The Association between the Dietary Inflammatory Index and Thyroid Function in U.S. Adult Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure and Outcome Definitions
2.3. Study Covariates
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. The Relationship between DII and Thyroid Function in Males Aged More Than 20 Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- William, K.O. Netter’s Essential Histology, 2nd ed.; Saunders: Philadelphia, PA, USA, 2013. [Google Scholar]
- Bowden, S.A.; Goldis, M. Congenital Hypothyroidism; StatPearls Publishing LLC.: Treasure Island, FL, UDA, 2021. [Google Scholar]
- Choi, S.; Kim, M.J.; Park, Y.J.; Kim, S.; Choi, K.; Cheon, G.J.; Cho, Y.H.; Jeon, H.L.; Yoo, J.; Park, J. Thyroxine-binding globulin, peripheral deiodinase activity, and thyroid autoantibody status in association of phthalates and phenolic compounds with thyroid hormones in adult population. Environ. Int. 2020, 140, 105783. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Leonard, J.L.; Davis, P.J. Molecular aspects of thyroid hormone actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018, 14, 259–269. [Google Scholar] [CrossRef]
- Williams, G.R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 2008, 20, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.; Dos Santos, P.B.; Pazos-Moura, C.C. The role of thyroid hormone in metabolism and metabolic syndrome. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820917869. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.; Yeap, B.B. Thyroid hormone: Influences on mood and cognition in adults. Maturitas 2015, 81, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Lademann, F.; Tsourdi, E.; Hofbauer, L.C.; Rauner, M. Thyroid Hormone Actions and Bone Remodeling—The Role of the Wnt Signaling Pathway. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2020, 128, 450–454. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 2015, 113, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Wirth, M.D.; Hurley, T.G.; Hébert, J.R. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999–2002. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Shivappa, N.; Zucchetto, A.; Serraino, D.; Rossi, M.; La Vecchia, C.; Hébert, J.R. Dietary inflammatory index and risk of esophageal squamous cell cancer in a case-control study from Italy. Cancer Causes Control. CCC 2015, 26, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Mazul, A.L.; Shivappa, N.; Hébert, J.R.; Steck, S.E.; Rodriguez-Ormaza, N.; Weissler, M.; Olshan, A.F.; Zevallos, J.P. Proinflammatory diet is associated with increased risk of squamous cell head and neck cancer. Int. J. Cancer 2018, 143, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Godos, J.; Hébert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary Inflammatory Index and Cardiovascular Risk and Mortality-A Meta-Analysis. Nutrients 2018, 10, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Bian, H.; Chen, Z.; Tian, B.; Wang, H.; Tu, X.; Cai, B.; Jin, K.; Zheng, X.; Yang, L.; et al. The Association between Dietary Inflammatory Index and Sex Hormones among Men in the United States. J. Urol. 2021, 206, 97–103. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Grubeck-Loebenstein, B.; Buchan, G.; Chantry, D.; Kassal, H.; Londei, M.; Pirich, K.; Barrett, K.; Turner, M.; Waldhausl, W.; Feldmann, M. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: Thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clin. Exp. Immunol. 1989, 77, 324–330. [Google Scholar] [PubMed]
