Exploration of the Principal Component Analysis (PCA) Approach in Synthesizing the Diet Quality of the Malaysian Population
Abstract
:1. Introduction
- To identify the type of dietary patterns derived by the PCA approach in this study sample.
- To determine the correlation among all dietary patterns derived by PCA and selected nutrient intake in this study sample.
2. Materials and Methods
2.1. Study Design and Respondents
2.2. Sampling Frame
2.3. Survey Questionnaire
2.4. Dietary Intake
2.5. Food Groups
2.6. Identification of Dietary Patterns
2.7. Statistical Analysis
3. Results
3.1. Sociodemographic Background
3.2. Dietary Intake of Respondents
3.3. Dietary Patterns Derived by PCA Approach
3.4. Correlation among Selected Nutrient Intake, BMI and Composite Factor Scores
4. Discussion
5. Conclusions
- (i)
- There was a moderate, positive correlation between the “traditional” dietary pattern and both total protein and total sugar intake;
- (ii)
- There was a significant moderate correlation between the “prudent” dietary pattern and dietary fibre;
- (iii)
- There was a moderate, positive correlation between the “Chinese” dietary pattern and total energy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Original Food Items | New Food Groups | No. | Original Food Items | New Food Groups | No. | Original Food Items | New Food Groups |
---|---|---|---|---|---|---|---|---|
1 | Rice | Rice | 22 | Meat Burger | Processed meats | 43 | Duck Egg | Eggs |
2 | Rice Porridge | Rice | 23 | Hot Dog | Processed meats | 44 | Quail Egg | Eggs |
3 | Glutinous Rice | Cereals and cereals products | 24 | Nugget | Processed meats | 45 | Salted Egg | Eggs |
4 | Noodles | Cereals and cereals products | 25 | Chicken Ball | Processed meats | 46 | Pulses | Legumes and legume products |
5 | Vermicelli | Cereals and cereals products | 26 | Ham | Other meat | 47 | Soybean | Legumes and legume products |
6 | Lohshifun | Cereals and cereals products | 27 | Bacon | Other meat | 48 | Fermented Soy | Legumes and legume products |
7 | Pasta | Cereals and cereals products | 28 | Luncheon | Other meat | 49 | Groundnut | Legumes and legume products |
8 | Sagu | Cereals and cereals products | 29 | Pork | Other meat | 50 | Milk | Milk |
9 | Bread | Cereals and cereals products | 30 | Fish | Fish and seafood | 51 | Powdered Milk | Milk |
10 | Bun | Cereals and cereals products | 31 | Fresh Fish | Fish and seafood | 52 | Condensed Milk | Processed dairy products |
11 | Roti Canai | Cereals and cereals products | 32 | Anchovy | Fish and seafood | 53 | Evaporated Milk | Processed dairy products |
12 | Capati | Cereals and cereals products | 33 | Canned Fish | Fish and seafood | 54 | Flavoured Yogurt | Processed dairy products |
13 | Dosai | Cereals and cereals products | 34 | Cockles | Fish and seafood | 55 | Cheese | Processed dairy products |
14 | Cereals | Cereals and cereals products | 35 | Prawn | Fish and seafood | 56 | Leafy Vegetable | Vegetables |
15 | Ready-to-eat Cereals | Cereals and cereals products | 36 | Cuttlefish | Fish and seafood | 57 | Non-leafy Vegetable | Vegetables |
16 | Pizza | Cereals and cereals products | 37 | Dried Cuttlefish | Fish and seafood | 58 | Root | Vegetables |
17 | Corn | Cereals and cereals products | 38 | Crab | Fish and seafood | 59 | Cabbage | Vegetables |
18 | Chicken | Meat | 39 | Salted Fish | Fish and seafood | 60 | Pumpkin | Vegetables |
19 | Meat | Meat | 40 | Fish Balls | Fish and seafood | 61 | Salted Vegetables | Vegetables |
20 | Goat | Meat | 41 | Lekor | Fish and seafood | 62 | Ulam | Vegetables |
21 | Duck | Meat | 42 | Chicken Egg | Eggs | 63 | Baby Corn | Vegetables |
No. | Original Food Items | New Food Groups | No. | Original Food Items | New Food Groups | No. | Original Food Items | New Food Groups |
---|---|---|---|---|---|---|---|---|
64 | Mushrooms | Vegetables | 85 | Dried Fruits | Fruits | 106 | Ice Cream | Confections |
65 | Sprouts | Vegetables | 86 | Plain Water | Non-alcoholic beverages | 107 | ABC | Confections |
66 | Papaya | Fruits | 87 | Tea | Non-alcoholic beverages | 108 | Jelly/Custard | Confections |
67 | Guava | Fruits | 88 | Coffee | Non-alcoholic beverages | 109 | Snacks | Confections |
68 | Mandarin Orange | Fruits | 89 | Chocolate Drink | Non-alcoholic beverages | 110 | Jam | Spreads |
69 | Mango | Fruits | 90 | Malted Drink | Non-alcoholic beverages | 111 | Seri Kaya | Spreads |
70 | Pineapple | Fruits | 91 | Rose Syrup | Non-alcoholic beverages | 112 | Butter | Spreads |
71 | Banana | Fruits | 92 | Fruit Juice | Non-alcoholic beverages | 113 | Margarine | Spreads |
72 | Watermelon | Fruits | 93 | Carbonated Drink | Non-alcoholic beverages | 114 | Peanut | Spreads |
