Moderators of the Impact of (Poly)Phenols Interventions on Psychomotor Functions and BDNF: Insights from Subgroup Analysis and Meta-Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Stratgies and Sources of Data
2.2. Study Selection
2.3. Data Collection
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Subject Characteristics
3.4. Effect of (Poly)Phenols-Rich Supplementation on Psychomotor Functions and BDNF
3.5. Methodological Quality of Studies
3.6. Meta-Analysis Results
3.6.1. Effect of (Poly)Phenols-Rich Supplementation on Psychomotor Functions
3.6.2. Effect of (Poly)Phenols-Rich Supplementation on BDNF
4. Discussion
4.1. Effect of (Poly)Phenols-Rich Supplementation On Psychomotor Functions and Moderator Variables
4.2. Effect of (Poly)Phenols-Rich Supplementation on BDNF and Moderator Variables
5. Strengths and Weaknesses
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stöckel, T.; Wunsch, K.; Hughes, C.M.L. Age-Related Decline in Anticipatory Motor Planning and Its Relation to Cognitive and Motor Skill Proficiency. Front. Aging Neurosci. 2017, 9, 283. [Google Scholar] [CrossRef]
- Simen, A.A.; Bordner, K.A.; Martin, M.P.; Moy, L.A.; Barry, L.C. Cognitive dysfunction with aging and the role of inflammation. Ther. Adv. Chronic. Dis. 2011, 2, 175–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, S.E.; Jensen, P.; Ozenne, B.; Armand, S.; Svarer, C.; Stenbaek, D.; Moeller, K.; Dyssegaard, A.; Thomsen, G.; Steinmetz, J.; et al. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: A longitudinal 123 I-CLINDE SPECT study. Eur. J. Neurol. 2019, 26. [Google Scholar] [CrossRef]
- Gendelman, H.E. Neural Immunity: Friend or Foe? J. NeuroVirol. 2002, 8, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Floyd, R.A.; Hensley, K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 2002, 23, 795–807. [Google Scholar] [CrossRef]
- Devi, S.A.; Satpati, A. Oxidative Stress and the Brain: An Insight into Cognitive Aging. In Topics in Biomedical Gerontology; Rath, P., Sharma, R., Prasad, S., Eds.; Springer: Singapore, 2017; pp. 123–140. [Google Scholar]
- Perluigi, M.; Coccia, R.; Butterfield, D.A. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neuro-degenerative diseases: A toxic combination illuminated by redox proteomics studies. Antioxid. Redox. Signal. 2012, 17, 1590–1609. [Google Scholar] [CrossRef] [Green Version]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Bakunina, N.; Pariante, C.M.; Zunszain, P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015, 144, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, I.R.; Fochesatto, C.; de Andrade, A.; Santos, M.; Hagen, M.; Bello-Klein, A.; Netto, C.A. Total antioxidant capacity is impaired in different structures from aged rat brain. Int. J. Dev. Neurosci. 2005, 23, 663–671. [Google Scholar] [CrossRef]
- Hasan, M.; Tripathi, S.; Mahdi, A.A.; Mitra, K.; Negi, M.P.L. Lipofuscin, lipid peroxidation and antioxidant status in discrete regions of the aged rat brain. Proc. Indian Natl. Sci. Acad. Part A Phys. Sci. 2009, 75, 173–181. [Google Scholar]
- Fusco, D.; Colloca, G.; Lo Monaco, M.R.; Cesari, M. Effects of antioxidant supplementation on the aging process. Clin. Interv. Aging 2007, 2, 377–387. [Google Scholar] [PubMed]
- Vauzour, D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev. 2012, 2012, 914273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, V.; Izzo, V.; Corbi, G.; Russomanno, G.; Manzo, V.; De Lise, F.; Di Donato, A.; Filippelli, A. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases. Front. Pharmacol. 2016, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Trabelsi, K.; Müller, P.; Bouaziz, B.; Boukhris, O.; Glenn, J.M.; Bott, N.; Driss, T.; Chtourou, H.; Müller, N.; et al. The Effect of (Poly)phenol-Rich Interventions on Cognitive Functions and Neuroprotective Measures in Healthy Aging Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Bouaziz, B.; Müller, P.; Glenn, J.M.; Bott, N.; Mueller, N.; Chtourou, H.; Driss, T.; et al. Effects of Polyphenol-Rich Interventions on Cognition and Brain Health in Healthy Young and Middle-Aged Adults: Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 1598. [Google Scholar] [CrossRef]
- Roehrs, M.; Valentini, J.; Paniz, C.; Moro, A.M.; Charão, M.; Bulcão, R.; Freitas, F.; Brucker, N.; Duarte, M.M.M.F.; Leal, M.B.; et al. The relationships between exogenous and endogenous antioxidants with the lipid profile and oxidative damage in hemodialysis patients. BMC Nephrol. 2011, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Bouayed, J.; Bohn, T. Exogenous antioxidants—Double-edged swords in cellular redox state. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef]
- Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.; Bocale, R.; Lechiara, M.C.; Marini, C.; et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: The Cocoa, Cognition, and Aging (CoCoA) Study—A randomized controlled trial. Am. J. Clin. Nutr. 2014, 101, 538–548. [Google Scholar] [CrossRef]
- Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients 2018, 10, 660. [Google Scholar] [CrossRef] [Green Version]
- Wightman, E.L.; Jackson, P.A.; Khan, J.; Forster, J.; Heiner, F.; Feistel, B.; Suarez, C.G.; Pischel, I.; Kennedy, D.O. The Acute and Chronic Cognitive and Cerebral Blood Flow Effects of a Sideritisscardica (Greek Mountain Tea) Extract: A Double Blind, Randomized, Placebo Controlled, Parallel Groups Study in Healthy Humans. Nutrients 2018, 10, 955. [Google Scholar] [CrossRef] [Green Version]
- File, S.E.; Jarrett, N.; Fluck, E.; Duffy, R.; Casey, K.; Wiseman, H. Eating soya improves human memory. Psychopharmacology 2001, 157, 430–436. [Google Scholar] [CrossRef]
- Massee, L.A.; Ried, K.; Pase, M.; Travica, N.; Yoganathan, J.; Scholey, A.; Macpherson, H.; Kennedy, G.; Sali, A.; Pipingas, A. The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: A randomized, controlled trial. Front. Pharmacol. 2015, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Dietz, C.; Dekker, M.; Piqueras-Fiszman, B. An intervention study on the effect of matcha tea, in drink and snack bar formats, on mood and cognitive performance. Food Res. Int. 2017, 99, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Cipolletti, M.; Solar Fernandez, V.; Montalesi, E.; Marino, M.; Fiocchetti, M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: The Modulation of Estrogen Receptors (ERs) Signaling. Int. J. Mol. Sci. 2018, 19, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, C.E.; Carter, H.H.; Guelfi, K.J.; Smith, K.J.; Pike, K.E.; Naylor, L.H.; Green, D.J. Brachial and cerebrovascular functions are enhanced in postmenopausal women after ingestion of chocolate with a high concentration of cocoa. J. Nutr. 2017, 147, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Huhn, S.; Beyer, F.; Zhang, R.; Lampe, L.; Grothe, J.; Kratzsch, J.; Willenberg, A.; Breitfeld, J.; Kovacs, P.; Stumvoll, M.; et al. Effects of resveratrol on memory performance, hippocampus connectivity and microstructure in older adults—A randomized controlled trial. NeuroImage 2018, 174, 177–190. [Google Scholar] [CrossRef]
- Francis, S.T.; Head, K.; Morris, P.G.; Macdonald, I.A. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J. Cardiovasc. Pharmacol. 2006, 47, S215–S220. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Wightman, E.L.; Reay, J.L.; Lietz, G.; Okello, E.J.; Wilde, A.; Haskell, C.F. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation. Am. J. Clin. Nutr. 2010, 91, 1590–1597. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Houts, R.; Cohen, H.J.; Corcoran, D.L.; Danese, A.; Harrington, H.; Israel, S.; Levine, M.E.; Schaefer, J.D.; et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA 2015, 112, 4104–4110. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Kennedy, B.K.; Longo, V.D.; Seals, D.; Melov, S. Medical research: Treat ageing. Nature 2014, 511, 405–407. [Google Scholar] [CrossRef]
- Hussain, M.B.; Hassan, S.; Waheed, M.; Javed, A.; Farooq, M.A.; Tahir, A. Bioavailability and Metabolic Pathway of Phenolic Compounds. 5. In Plant Physiological Aspects of Phenolic Compounds; Marcos, S.-H., Rosario, G.-M., Mariana, P.-T., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Gur, R.E.; Gur, R.C. Gender differences in aging: Cognition, emotions, and neuroimaging studies. Dialogues Clin. Neurosci. 2002, 4, 197–210. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.; Howieson, D.B.; Loring, D.W. Neuropsychological Assessment, 4th ed.; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, A.P.; de Vet, H.C.; de Bie, R.A.; Kessels, A.G.; Boers, M.; Bouter, L.M.; Knipschild, P.G. The delphi list: A criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by delphi consensus. J. Clin. Epidemiol. 1998, 51, 1235. [Google Scholar] [CrossRef] [Green Version]
- Moseley, A.M.; Herbert, R.D.; Maher, C.G.; Sherrington, C.; Elkins, M.R. Reported quality of randomized controlled trials of physiotherapy interventions has improved over time. J. Clin. Epidemiol. 2011, 64, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1. 0 [Updated March 2011]. The Cochrane Collaboration. Available online: www.cochrane-handbook.orb (accessed on 11 March 2020).