- Liu, X.Z.; Wang, J.M.; Ji, Y.X.; Zhao, D.B. Monocyte-to-high-density lipoprotein cholesterol ratio is associated with the presence and size of thyroid nodule irrespective of the gender. Lipids Health Dis. 2020, 19, 36. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.P.; Engiles, J.B.; Rothstein, J.L. Proinflammatory mediators and genetic background in oncogene mediated tumor progression. J. Immunol. 2004, 172, 4059–4067. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.J.; Wang, X.; Meng, S.; Shi, L.F.; Jiang, W.J.; Xiao, L.; Shi, X.H.; Xu, J.; Zhang, J.A. Increased IL-21/IL-21R expression and its pro-inflammatory effects in autoimmune thyroid disease. Cytokine 2015, 72, 160–165. [Google Scholar] [CrossRef]
- Contempre, B.; Le Moine, O.; Dumont, J.E.; Denef, J.F.; Many, M.C. Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta). Mol. Cell. Endocrinol. 1996, 124, 7–15. [Google Scholar] [CrossRef]
- Malyszko, J.; Malyszko, J.S.; Pawlak, K.; Mysliwiec, M. Thyroid function, endothelium, and inflammation in hemodialyzed patients: Possible relations? J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2007, 17, 30–37. [Google Scholar] [CrossRef]
- National Center for Health Statistics. Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–1994; Series 1: Programs and Collection Procedures; National Ctr for Health Statistics: Atlanta, GA, USA, 1994; pp. 1–407. [Google Scholar]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Deng, L.; Qiu, S.; Bian, H.; Cai, B.; Jin, K.; Zheng, X.; Li, J.; Liao, X.; Li, Y.; et al. Dietary inflammatory potential and risk of sarcopenia: Data from national health and nutrition examination surveys. Aging 2020, 13, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.G.; Kim, W.B.; Woo, G.; Kim, H.; Cho, Y.; Kim, T.Y.; Kim, S.W.; Shin, M.H.; Park, J.W.; Park, H.L.; et al. Thyroid Stimulating Hormone Reference Range and Prevalence of Thyroid Dysfunction in the Korean Population: Korea National Health and Nutrition Examination Survey 2013 to 2015. Endocrinol. Metab. 2017, 32, 106–114. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, N.; Liao, R.; Jiang, L.; Su, B. The Association Between Dietary Inflammatory Potential and Sex Hormones in Male Children and Adolescents Aged 6–19 Years. Front. Endocrinol. 2021, 12. [Google Scholar] [CrossRef]
- Park, S.; Kim, W.G.; Jeon, M.J.; Kim, M.; Oh, H.S.; Han, M.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Serum thyroid-stimulating hormone levels and smoking status: Data from the Korean National Health and Nutrition Examination Survey VI. Clin. Endocrinol. 2018, 88, 969–976. [Google Scholar] [CrossRef]
- SSY, A.L.; Natto, Z.S.; Midle, J.B.; Gyurko, R.; O’Neill, R.; Steffensen, B. Association between time since quitting smoking and periodontitis in former smokers in the National Health and Nutrition Examination Surveys (NHANES) 2009 to 2012. J. Periodontol. 2019, 90, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National health and nutrition examination survey: Analytic guidelines, 1999–2010. Vital Health Stat. Ser. 2 Data Eval. Methods Res. 2013, 161, 1–24. [Google Scholar]
- Pearce, E.N. Thyroid hormone and obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 408–413. [Google Scholar] [CrossRef]