73 | Starfruit | Fruits | 94 | Botanical Herbs | Non-alcoholic beverages | 115 | Cream Cheese | Spreads |
74 | Jackfruit | Fruits | 95 | Energy Drink | Non-alcoholic beverages | 116 | Sugar | Flavorings |
75 | Orange | Fruits | 96 | Soybean Drink | Non-alcoholic beverages | 117 | Honey | Flavorings |
76 | Apple | Fruits | 97 | Syandi | Alcoholic beverages | 118 | Shrimp Sauce | Flavorings |
77 | Pear | Fruits | 98 | Beer | Alcoholic beverages | 119 | Anchovy Sauce | Flavorings |
78 | Grape | Fruits | 99 | Wine | Alcoholic beverages | 120 | Shrimp Cencalok | Flavorings |
79 | Durian | Fruits | 100 | Spirit | Alcoholic beverages | 121 | Thick Soy Sauce | Flavorings |
80 | Rambutan | Fruits | 101 | Liquor | Alcoholic beverages | 122 | Light Soy Sauce | Flavorings |
81 | Longan Segar | Fruits | 102 | Local Delicacies | Confections | 123 | Ketchup Sauce | Flavorings |
82 | Laici Segar | Fruits | 103 | Cake | Confections | 124 | Oyster Sauce | Flavorings |
83 | Honeydew | Fruits | 104 | Biscuits | Confections | 125 | Fish Sauce | Flavorings |
84 | Tinned Fruits | Fruits | 105 | Sweets | Confections | 126 | Prawn Paste | Flavorings |
References
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.K.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary Pat-terns: Challenges and Opportunities in Dietary Patterns Research: An Experimental Biology Workshop, April 1, 2006. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef]
- Jones-McLean, E.M.; Shatenstein, B.; Whiting, S.J. Dietary patterns research and its applications to nutrition policy for the prevention of chronic disease among diverse North American populations. Appl. Physiol. Nutr. Metab. 2010, 35, 195–198. [Google Scholar] [CrossRef]
- Schwerin, H.S.; Stanton, J.L.; Riley, A.M.; Schaefer, A.E.; Leveille, G.A.; Elliott, J.G.; Warwick, K.M.; Brett, B.E. Food eating patterns and health: A reexamination of the Ten-State and HANES I surveys. Am. J. Clin. Nutr. 1981, 34, 568–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwerin, H.; Stanton, J.; Smith, J.; Riley, A.; Brett, B. Food, eating habits, and health: A further examination of the rela-tionship between food eating patterns and nutritional health. Am. J. Clin. Nutr. 1982, 35, 1319–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef]
- Kourlaba, G.; Panagiotakos, D. Dietary quality indices and human health: A review. Maturitas 2009, 62, 1–8. [Google Scholar] [CrossRef]
- Arvaniti, F.; Panagiotakos, D.B. Healthy indexes in public health practice and research: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 317–327. [Google Scholar] [CrossRef]
- Wirt, A.; Collins, C.E. Diet quality—What is it and does it matter? Public Health Nutr. 2009, 12, 2473–2492. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.K.; Muller, D.; Tucker, K.L. Associations of empirically derived eating patterns with plasma lipid biomarkers: A comparison of factor and cluster analysis methods. Am. J. Clin. Nutr. 2004, 80, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Hearty, Á.P.; Gibney, M.J. Comparison of cluster and principal component analysis techniques to derive dietary patterns in Irish adults. Br. J. Nutr. 2009, 101, 598–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, D.B.; De Almeida, R.M.V.R.; Pereira, R.A. A comparison of three statistical methods applied in the identification of eating patterns. Cadernos Saúde Pública 2010, 26, 2138–2148. [Google Scholar] [CrossRef] [Green Version]
- Norimah, A.K.; Safiah, M.; Jamal, K.; Haslinda, S.; Zuhaida, H.; Rohida, S.; Norazlin, S.; Poh, B.K.; Kandiah, M.; Zalilah, M.S.; et al. Food Consumption Patterns: Findings from the Malaysian Adult Nutrition Survey (MANS). Malays. J. Nutr. 2008, 14, 25–39. [Google Scholar] [PubMed]
- Zalilah, M.S.; Mirnalini, K.; Safiah, M.Y.; Tahir, A.; Haslinda, M.D.S.; Rohana, D.S.; Zarina, M.Y.K.; Hasyami, S.M.; Normah, H.; Fatimah, A.S. Daily Energy Intake from Meals and Afternoon Snacks: Findings from the Malaysian Adults Nutrition Survey (MANS). Malays. J. Nutr. 2008, 14, 41–55. [Google Scholar]
- Azmi, M.Y.; Junidah, R.; Mariam, A.S.; Safiah, M.Y.; Fatimah, S.; Norimah, A.K.; Poh, B.K.; Kandiah, M.; Zalilah, M.S.; Manan, W.W.A.; et al. Body Mass Index (BMI) of Adults: Findings of the Malaysian Adult Nutrition Survey (MANS). Malays. J. Nutr. 2009, 15, 97–119. [Google Scholar]
- Poh, B.K.; Safiah, M.Y.; Tahir, A.; Haslinda, M.D.S.; Norazlin, N.S.; Norimah, A.K.; Manan, W.W.; Mirnalini, K.; Zalilah, M.S.; Azmi, M.Y.; et al. Physical Activity Pattern and Energy Expenditure of Malaysian Adults: Findings from the Malaysian Adult Nutrition Survey (MANS). Malays. J. Nutr. 2010, 16, 13–37. [Google Scholar]
- Wessex Institute of Public Health (1995) University of Southampton. Software Package for Food Frequency Questionnaire.