- Hadi, A.; Najafgholizadeh, A.; Aydenlu, E.S.; Shafiei, Z.; Pirivand, F.; Golpour, S.; Pourmasoumi, M. Royal jelly is an effective and relatively safe alternative approach to blood lipid modulation: A meta-analysis. J. Funct. Foods 2018, 41, 202–209. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.B. Estimating Effect Sizes FromPretest-Posttest-Control Group Designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Ebner, N.; Dzierzewski, J.M.; Zlatar, Z.Z.; Gurka, M.J.; Dotson, V.M.; Kirton, J.; Mankowski, R.T.; Marsiske, M.; Manini, T.M. Effects of 90 Days of Resveratrol Supplementation on Cognitive Function in Elders: A Pilot Study. J. Altern. Complement. Med. 2018, 24, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Kritz-Silverstein, D.; Von Mühlen, D.; Barrett-Connor, E.; Bressel, M.A.B. Isoflavones and cognitive function in older women: The SOy and Postmenopausal Health in Aging (SOPHIA) Study. Menopause 2003, 10, 196–202. [Google Scholar] [CrossRef]
- Mix, J.A.; Crews, W.D. An Examination of the Efficacy of Ginkgo biloba Extract EGb 761 on the Neuropsychologic Functioning of Cognitively Intact Older Adults. J. Altern. Complement. Med. 2000, 6, 219–229. [Google Scholar] [CrossRef]
- Haskell-Ramsay, C.F.; Stuart, R.C.; Okello, E.J.; Watson, A.W. Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. Eur. J. Nutr. 2017, 56, 2621–2631. [Google Scholar] [CrossRef] [Green Version]
- Karabay, A.; Saija, J.D.; Field, D.T.; Akyürek, E.G. The acute effects of cocoa flavanols on temporal and spatial attention. Psychopharmacology 2018, 235, 1497–1511. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab. 2017, 42, 773–779. [Google Scholar] [CrossRef]
- Witte, A.V.; Kerti, L.; Margulies, D.S.; Flöel, A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 2014, 34, 7862–7870. [Google Scholar] [CrossRef] [Green Version]
- Decroix, L.; Tonoli, C.; Soares, D.D.; Tagougui, S.; Heyman, E.; Meeusen, R. Acute cocoa flavanol improves cerebral oxygenation without enhancing executive function at rest or after exercise. Appl. Physiol. Nutr. Metab. 2016, 41, 1225–1232. [Google Scholar] [CrossRef]
- Sadowska-Krępa, E.; Kłapcińska, B.; Pokora, I.; Domaszewski, P.; Kempa, K.; Podgórski, T. Effects of six-week Ginkgo biloba supplementation on aerobic performance, blood pro/antioxidant balance, and serum brain-derived neurotrophic factor in physically active men. Nutrients 2017, 9, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowska-Krępa, E.; Domaszewski, P.; Pokora, I.; Żebrowska, A.; Gdańska, A.; Podgórski, T. Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: A pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- González-Fuentes, J.; Selva, J.; Moya, C.; Castro-Vázquez, L.; Lozano, M.V.; Marcos, P.; Plaza-Oliver, M.; Rodriguez-Robledo, V.; Santander-Ortega, M.J.; Villaseca-González, N.; et al. Neuroprotective natural molecules, from food to brain. Front. Neurosci. 2018, 12, 721. [Google Scholar] [CrossRef] [Green Version]
- Ignarro, L.J.; Byrns, R.E.; Sumi, D.; de Nigris, F.; Napoli, C. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide 2006, 15, 93–102. [Google Scholar] [CrossRef]
- Calver, A.; Collier, J.; Vallance, P. Nitric oxide and blood vessels: Physiological role and clinical implications. Biochem. Educ. 1992, 20, 130–135. [Google Scholar] [CrossRef]
- Katusic, Z.S.; Austin, S.A. Endothelial nitric oxide: Protector of a healthy mind. Eur. Heart J. 2014, 35, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.P.E. The interactions of flavonoids within neuronal signaling pathways. Genes Nutr. 2007, 2, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Hellsten, Y.; Nyberg, M.; Jensen, L.G.; Mortensen, S.P. Vasodilator interactions in skeletal muscle blood flow regulation. J. Physiol. 2012, 590, 6297–6305. [Google Scholar] [CrossRef]