- Burman, K.D.; Wartofsky, L. Iodine effects on the thyroid gland: Biochemical and clinical aspects. Rev. Endocr. Metab. Disord. 2000, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liang, L.; Bray, G.A.; Qi, L.; Hu, F.B.; Rood, J.; Sacks, F.M.; Sun, Q. Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: The POUNDS LOST trial. Int. J. Obes. 2017, 41, 878–886. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodianfard, S.; Vafa, M.; Golgiri, F.; Khoshniat, M.; Gohari, M.; Solati, Z.; Djalali, M. Effects of Zinc and Selenium Supplementation on Thyroid Function in Overweight and Obese Hypothyroid Female Patients: A Randomized Double-Blind Controlled Trial. J. Am. Coll. Nutr. 2015, 34, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Sloot, Y.J.E.; Janssen, M.J.R.; van Herwaarden, A.E.; Peeters, R.P.; Netea-Maier, R.T.; Smit, J.W.A. The Influence of Energy Depletion by Metformin or Hypocaloric Diet on Thyroid Iodine Uptake in Healthy Volunteers: A Randomized Trial. Sci. Rep. 2019, 9, 5396. [Google Scholar] [CrossRef] [Green Version]
- Teas, J.; Braverman, L.E.; Kurzer, M.S.; Pino, S.; Hurley, T.G.; Hebert, J.R. Seaweed and soy: Companion foods in Asian cuisine and their effects on thyroid function in American women. J. Med. Food 2007, 10, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, I.H.; Peters, P.J.; Albrink, M.J. Effect of low-carbohydrate diets high in either fat or protein on thyroid function, plasma insulin, glucose, and triglycerides in healthy young adults. J. Am. Coll. Nutr. 1985, 4, 451–459. [Google Scholar] [CrossRef]
- Allsopp, P.; Crowe, W.; Bahar, B.; Harnedy, P.A.; Brown, E.S.; Taylor, S.S.; Smyth, T.J.; Soler-Vila, A.; Magee, P.J.; Gill, C.I.; et al. The effect of consuming Palmaria palmata-enriched bread on inflammatory markers, antioxidant status, lipid profile and thyroid function in a randomised placebo-controlled intervention trial in healthy adults. Eur. J. Nutr. 2016, 55, 1951–1962. [Google Scholar] [CrossRef]
- Zanzer, Y.C.; Plaza, M.; Dougkas, A.; Turner, C.; Östman, E. Black pepper-based beverage induced appetite-suppressing effects without altering postprandial glycaemia, gut and thyroid hormones or gastrointestinal well-being: A randomized crossover study in healthy subjects. Food Funct. 2018, 9, 2774–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zupo, R.; Castellana, F.; Sardone, R.; Lampignano, L.; Paradiso, S.; Giagulli, V.A.; Triggiani, V.; Di Lorenzo, L.; Giannelli, G.; De Pergola, G. Higher Muscle Mass Implies Increased Free-Thyroxine to Free-Triiodothyronine Ratio in Subjects with Overweight and Obesity. Front. Endocrinol. 2020, 11, 565065. [Google Scholar] [CrossRef]
- Soriguer, F.; Valdes, S.; Morcillo, S.; Esteva, I.; Almaraz, M.C.; de Adana, M.S.; Tapia, M.J.; Dominguez, M.; Gutierrez-Repiso, C.; Rubio-Martin, E.; et al. Thyroid hormone levels predict the change in body weight: A prospective study. Eur. J. Clin. Investig. 2011, 41, 1202–1209. [Google Scholar] [CrossRef]