- Schoenaker, D.A.; Dobson, A.J.; Soedamah-Muthu, S.S.; Mishra, G.D. Factor analysis is more appropriate to identify over-all dietary patterns associated with diabetes when compared with Treelet transform analysis. J. Nutr. 2013, 143, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Crozier, S.R.; Robinson, S.M.; Borland, S.E.; Inskip, H.M. Dietary patterns in the Southampton Women’s Survey. Eur. J. Clin. Nutr. 2006, 60, 1391–1399. [Google Scholar] [CrossRef] [Green Version]
- Bamia, C.; Orfanos, P.; Ferrari, P.; Overvad, K.; Hundborg, H.H.; Tjonneland, A.; Olsen, A.; Kesse, E.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; et al. Dietary patterns among older Euro-peans: The EPIC-Elderly study. Br. J. Nutr. 2005, 94, 100–113. [Google Scholar] [CrossRef]
- Ministry of Health Malaysia. Malaysian Adult Nutrition Survey 2003: Methodology; Ministry of Health Malaysia: Putrajaya, Malaysia, 2008.
- Schwedhelm, C.; Iqbal, K.; Knüppel, S.; Schwingshackl, L.; Boeing, H. Contribution to the understanding of how principal component analysis–derived dietary patterns emerge from habitual data on food consumption. Am. J. Clin. Nutr. 2018, 107, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newby, P.; Muller, D.; Hallfrisch, J.; Andres, R.; Tucker, K.L. Food patterns measured by factor analysis and anthropometric changes in adults. Am. J. Clin. Nutr. 2004, 80, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ortiz, J.; Fung, T.T.; Baylin, A.; Hu, F.B.; Campos, H. Dietary patterns and risk of nonfatal acute myocardial infarction in Costa Rican adults. Eur. J. Clin. Nutr. 2006, 60, 770–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullie, P.; Clarys, P.; Hulens, M.; Vansant, G.A. Dietary patterns and socioeconomic position. Eur. J. Clin. Nutr. 2010, 64, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Varraso, R.; Garcia-Aymerich, J.; Monier, F.; Le Moual, N.; De Batlle, J.; Miranda, G.; Pison, C.; Romieu, I.; Kauffmann, F.; Mac-cario, J. Assessment of dietary patterns in nutritional epidemiology: Principal component analysis compared with con-firmatory factor analysis. Am. J. Clin. Nutr. 2012, 96, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.A.C.; Emmett, P.M.; Newby, P.K.; Northstone, K. Dietary patterns obtained through principal components analysis: The effect of input variable quantification. Br. J. Nutr. 2013, 109, 1881–1891. [Google Scholar] [CrossRef] [Green Version]
- Hinton, P.R.; Brownlow, C.; McMurray, I.; Cozens, B. SPSS Explained; Taylor and Franchis Group: New York, NY, USA, 2004. [Google Scholar]
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research; Sage Publication: California, CA, USA, 2003. [Google Scholar]
- Safari, A.; Shariff, Z.M.; Kandiah, M.; Rashidkhani, B.; Fereidooni, F. Dietary patterns and risk of colorectal cancer in Tehran Province: A case–control study. BMC Public Heal. 2013, 13, 222. [Google Scholar] [CrossRef] [Green Version]
- Economic Planning Unit. Eighth Malaysia Plan 2001–05; Prime Minister’s Department, Percetakan Nasional Malaysia: Kuala Lumpur, Malaysia, 2001.
- Haron, S.A.; Paim, L.; Yahaya, N. Towards sustainable consumption: An examination of environmental knowledge among Malaysians. Int. J. Consum. Stud. 2005, 29, 426–436. [Google Scholar] [CrossRef]
- Helen-Ng, L.C.; Razak, I.A.; Ghani, W.M.N.; Marhazlinda, J.; Norain, A.T.; Jallaludin, R.-L.R.; Rahman, Z.A.A.; Abdullah, N.; Zain, R.B. Dietary pattern and oral cancer risk—A factor analysis study. Community Dent. Oral Epidemiol. 2012, 40, 560–566. [Google Scholar] [CrossRef]
- Hajeb, P.; Jinap, S.; Ismail, A.; Fatimah, A.; Jamilah, B.; Rahim, M.A. Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Control. 2009, 20, 79–84. [Google Scholar] [CrossRef]
- Rahman, S.A.; Chee, W.S.S.; Yassin, Z.; Chan, S.P. Vitamin D status among postmenopausal Malaysian women. Asia Pac. J. Clin. Nutr. 2004, 13, 255–260. [Google Scholar] [PubMed]
- Sheng, T.; Shamsudin, M.; Mohamed, Z.; Abdullah, A.; Radam, A. Complete demand systems of food in Malaysia. Agric. Econ. 2008, 54, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Marchioni, D.M.L.; Latorre, M.d.R.D.d.O.; Eluf-Neto, J.; Wünsch-Filho, V.; Fisberg, R.M. Identification of dietary patterns us-ing factor analysis in an epidemiological study in São Paulo. Sao Paulo Med. J. 2005, 123, 124–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borland, S.E.; the SWS Study Group; Robinson, S.; Crozier, S.R.; Inskip, H. Stability of dietary patterns in young women over a 2-year period. Eur. J. Clin. Nutr. 2008, 62, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Food Balance Sheets. 2006. Available online: http://faostat3.fao.org/home/index.html#DOWNLOAD (accessed on 11 June 2013).