- Garthwaite, J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991, 14, 60–67. [Google Scholar] [CrossRef]
- Hashimoto, E.; Shimizu, E.; Iyo, M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res. Rev. 2004, 45, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Gundimeda, U.; McNeill, T.H.; Fan, T.K.; Deng, R.; Rayudu, D.; Chen, Z. Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: Role of 67-kDa laminin receptor and hydrogen peroxide. Biochem. Biophys. Res. Commun. 2014, 445, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Glassman, G. Understanding CrossFit. CrossFit J. 2007, 56, 1–2. [Google Scholar]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after Wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Nehlig, A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br. J. Clin. Pharm. 2012, 75, 716–727. [Google Scholar] [CrossRef]
- Figueira, I.; Menezes, R.; Macedo, D.; Costa, I.; Dos Santos, C.N. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr. Neuropharmacol. 2017, 15, 562–594. [Google Scholar] [CrossRef] [Green Version]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
Search Strategy Item | Search Strategy Details |
---|---|
String of keywords | ((polyphenol) OR (flavonoids) OR (polyphenolic compounds) OR (isoflavone) OR (flavanol) OR (phytoestrogen) OR (resveratrol)) AND ((cognitive performance) OR (cognitive) OR (cognitive function) OR (cognition) OR (brain function) OR (executive function) OR (attention) OR (working memory) OR (brain imaging) OR (neuroimaging) OR (neural) OR (magnetic resonance imaging) OR (MRI) OR (fmri) OR (grey matter) OR (gray matter) OR (brain volume) OR (brain structure) OR (electrophysiology) OR (EEG) OR (event related potential) OR (neuroblast) OR (neuroblast) OR (cerebral blood flow) OR (CBF) OR (regional perfusion) OR (brain-derived neurotrophic factor) OR (BDNF) OR (cerebrovascular responsiveness) OR (CVR) OR (pulsatility index) OR (transcranial doppler) OR (TCD) OR (near-infrared spectroscopy) OR (NIRS) OR (cerebral hemodynamics) OR (total hemoglobin) OR (total-Hb) OR (oxygenated hemoglobin) OR (oxy-Hb) OR (deoxygenated 2 hemoglobin) OR (deoxy-Hb)) NOT ((mice) OR (animals) OR (Parkinson’s) OR (stroke) OR (Alzheimer’s) OR (dementia) OR (cancer) OR (lesions) OR (diabetes) OR (injury) OR (patients) OR (rats) OR (disease) OR (impairment)] |
Searched databases | Web of Science and PubMed; up to July 2019 |
Inclusion criteria | (i) English language published primary research (up to July 2019), (ii) research in healthy adult humans, (iii) original investigations researching effects of (poly)phenol-rich supplementation on brain health, (iv) no major methodological issues (i.e., lack of a comparative control, not blinded, or inappropriate/ incorrect statistical analyses) |
Exclusion criteria | (i) studies written in any non-English language, (ii) congress, meeting, conference, or workshop publications, (iii) studies conducted in diseased individuals or a individuals greater than 55 years of age and (iv) studies that did not include supplementation. Findings from sources such as encyclopedias, reviews, case studies, or book chapters were not included. |
Time filter | None applied (search from inception) |
Language filter | English |
PICOS | Participants: healthy adults (>18 years of age) Intervention: chronic and/or acute (poly)phenols-rich supplementation Comparative: Any Outcome: cognitive function (e.g., neuroplasticity, overall cognition, executive function, processing speed, verbal memory, language psychomotor performance, visual memory, attention) and brain activity, neuroprotective measures (e.g., brain perfusion, cerebral blood flow (CBF), cerebral hemodynamics, and neuroinflammation) Study design: controlled clinical trial |