- Díez, J.J.; Iglesias, P. Relationship between thyrotropin and body mass index in euthyroid subjects. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2011, 119, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Platz, E.A.; Ladenson, P.W.; Mondul, A.M.; Menke, A.; Berrington de González, A. Body fatness and markers of thyroid function among U.S. men and women. PLoS ONE 2012, 7, e34979. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Zhang, L.; An, Y.; Duan, Y.; Liu, J.; Wang, G. Association Between Body Mass Index and Thyroid Function in Euthyroid Chinese Adults. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e930865. [Google Scholar] [CrossRef]
- Alevizaki, M.; Saltiki, K.; Voidonikola, P.; Mantzou, E.; Papamichael, C.; Stamatelopoulos, K. Free thyroxine is an independent predictor of subcutaneous fat in euthyroid individuals. Eur. J. Endocrinol. 2009, 161, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotwal, A.; Cortes, T.; Genere, N.; Hamidi, O.; Jasim, S.; Newman, C.B.; Prokop, L.J.; Murad, M.H.; Alahdab, F. Treatment of Thyroid Dysfunction and Serum Lipids: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2020, 105. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.M.; Pertile, J.; Berber-Jimenez, M.D. Soy protein concentrate and isolated soy protein similarly lower blood serum cholesterol but differently affect thyroid hormones in hamsters. J. Nutr. 1996, 126, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Ness-Abramof, R.; Nabriski, D.A.; Braverman, L.E.; Shilo, L.; Weiss, E.; Reshef, T.; Shapiro, M.S.; Shenkman, L. Prevalence and evaluation of B12 deficiency in patients with autoimmune thyroid disease. Am. J. Med. Sci. 2006, 332, 119–122. [Google Scholar] [CrossRef]
- Capo-chichi, C.D.; Guéant, J.L.; Lefebvre, E.; Bennani, N.; Lorentz, E.; Vidailhet, C.; Vidailhet, M. Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am. J. Clin. Nutr. 1999, 69, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.B.; Pawlak, R. prevalence of vitamin B-12 deficiency among patients with thyroid dysfunction. Asia Pac. J. Clin. Nutr. 2016, 25, 221–226. [Google Scholar] [CrossRef]
- Sworczak, K.; Wiśniewski, P. The role of vitamins in the prevention and treatment of thyroid disorders. Endokrynol. Pol. 2011, 62, 340–344. [Google Scholar]
- Köhrle, J. Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.P.; Verma, P.C.; Garg, S.L. Effect of experimental zinc deficiency on thyroid gland in guinea-pigs. Ann. Nutr. Metab. 1997, 41, 376–381. [Google Scholar] [CrossRef]
- Kralik, A.; Eder, K.; Kirchgessner, M. Influence of zinc and selenium deficiency on parameters relating to thyroid hormone metabolism. Horm. Metab. Res. Horm. Und Stoffwechs. Horm. Et Metab. 1996, 28, 223–226. [Google Scholar] [CrossRef]
- Beserra, J.B.; Morais, J.B.S.; Severo, J.S.; Cruz, K.J.C.; de Oliveira, A.R.S.; Henriques, G.S.; do Nascimento Marreiro, D. Relation Between Zinc and Thyroid Hormones in Humans: A Systematic Review. Biol. Trace Elem. Res. 2021, 1–9. [Google Scholar] [CrossRef]
- Mekkawy, A.M.; Ahmed, Y.H.; Khalaf, A.A.A.; El-Sakhawy, M.A. Ameliorative effect of Nigella sativa oil and vitamin C on the thyroid gland and cerebellum of adult male albino rats exposed to Monosodium glutamate (histological, immunohistochemical and biochemical studies). Tissue Cell 2020, 66, 101391. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Shen, Z.; Yang, Q.; Sui, F.; Pu, J.; Ma, J.; Ma, S.; Yao, D.; Ji, M.; Hou, P. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019, 9, 4461–4473. [Google Scholar] [CrossRef] [PubMed]