- Lee, J.-K.; Khir, A.S.M. The incidence of hip fracture in Malaysians above 50 years of age: Variation in different ethnic groups. APLAR J. Rheumatol. 2007, 10, 300–305. [Google Scholar] [CrossRef]
- Popkin, B.M. The Nutrition Transition and Obesity in the Developing World. J. Nutr. 2001, 131, 871S–873S. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. The Nutrition Transition Is Speeding Up: A Global Perspective; Humana Press: Totowa, NJ, USA, 2012; pp. 85–99. [Google Scholar]
- Ismail, M.N. The nutrition and health transition in Malaysia. Malays. J. Nutr. 2002, 5, 191–195. [Google Scholar]
- Tee, E.-S.; Tamin, S.; Ilyas, R.; Ramos, A.; Tan, W.-L.; Lai, D.K.-S.; Kongchuntuk, H. Current status of nutrition labelling and claims in the South-East Asian region: Are we in harmony? Asia Pac. J. Clin. Nutr. 2002, 11, S80–S86. [Google Scholar] [CrossRef]
- Lipoeto, N.I.; Lin, K.G.; Angeles-Agdeppa, I. Food consumption patterns and nutrition transition in South-East Asia. Public Health Nutr. 2012, 16, 1637–1643. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, C. Uneven dietary development: Linking the policies and processes of globalization with the nutrition transi-tion, obesity and diet-related chronic diseases. Glob. Health 2006, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Pollan, M. In Defense of Food: An Eater’s Manifesto; The Penguin Press: New York, NY, USA, 2008. [Google Scholar]
- Heng, H.L.S.; Guan, A.T.K. Examining Malaysian household expenditure patterns on food-away-from-home. Asian J. Agric. Dev. 2007, 4, 11–24. [Google Scholar]
- Lin, B.-H.; Guthrie, J.; Frazao, E. Nutrient Contribution of Food Away from Home; USDA/ERS: Washington, DC, USA, 1999; Chapter 12.
- Guthrie, J.F.; Lin, B.-H.; Frazao, E. Role of Food Prepared Away from Home in the American Diet, 1977–1978 versus 1994-96: Changes and Consequences. J. Nutr. Educ. Behav. 2002, 34, 140–150. [Google Scholar] [CrossRef]
- Paeratakul, S.; Ferdinand, D.P.; Champagne, C.M.; Ryan, D.H.; Bray, G.A. Fast-food consumption among US adults and children: Dietary and nutrient intake profile. J. Am. Diet. Assoc. 2003, 103, 1332–1338. [Google Scholar] [CrossRef]
- Bowman, S.A.; Vinyard, B.T. Fast food consumption of U.S. adults: Impact on energy and nutrient intakes and over-weight status. J. Am. Coll. Nutr. 2004, 23, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Tey, Y.S.; Shamsudin, M.N.; Mohamed, Z.; Abdullah, A.M.; Radam, A. (2010) Expenditure patterns on foodservice in Malaysia. J. Tour. Hosp. Culin. Arts 2010, 2, 1–8. [Google Scholar]
- Hawkes, C. (2010) The influence of trade liberalisation on global dietary change: The case of vegetable oils, meat and highly processed foods. In Trade, Food, Diet and Health: Perspectives and Policy Options; Hawkes, C.B.C., Henson, S., Eds.; Wiley Blackwell: Oxford, UK, 2010. [Google Scholar]
- PricewaterhouseCoopers. “Malaysia”, Global Retail and Consumer Study from Beijing to Budapest: Executive Sum-mary 2005/2006; PricewaterhouseCoopers: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Popkin, B.M.; Horton, S.; Kim, S. The Nutritional Transition and Diet-Related Chronic Diseases in Asia: Implications for Prevention; Food Consumption and Nutrition Division of the International Food Policy Research Institute: Washington, DC, USA, 2001. [Google Scholar]