Age Group | Authors | Study Design | Participants Characteristics | Supplementation Protocol | Effect on Psychomotor Functions | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Participants | Age of Participants | Gender (% of Female) | Phenolic Compounds | Dose | Bioavailability | Intervention Duration | ||||
Old-aged Adults | Antom et al. [47] | Double-blind, randomized PLA-controlled trial | n = 32 (10 PLA, 12 low dose, 10 high dose) | Mean age: 73.34 ± 7.02 years old (65–93 years) | 50% | Resveratrol | High dose: 1000 mg/day | Low | Chronic: 12 weeks | Psychomotor speed improved on the TMT (a) compared to PLA (TMT in s) |
Low dose:300 mg/day | Non-significant effect on psychomotor speed on the TMT (a) compared to PLA (TMT in s) | |||||||||
Huhn et al. [27] | Double-blind, randomized PLA-controlled trial | n = 60 (30 resveratrol group, 30 PLA) | Age: 60–79 years | 53% | Resveratrol | Low dose: 200 mg/day | Low | Chronic: 26 weeks | Non-significant effect on psychomotor speed on the TMT (a) compared to PLA (TMT in s) | |
Kritz-Silverstein et al. [48] | Double-blind, randomized PLA-controlled trial | n = 53 (27 treatment, 26 PLA) | Mean age: SOY-ISF = 60 ± 4, PLA= 62 ± 6 years | 100% | Soy-extracted isoflavones | Low dose: 110 mg/day | High: 43% | Chronic: 26 weeks | Non-significant effect on psychomotor speed on the TMT (a) compared to PLA (TMT in s) | |
Mastroiacovo et al. [19] | Double-blind, controlled, parallel-arm trial | n = 90 (30 for each study’s arm: high, moderate, low, flavanol) | Age >60 years old | 62% | Cocoa flavanols | High dose: 993 mg | Medium | Chronic: 8 weeks | Psychomotor speed improved on the TMT (a) compared to PLA (TMT in s) | |
Medium dose: 520 mg | Psychomotor speed improved on the TMT (a) compared to PLA (TMT in s) | |||||||||
Mix & Crews. [49] | Double-blind, PLA-controlled, parallel-group trial | n = 48 (n of each arm: not mentioned) | Age range: 55–86 years old | 47.50% | Ginkgo biloba extract EGb 761 | Low dose: 180 mg/day | Low | Chronic: 6 weeks | Non-significant effect on psychomotor speed on the TMT (a) compared to PLA (TMT in s) | |
Young- and middle-aged adults | Francis et al. [28] | A double blind counterbalanced | n = 16 | Age range: 18–30 years old | 100% | Cocoa flavanols | Low dose: 172 mg/day | Medium | 5 days | Non-significant effect on psychomotor speed on the RTT compared to PLA (RTT in s) |
Massee et al. [23] | Randomized, PLA-controlled, double-blind, parallel design | n = 38 | Mean age: 24.13 ± 4.47 years old (18–40 years) | 67.50% | Catechin cocoa extract | Low dose 250 mg/day | Medium: 18% | Acute | Non-significant effect on psychomotor speed on the RTT compared to PLA (RTT in s) | |
Chronic: 4weeks | Non-significant effect on psychomotor speed on the RTT compared to PLA (RTT in s) | |||||||||
Dietz et al. [24] | Randomized, single-blind, PLA-controlled, counterbalanced trial | n = 23 | Mean age: 24.7 years old (20–35 years) | 83% | Matcha tea powder | High dose: 4 g/day | Low | Acute | Psychomotor speed improved on the RTT compared to PLA (RTT in s) | |
Haskell-Ramsay et al. [50] | Randomized, PLA-controlled, double-blind, counterbalanced-design | n = 20 | Mean age: 21.1 years old | 65% | Anthocyanin-rich purple grape juice | Low dose: 138 mg/day | Low | Acute | Psychomotor speed improved on the RTT compared to PLA (RTT in s) | |
Karabay et al. [51] | Randomized, double-blind, PLA-controlled counterbalanced design | n = 24 | Mean age: 22.2 years old (18–29 years) | 50% | Cocoa flavanols | Low dose: 374 mg/day | Medium | Acute | Non-significant effect on psychomotor speed on the RTT compared to PLA (RTT in s) | |