- Naziroğlu, M.; Simşek, M. Effects of hormone replacement therapy with vitamin C and E supplementation on plasma thyroid hormone levels in postmenopausal women with Type 2 diabetes. Biomed. Pharmacother. Biomed. Pharmacother. 2009, 63, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Cerillo, A.G.; Ripoli, A.; Pilo, A.; Glauber, M.; Iervasi, G. Is the low tri-iodothyronine state a crucial factor in determining the outcome of coronary artery bypass patients? Evidence from a clinical pilot study. J. Endocrinol. 2002, 175, 577–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendtzen, K.; Buschard, K.; Diamant, M.; Horn, T.; Svenson, M. Possible role of IL-1, TNF-alpha, and IL-6 in insulin-dependent diabetes mellitus and autoimmune thyroid disease. Thyroid Cell Group. Lymphokine Res. 1989, 8, 335–340. [Google Scholar]
- Fujii, T.; Sato, K.; Ozawa, M.; Kasono, K.; Imamura, H.; Kanaji, Y.; Tsushima, T.; Shizume, K. Effect of interleukin-1 (IL-1) on thyroid hormone metabolism in mice: Stimulation by IL-1 of iodothyronine 5′-deiodinating activity (type I) in the liver. Endocrinology 1989, 124, 167–174. [Google Scholar] [CrossRef]
- Ajjan, R.A.; Watson, P.F.; Findlay, C.; Metcalfe, R.A.; Crisp, M.; Ludgate, M.; Weetman, A.P. The sodium iodide symporter gene and its regulation by cytokines found in autoimmunity. J. Endocrinol. 1998, 158, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, O.H.; Duh, Q.-Y.; Kebebew, E.; Gosnell, J.E.; Shen, W.T. Textbook of Endocrine Surgery; J.P. Medical Ltd.: London, UK, 2016. [Google Scholar]
- Yu, J.; Koenig, R.J. Regulation of hepatocyte thyroxine 5′-deiodinase by T3 and nuclear receptor coactivators as a model of the sick euthyroid syndrome. J. Biol. Chem. 2000, 275, 38296–38301. [Google Scholar] [CrossRef] [Green Version]
- Paquet, M.; Shivappa, N.; Hébert, J.R.; Baron-Dubourdieu, D.; Boutron-Ruault, M.C.; Guénel, P.; Truong, T. Dietary Inflammatory Index and Differentiated Thyroid Carcinoma Risk: A Population-Based Case-Control Study in New Caledonia. Am. J. Epidemiol. 2020, 189, 95–107. [Google Scholar] [CrossRef]
- Stanciu, A.E.; Serdarevic, N.; Hurduc, A.E.; Stanciu, M.M. IL-4, IL-10 and high sensitivity-CRP as potential serum biomarkers of persistent/recurrent disease in papillary thyroid carcinoma with/without Hashimoto’s thyroiditis. Scand. J. Clin. Lab. Investig. 2015, 75, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Beksac, K.; Sonmez, C.; Cetin, B.; Kismali, G.; Sel, T.; Tuncer, Y.; Kosova, F. Evaluation of pro-inflammatory cytokine and neopterin levels in women with papillary thyroid carcinoma. Int. J. Biol. Mark. 2016, 31, e446–e450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaro, M.; Zerilli, M.; Ricci-Vitiani, L.; Bini, M.; Perez Alea, M.; Maria Florena, A.; Miceli, L.; Condorelli, G.; Bonventre, S.; Di Gesù, G.; et al. Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells. Cancer Res. 2006, 66, 1491–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total | DII Tertile 1 | DII Tertile 2 | DII Tertile 3 | p-Value | |
---|---|---|---|---|---|
Participant number | 2346 | 782 | 782 | 782 | |
Mean ± SD age (yrs) | 50.74 ± 17.68 | 49.77 ± 17.33 | 51.58 ± 17.50 | 50.87 ± 18.19 | 0.124 |
Mean ± SD DII | −0.46 ± 1.73 | −2.31 ± 0.63 | −0.61 ± 0.46 | 1.54 ± 0.95 | <0.001 |
Mean ± SD Energy (kcal) | 2401.04 ± 1149.41 | 3111.88 ± 1350.96 | 2361.82 ± 818.46 | 1729.43 ± 716.02 | <0.001 |
Mean ± SD Protein intake (g) | 92.81 ± 47.49 | 91.74 ± 35.14 | 91.74 ± 35.14 | 64.08 ± 31.26 | <0.001 |