- Sichieri, R. Dietary Patterns and Their Associations with Obesity in the Brazilian City of Rio de Janeiro. Obes. Res. 2002, 10, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; the Freshmen in Dietetic Courses Study II Group; Sasaki, S.; Murakami, K.; Kim, M.K.; Takahashi, Y.; Hosoi, Y.; Itabashi, M. Three major dietary patterns are all independently related to the risk of obesity among 3760 Japanese women aged 18–20 years. Int. J. Obes. 2008, 32, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Dugee, O.; Khor, G.L.; Lye, M.-S.; Luvsannyam, L.; Janchiv, O.; Jamyan, B.; Esa, N. Association of major dietary patterns with obesity risk among Mongolian men and women. Asia Pac. J. Clin. Nutr. 2009, 18, 433–440. [Google Scholar]
- Kim, J.; Jo, I.; Joung, H. A Rice-Based Traditional Dietary Pattern Is Associated with Obesity in Korean Adults. J. Acad. Nutr. Diet. 2012, 112, 246–253. [Google Scholar] [CrossRef]
- Mizoue, T.; Yamaji, T.; Tabata, S.; Yamaguchi, K.; Ogawa, S.; Mineshita, M.; Kono, S. Dietary patterns and glucose toler-ance abnormalities in Japanese men. J. Nutr. 2006, 136, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Esmaillzadeh, A.; Entezari, M.; Paknahad, Z.; Safavi, M.; Jalali, M.; Ghiasvand, R.; Bahreini, N.; Nourian, M.; Azadbakht, L. Identification of diet-disease relations through dietary pattern approach: A review. J. Res. Med Sci. 2008, 13, 337–348. [Google Scholar]
- Sherafat-Kazemzadeh, R.; Egtesadi, S.; Mirmiran, P.; Gohari, M.; Farahani, S.J.; Hosseini-Esfahani, F.; Vafa, M.R.; Hedayati, M.; Azizi, F. Dietary patterns by reduced rank regression predicting changes in obesity indices in a cohort study: Tehran Lipid and Glucose Study. Asia Pac. J. Clin. Nutr. 2010, 19, 22–32. [Google Scholar] [PubMed]
- Togo, P.; Osler, M.; Sørensen, T.; Heitmann, B.L. Food intake patterns and body mass index in observational studies. Int. J. Obes. 2001, 25, 1741–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Frequency | Percent (%) | |
---|---|---|
State of Malaysia | ||
Peninsular | 2373 | 77.5 |
Southern | 577 | 18.8 |
Central | 987 | 32.2 |
Eastern | 424 | 13.8 |
Northern | 387 | 12.6 |
Sabah | 360 | 11.8 |
Sarawak | 330 | 10.8 |
Strataabl | ||
Urban | 1590 | 51.9 |
Metropolitan city | 1139 | 39.1 |
Big city | 453 | 14.8 |
Rural | 1473 | 48.1 |
Small town | 380 | 12.4 |
Village | 1093 | 35.9 |
Gender | ||
Male | 1493 | 48.7 |
Female | 1570 | 51.3 |
Ethnicity | ||
Malay | 1602 | 52.3 |
Chinese | 746 | 24.4 |
Indian/Punjabi | 252 | 8.2 |
Other | 463 | 15.4 |
Religion | ||
Muslim | 1859 | 60.7 |
Buddhist | 621 | 20.3 |
Christian | 210 | 6.9 |
Hindu | 308 | 10.1 |
Other | 65 | 2.1 |
Marital Status | ||
Single | 894 | 29.2 |
Married | 2074 | 67.7 |
Divorced/Separated | 36 | 1.2 |
Widow | 56 | 1.8 |
Age (Mean Age) | 34.5 ± 11.1 (SD) | |
18–19 | 223 | 7.3 |
20–24 | 499 | 16.3 |
25–29 | 460 | 15.0 |
30–34 | 411 | 13.4 |
35–39 | 454 | 14.8 |
40–44 | 418 | 13.6 |
45–49 | 244 | 8.0 |
50–54 | 208 | 6.8 |
55–59 | 146 | 4.8 |
Level of Education | ||
Primary School | 607 | 19.8 |
Lower Secondary School | 642 | 21.0 |
Upper Secondary School | 1076 | 35.1 |
Post-Secondary | 176 | 5.7 |
College/University | 436 | 14.2 |
Others | 126 | 4.1 |
Employment Status | ||
Working | 1968 | 64.2 |
Retired | 28 | 9.2 |
Student | 164 | 5.4 |
Housewife | 735 | 24.0 |
Unemployed | 108 | 3.5 |
Others/Refused to Answer | 60 | 2.0 |
