://doi.org/10.3390/nu12092784
Mori M, Izawa T, Inai Y, Fujiwara S, Aikawa R, Kuwamura M, Yamate J. Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats. Nutrients. 2020; 12(9):2784. https://doi.org/10.3390/nu12092784
Chicago/Turabian StyleMori, Mutsuki, Takeshi Izawa, Yohei Inai, Sho Fujiwara, Ryo Aikawa, Mitsuru Kuwamura, and Jyoji Yamate. 2020. "Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats" Nutrients 12, no. 9: 2784. https://doi.org/10.3390/nu12092784
APA StyleMori, M., Izawa, T., Inai, Y., Fujiwara, S., Aikawa, R., Kuwamura, M., & Yamate, J. (2020). Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats. Nutrients, 12(9), 2784. https://doi.org/10.3390/nu12092784