High dose: 747 mg/day | Non-significant effect on psychomotor speed on the RTT compared to PLA (RTT in s) |
Age Group | Author | Study Design | Participants Characteristics | Supplementation Protocol | Effect on BDNF | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Participants | Age of Participant | Gender (% of Female) | Phenolic Compound | Dose | Bioavailability | Intervention Duration | ||||
Old-aged Adults | Bowtell et al. [52] | Randomized, double-blind, PLA-controlled parallel trial | n = 26 (12 blueberry, 14 PLA) | Mean age: BB group = 67.5 ± 0.9, PLA group = 69 ± 0.9 | 42% | Anthocyanin-rich blueberry | Low dose: 387 mg/day | Low | Chronic: 12 weeks | Non-significant effect on BDNF compared to PLA (BDNF in (ng/mL)) |
Huhn et al. [27] | Double-blind, randomized PLA-controlled trial | n = 60 (30 resveratrol group, 30 PLA) | Age: 60–79 years | 53% | Resveratrol | Low dose: 200 mg/day | Low | Chronic: 26 weeks | Non-significant effect on BDNF compared to PLA (BDNF in (ng/mL)) | |
Witte et al. [53] | Double blind, randomized, PLA-controlled, parallel groups study | n = 46 (23 resveratrol, 23 PLA) | Mean age: RESV group = 65 ± 7, PLA = 64 ± 5 years old | 39% | Resveratrol | Low dose: 200 mg/day | Low | Chronic: 26 weeks | Non-significant effect on BDNF compared to PLA (BDNF in (ng/mL)) | |
Young- and middle-aged adults | Decroix et al. [54] | Randomized, double-blind, PLA-controlled, counterbalanced design | n = 12 | Mean age: 30 ± 3 years old | 0% | Flavanol-rich chocolate | High dose: 900 mg/day | Medium | Acute | Non-significant effect on BDNF compared to PLA (BDNF in (ng/mL)) |
Sadowska-Krępa et al. [55] | Randomized, double-blind, placebo-controlled, parallel-groups study | n = 18 | Age range: 18–25 years old | 0% | Flavonoid-rich Ginko biloba capsule | Low dose: 160 mg/day | Medium | Chronic: 6 weeks | BDNF significantly improved compared to PLA (BDNF in (ng/ml)) | |
Sadowska-Krępa et al. [56] | Randomized, double-blind, placebo-controlled, parallel-groups study | n = 16 | Age range: 18–25 years old | 0% | Catechin-rich green tee | Medium dose: 500 mg/day | Low | Chronic: 6 weeks | Non-significant effect on BDNF compared to PLA (BDNF in (ng/ml)) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, A.; Trabelsi, K.; Boukhris, O.; Bouaziz, B.; Müller, P.; Glenn, J.M.; Chamari, K.; Müller, N.; Chtourou, H.; Driss, T.; et al. Moderators of the Impact of (Poly)Phenols Interventions on Psychomotor Functions and BDNF: Insights from Subgroup Analysis and Meta-Regression. Nutrients 2020, 12, 2872. https://doi.org/10.3390/nu12092872
Ammar A, Trabelsi K, Boukhris O, Bouaziz B, Müller P, Glenn JM, Chamari K, Müller N, Chtourou H, Driss T, et al. Moderators of the Impact of (Poly)Phenols Interventions on Psychomotor Functions and BDNF: Insights from Subgroup Analysis and Meta-Regression. Nutrients. 2020; 12(9):2872. https://doi.org/10.3390/nu12092872
Chicago/Turabian StyleAmmar, Achraf, Khaled Trabelsi, Omar Boukhris, Bassem Bouaziz, Patrick Müller, Jordan M. Glenn, Karim Chamari, Notger Müller, Hamdi Chtourou, Tarak Driss, and et al. 2020. "Moderators of the Impact of (Poly)Phenols Interventions on Psychomotor Functions and BDNF: Insights from Subgroup Analysis and Meta-Regression" Nutrients 12, no. 9: 2872. https://doi.org/10.3390/nu12092872
APA StyleAmmar, A., Trabelsi, K., Boukhris, O., Bouaziz, B., Müller, P., Glenn, J. M., Chamari, K., Müller, N., Chtourou, H., Driss, T., & Hökelmann, A. (2020). Moderators of the Impact of (Poly)Phenols Interventions on Psychomotor Functions and BDNF: Insights from Subgroup Analysis and Meta-Regression. Nutrients, 12(9), 2872. https://doi.org/10.3390/nu12092872