Monthly Household Income (Mean) | 1992.61 ± 2752.8 (SD) | |
<MYR 1500 | 1695 | 55.3 |
MYR 1500–3500 | 954 | 31.1 |
>MYR 3500 | 414 | 13.5 |
Body Mass Index (BMI) | 23.5 ± 4.3 (SD) | |
Underweight | 333 | 10.9 |
Normal | 1691 | 55.2 |
Overweight | 806 | 26.3 |
Obese | 233 | 7.6 |
Dietary Intake | Mean ± S.E. | RNI | RNI Achievement | |||
---|---|---|---|---|---|---|
18–29 Years (n = 580) | 30–50 Years (n = 765) | 51–60 Years (n = 151) | Total (n = 1496) | Mean% RNI | ||
Energy Intake (kcal) | 2463 ± 18.0 | 2491 ± 14.1 | 2408 ± 33.6 | 2472 ± 10.6 | 2440–2460 | 101 |
Carbohydrates (g) | 461 ± 4.2 | 463 ± 3.3 | 446 ± 7.5 | 460 ± 2.5 | NA b (55–70% of TE) | 74.4 b |
Proteins (g) | 110 ± 1.5 | 114 ± 1.5 | 106 ± 3.2 | 112 ± 1.0 | 62 g (15–20% of TE) | 180.4 |
Fats (g) | 65 ± 1.9 | 67 ± 2.1 | 58 ± 4.4 | 65 ± 1.4 | 54–82 g (20–30% of TE) | 120.7 |
Calcium (mg) | 788 ± 13.3 | 800 ± 11.7 | 782 ± 25.8 | 794 ± 8.3 | 1000 | 79.4 |
Iron a (mg) | 19 ± 0.3 | 20 ± 0.2 | 19 ± 0.6 | 19 ± 0.2 | 14 | 138.9 |
Zinc (mg) | 9 ± 0.3 | 9 ± 0.3 | 8 ± 0.7 | 9 ± 0.2 | 6.7 | 135.8 |
Thiamine (mg) | 2 ± 0.0 | 2 ± 0.1 | 2 ± 0.1 | 2 ± 0.0 | 1.2 | 153.5 |
Riboflavin (mg) | 2 ± 0.0 | 2 ± 0.0 | 2 ± 0.1 | 2 ± 0.0 | 1.3 | 170.9 |
Niacin (mg NE) | 19 ± 0.6 | 20 ± 0.6 | 17 ± 1.2 | 19 ± 0.4 | 16 | 120.2 |
Vitamin C (mg) | 120 ± 3.3 | 129 ± 3.3 | 132 ± 8.3 | 126 ± 2.3 | 70 | 179.9 |
Vitamin A (µg) | 580 ± 152.1 | 631 ± 130.7 * | 653 ± 378.6 | 614 ± 97.2 | 600 | 102.3 |
Vitamin E (mg) | 12 ± 0.4 | 14 ± 0.4 * | 13 ± 0.9 | 13 ± 0.3 | 10 | 103.2 |
Selenium (µg) | 44 ± 1.0 | 40 ± 0.8 * | 36 ± 1.8 * | 41 ± 0.6 | 33 | 124.3 |
Dietary Intake | Mean ± S.E. | RNI | RNI Achievement | |||
---|---|---|---|---|---|---|
18–29 Years (n = 607) | 30–50 Years (n = 814) | 51–60 Years (n = 161) | Total (n = 1582) | Mean% RNI | ||
Energy intake (kcal) | 2083 ± 14.9 | 2159 ± 13.3 * | 2112 ± 28.1 | 2125 ± 9.4 | 2000–2180 | 100.8 |
Carbohydrates (g) | 393 ± 3.5 | 403 ± 3.1 | 391 ± 7.2 | 398 ± 2.2 | NA b (55–70% of TE) | 74.9 b |
Proteins (g) | 91 ± 1.1 | 97 ± 1.2 * | 91 ± 1.9 | 94 ± 0.8 | 55 (15–20% of TE) | 171.2 |
Fats (g) | 52 ± 1.4 | 53 ± 1.5 | 42 ± 1.5 * | 51 ± 0.9 | 46–70 (20–30% of TE) | 111.8 |
Calcium (mg) | 705 ± 11.0 | 723 ± 10.0 ** | 659 ± 22.9 | 709 ± 7.1 | 800 (18–50 years) 1000 (51–60 years) | 87.0 |
Iron a (mg) | 17 ± 0.2 | 18 ± 0.2 * | 17 ± 0.4 | 17 ± 0.1 | 29 (18–50 years) 11 (51–60 years) | 69.0 |
Zinc (mg) | 7 ± 0.2 | 7 ± 0.2 | 5 ± 0.2 | 7 ± 0.2 | 4.9 | 143.7 |
Thiamine (mg) | 1 ± 0.0 | 2 ± 0.0 ** | 1 ± 0.0 | 1 ± 0.0 | 1.1 | 133.5 |
Riboflavin (mg) | 2 ± 0.0 | 2 ± 0.0 | 2 ± 0.0 | 2 ± 0.0 | 1.1 | 174.7 |
Niacin (mg NE) | 15 ± 0.4 | 16 ± 0.4 | 14 ± 0.6 | 15 ± 0.3 | 14 | 110.4 |
Vitamin C (mg) | 126 ± 3.5 | 128 ± 3.1 | 118 ± 7.3 | 126 ± 2.2 | 70 | 180.5 |
Vitamin A (µg) | 552 ± 138.4 | 601 ± 123.8 | 570 ± 275.6 | 579 ± 87.7 | 500 | 115.9 |
Vitamin E (mg) | 11 ± 0.3 | 12 ± 0.3 * | 10 ± 0.5 | 11 ± 0.2 | 7.5 | 105.0 |
Selenium (µg) | 36 ± 0.8 ** | 35 ± 0.6 ** | 33 ± 1.7 | 35 ± 0.5 | 25 | 140.5 |
Dietary Intake | Mean ± S.E. | |||
---|---|---|---|---|
Malay | Chinese | Indian | Other | |
Energy Intake (kcal) | 2307 ± 10.6 | 2287 ± 15.8 | 2254 ± 28 | 2281 ± 20.1 |
Carbohydrates (g) | 430 ± 2.4 | 428 ± 3.5 | 433 ± 6.1 | 419 ± 4.4 |
Proteins (g) | 106 ± 0.9 | 99 ± 1.1 | 88 ± 2.0 | 105 ± 1.8 |
Fats (g) | 61 ± 1.2 | 53 ± 1.5 | 54 ± 2.5 | 60 ± 2.5 |
Calcium (mg) | 786 ± 8.0 | 696 ± 9.7 | 741 ± 18.7 | 718 ± 13.7 |
Iron a (mg) | 19 ± 0.2 | 18 ± 0.2 | 16 ± 0.3 | 19 ± 0.3 |
Zinc (mg) | 9 ± 0.2 | 7 ± 0.2 | 6 ± 0.4 | 9 ± 0.4 |
Thiamine (mg) | 2 ± 0.03 | 2 ± 0.03 | 2 ± 0.06 | 2 ± 0.06 |
Riboflavin (mg) | 2 ± 0.8 | 2 ± 0.7 | 2 ± 0.7 | 2 ± 0.8 |
Niacin (mg NE) | 18 ± 0.4 | 17 ± 0.4 | 16 ± 0.7 | 18 ± 0.7 |
Vitamin C (mg) | 126 ± 2.2 | 128 ± 3.2 | 120 ± 5.2 | 127 ± 4.0 |
Vitamin A (µg) | 568 ± 86.0 | 633 ± 133.2 | 468 ± 159.1 | 698 ± 198.0 |
Vitamin E (mg) | 14 ± 0.3 | 10 ± 0.3 | 9 ± 0.5 | 14.0 ± 11.7 |
Selenium (µg) | 38 ± 0.5 | 40.0 ± 0.7 | 37 ± 1.3 | 35 ± 1.0 |
Principal Components | Positive Scoring Coefficients | Negative Scoring Coefficients | Variance Explained (%) |
---|---|---|---|
Principal Component 1 (PC 1) | Flavourings (0.62) | Other meat (−0.45) | 9.9 |
“traditional” | Fish and seafood (0.56) | Milk (−0.23) | |
Confectionery (0.55) | Cereals and cereal products (−0.22) | ||
Principal Component 2 (PC 2) | Fruits (0.65) | 9.5 | |
“prudent” | Vegetables (0.64) | ||
Legumes and legume products (0.53) | |||
Milk (0.34) | |||
Principal Component 3 (PC 3) | Cereals and cereal products (0.68) | Rice (−0.70) | 7.3 |
“modern” | Fish and seafood (−0.26) | ||
Vegetables (−0.25) | |||
Principal Component 4 (PC 4) | Meats (0.68) | Non-alcoholic beverages (−0.29) | 7.0 |
“western” | Processed meats (0.67) | ||
Principal Component 5 (PC 5) | Alcoholic beverages (0.6) | Confectionery (−0.24) | 6.4 |
“Chinese” | Eggs (0.43) | ||
Other meat (0.46) | |||
Non-alcoholic beverages (0.34) | |||
Principal Component 6 (PC 6) | Processed dairy products (0.8) | 5.9 | |
“combination” | Spreads (0.5) |
PC. Food Group (Overall Factor Loading) | Men (n = 1493) | Women (n = 1570) | Malay (n = 1602) | Chinese (n = 746) | Indian (n = 252) | Other (n = 463) |
---|---|---|---|---|---|---|
Mean Intake (gram) ± Standard Error | ||||||
PC 1. Flavourings (0.62) | 40.23 ± 0.90 | 35.00 ± 0.76 | 45.71 ± 0.86 | 25.43 ± 0.96 | 26.76 ± 1.53 | 34.73 ± 1.42 |
PC 1. Fish and seafood (0.56) | 119.12 ± 2.19 | 109.14 ± 1.98 | 134.24 ± 2.05 | 78.95 ± 2.26 | 68.07 ± 3.58 | 125.48 ± 4.25 |
PC 1. Confectionery (0.55) | 81.88 ± 1.60 | 80.21 ± 1.50 | 90.57 ± 1.54 | 56.64 ± 1.68 | 68.62 ± 2.89 | 94.01 ± 3.34 |
PC 1. Other meat (−0.45) | 9.78 ± 0.68 | 7.52 ± 0.50 | 0.02 ± 0.02 | 29.49 ± 1.33 | 0.49 ± 0.19 | 9.19 ± 0.95 |
PC1. Milk (−0.23) | 7.49 ± 0.73 | 10.49 ± 0.88 | 7.71 ± 0.67 | 10.90 ± 1.71 | 13.46 ± 1.41 | 8.16 ± 0.93 |
PC 1. Cereals and cereal products (−0.22) | 262.87 ± 3.37 | 207.42 ± 2.74 | 220.51 ± 2.72 | 269.10 ± 5.00 | 291.35 ± 8.45 | 195.86 ± 5.33 |
PC 2. Fruits (0.65) | 197.69 ± 4.11 | 207.55 ± 4.11 | 199.13 ± 4.11 | 217.01 ± 5.87 | 203.89 ± 9.72 | 191.65 ± 7.04 |
PC 2. Vegetables (0.64) | 136.60 ± 2.95 | 132.09 ± 2.60 | 124.05 ± 2.69 | 154.95 ± 4.09 | 104.89 ± 4.90 | 152.44 ± 5.25 |
PC 2. Legumes and legume products (0.53) | 27.23 ± 0.82 | 25.34 ± 0.73 | 26.32 ± 0.80 | 28.85 ± 1.10 | 29.36 ± 1.82 | 20.16 ± 1.05 |
PC 2. Milk (0.34) | 7.49 ± 0.73 | 10.49 ± 0.88 | 7.71 ± 0.67 | 10.90 ± 1.71 | 13.46 ± 1.41 | 8.16 ± 0.93 |
PC3. Cereals and cereal products (0.68) | 262.87 ± 3.37 | 207.42 ± 2.74 | 220.51 ± 2.72 | 269.10 ± 5.00 | 291.35 ± 8.45 | 195.86 ± 5.33 |
PC3. Rice (−0.70) | 363.09 ± 4.46 | 307.08 ± 3.61 | 324.93 ± 3.86 | 322.63 ± 5.19 | 285.13 ± 7.83 | 412.81 ± 9.21 |
PC3. Fish and seafood (−0.26) | 119.12 ± 2.19 | 109.14 ± 1.98 | 134.24 ± 2.05 | 78.95 ± 2.26 | 68.07 ± 3.58 | 125.48 ± 4.25 |
PC3. Vegetables (−0.25) | 136.60 ± 2.95 | 132.09 ± 2.60 | 124.05 ± 2.69 | 154.95 ± 4.09 | 104.89 ± 4.90 | 152.44 ± 5.25 |
PC4. Meats (0.68) | 46.19 ± 1.22 | 33.34 ± 0.88 | 41.86 ± 1.06 | 40.70 ± 1.56 | 28.08 ± 1.99 | 36.31 ± 1.91 |
PC4. Processed meats (0.67) | 11.49 ± 0.42 | 10.08 ± 0.33 | 12.32 ± 0.41 | 8.08 ± 0.41 | 9.06 ± 0.76 | 10.65 ± 0.64 |
PC4. Non-alcoholic beverages (−0.29) | 2215.43 ± 26.13 | 1920.05 ± 19.45 | 2045.16 ± 22.20 | 1992.08 ± 34.32 | 2178.98 ± 54.98 | 2182.66 ± 42.97 |
PC5. Alcoholic beverages (0.6) | 5.00 ± 0.92 | 1.10 ± 0.18 | 0.05 ± 0.03 | 8.98 ± 1.71 | 4.13 ± 1.06 | 2.97 ± 1.01 |
PC5. Eggs (0.43) | 34.93 ± 0.81 | 26.83 ± 0.65 | 32.38 ± 0.72 | 29.99 ± 1.00 | 21.32 ± 1.31 | 31.65 ± 1.55 |
PC5. Other meat (0.46) | 9.78 ± 0.68 | 7.52 ± 0.50 | 0.02 ± 0.02 | 29.49 ± 1.33 | 0.49 ± 0.19 | 9.19 ± 0.95 |
PC5. Non-alcoholic beverages (0.34) | 2215.43 ± 26.13 | 1920.05 ± 19.45 | 2045.16 ± 22.20 | 1992.08 ± 34.32 | 2178.98 ± 54.98 | 2182.66 ± 42.97 |
PC5. Confectionery (−0.24) | 81.88 ± 1.61 | 80.21 ± 1.50 | 90.57 ± 1.54 | 56.64 ± 1.68 | 68.62 ± 2.89 | 94.01 ± 3.34 |
PC6. Processed dairy products (0.8) | 36.26 ± 1.09 | 22.80 ± 0.80 | 36.25 ± 1.06 | 20.48 ± 1.06 | 30.13 ± 2.48 | 19.41 ± 1.26 |
PC6. Spreads (0.5) | 7.09 ± 0.29 | 7.16 ± 0.25 | 6.79 ± 0.27 | 8.25 ± 0.42 | 8.38 ± 0.75 | 5.80 ± 0.37 |
Energy and Nutrients | Factor 1 “Traditional” | Factor 2 “Prudent” | Factor 3 “Modern” | Factor 4 “Western” | Factor 5 “Chinese” | Factor 6 “Combination” |
---|---|---|---|---|---|---|
BMI | 0.148 * | 0.121 * | 0.079 * | −0.024 | 0.080 * | −0.012 |
Total Energy (kcal) | 0.254 * | 0.187 * | 0.158 * | 0.183 * | 0.296 * | 0.120 * |
Total Carbohydrate (g) | 0.142 * | 0.145 * | 0.199 * | 0.031 | 0.167 * | 0.055 * |
Total Protein (g) | 0.298 * | 0.275 * | 0.001 | 0.188 * | 0.259 * | 0.046 * |
Total Fat (g) | 0.145 * | 0.277 * | 0.092 * | 0.096 * | 0.087 * | 0.093 * |
Total Dietary Fibre (g) | 0.081 * | 0.482 * | 0.043 | 0.011 | 0.051 * | −0.011 |
Total Sugar (g) | 0.370 * | 0.249 * | 0.112 * | 0.066 * | −0.036 * | 0.098 * |
Total Saturated Fat (g) | 0.109 * | 0.247 * | 0.044 * | 0.213 * | 0.146 * | 0.270 * |
Total Sodium (mg) | 0.455 | 0.115 * | −0.019 | 0.195 * | 0.149 * | 0.039 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Margetts, B.M.; Zainuddin, A.A. Exploration of the Principal Component Analysis (PCA) Approach in Synthesizing the Diet Quality of the Malaysian Population. Nutrients 2021, 13, 70. https://doi.org/10.3390/nu13010070
Ali A, Margetts BM, Zainuddin AA. Exploration of the Principal Component Analysis (PCA) Approach in Synthesizing the Diet Quality of the Malaysian Population. Nutrients. 2021; 13(1):70. https://doi.org/10.3390/nu13010070
Chicago/Turabian StyleAli, Asma’, Barrie M. Margetts, and Ahmad Ali Zainuddin. 2021. "Exploration of the Principal Component Analysis (PCA) Approach in Synthesizing the Diet Quality of the Malaysian Population" Nutrients 13, no. 1: 70. https://doi.org/10.3390/nu13010070
APA StyleAli, A., Margetts, B. M., & Zainuddin, A. A. (2021). Exploration of the Principal Component Analysis (PCA) Approach in Synthesizing the Diet Quality of the Malaysian Population. Nutrients, 13(1), 70. https://doi.org/10.3390/nu13010070