Mean ± SD Thyroglobulin antibodies (IU/mL) | 8.90 ± 90.91 | 8.02 ± 94.45 | 11.28 ± 99.37 | 7.39 ± 77.54 | 0.663 |
Mean ± SD Free T3 (pg/mL) | 3.25 ± 0.39 | 3.24 ± 0.39 | 3.24 ± 0.39 | 3.26 ± 0.39 | 0.350 |
Mean ± SD Free T4 (pmol/L) | 10.07 ± 1.79 | 10.05 ± 1.87 | 10.00 ± 1.74 | 10.14 ± 1.75 | 0.309 |
Mean ± SD Thyroglobulin (ug/L) | 14.93 ± 52.98 | 12.96 ± 17.55 | 15.09 ± 49.41 | 16.74 ± 75.31 | 0.368 |
Mean ± SD TSH (mIU/L) | 1.97 ± 2.02 | 1.84 ± 1.19 | 2.14 ± 2.90 | 1.92 ± 1.53 | 0.009 |
Mean ± SD Total T4 (μg/dL) | 7.61 ± 1.51 | 7.44 ±1.47 | 7.59 ± 1.46 | 7.79 ± 1.58 | <0.001 |
Mean ± SD Total T3 (ng/dL) | 113.07 ± 21.88 | 111.92 ± 21.63 | 112.96 ± 21.98 | 114.34 ± 22.00 | 0.090 |
Mean ± SD Thyroid peroxidase antibodies (IU/mL) | 11.54 ± 67.98 | 9.13 ± 52.73 | 13.52 ± 74.72 | 11.99 ± 74.17 | 0.432 |
Race/Ethnicity (%) Mexican American Other Hispanic Non-Hispanic White Non-Hispanic Black Other | 17.8 9.6 53.8 13.9 4.9 | 18.0 9.2 51.2 16.5 5.1 | 15.0 11.3 44.8 26.2 2.8 | <0.001 | |
Smoking status (%) Never Former smoker Current smoker Missing | 47.8 28.8 23.1 0.3 | 40.4 34.5 25.1 0 | 39.6 32.9 27.5 0 | 0.005 | |
BMI (%) Normal (<25 kg/m2) Overweight (25–29.9 kg/m2) Obese (≥30 kg/m2) | 30.2 37.5 32.4 | 26.3 41.0 32.6 | 25.2 37.6 37.2 | 0.061 | |
UIC * (%) Iodine deficient (<100 ug/L) Normal (100–299 ug/L) Excessive iodine intake (≥300 ug/L) | 25.8 50.4 23.8 | 23.3 53.6 23.1 | 26.3 50.1 23.5 | 0.579 |
DII Tertile | TgAb (IU/mL) | Free T3 (pg/mL) | Free T4 (pmol/L) | Tg (ug/L) | TSH (mIU/L) | Total T4 (μg/dL) | Total T3 (ng/dL) | TPOAb (IU/mL) |
---|---|---|---|---|---|---|---|---|
β (95% CI), p Value | ||||||||
Model 1 | ||||||||
Continuous | −0.48 (−2.61, 1.65) 0.6589 | 0.01 (−0.00, 0.02) 0.0862 | 0.03 (−0.01, 0.07) 0.1946 | 1.20 (−0.04, 2.44) 0.0588 | 0.03 (−0.02, 0.08) 0.2476 | 0.09 (0.06, 0.13) <0.0001 | 0.71 (0.19, 1.22) 0.0070 | 0.31 (−1.29, 1.90) 0.7040 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 3.26 (−5.75, 12.27) 0.4784 | 0.00 (−0.04, 0.04) 0.9638 | −0.05 (−0.22, 0.13) 0.5953 | 2.13 (−3.12, 7.38) 0.4274 | 0.30 (0.10, 0.50) 0.0033 | 0.15 (0.00, 0.30) 0.0476 | 1.03 (−1.13, 3.20) 0.3497 | 4.39 (−2.35, 11.13) 0.2018 |
Tertile 3 | −0.62 (−9.64, 8.39) 0.8919 | 0.03 (−0.01, 0.06) 0.2015 | 0.09 (−0.09, 0.27) 0.3277 | 3.78 (−1.47, 9.03) 0.1585 | 0.08 (−0.12, 0.28) 0.4410 | 0.35 (0.20, 0.50) <0.0001 | 2.42 (0.25, 4.59) 0.0288 | 2.85 (−3.89, 9.59) 0.4070 |
Model 2 | ||||||||
Continuous | −0.22 (−2.38, 1.95) 0.8453 | 0.01 (0.01, 0.02) 0.0005 | 0.04 (0.00, 0.09) 0.0388 | 0.97 (−0.29, 2.23) 0.1310 | 0.04 (−0.00, 0.09) 0.0660 | 0.09 (0.06, 0.13) <0.0001 | 0.89 (0.40, 1.38) 0.0003 | 0.43 (−1.19, 2.05) 0.6013 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 3.74 (−5.30, 12.78) 0.4170 | 0.02 (−0.01, 0.05) 0.2250 | −0.05 (−0.22, 0.13) 0.5970 | 1.42 (−3.85, 6.68) 0.5982 | 0.31 (0.11, 0.51) 0.0020 | 0.14 (−0.01, 0.29) 0.0694 | 1.67 (−0.36, 3.71) 0.1078 | 4.33 (−2.43, 11.10) 0.2097 |
Tertile 3 | 0.56 (−8.56, 9.68) 0.9039 | 0.05 (0.01, 0.08) 0.0055 | 0.16 (−0.02, 0.34) 0.0775 | 2.80 (−2.51, 8.11) 0.3018 | 0.1 (−0.1, 0.3) 0.1602 | 0.36 (0.21, 0.51) <0.0001 | 3.08 (1.02, 5.13) 0.0034 | 3.33 (−3.50, 10.15) 0.3398 |
Model 3 | ||||||||
Continuous | 0.06 (−2.78, 2.90) 0.9651 | 0.02 (0.01, 0.03) 0.0006 | 0.02 (−0.04, 0.07) 0.5911 | 1.56 (−0.08, 3.21) 0.0631 | 0.14 (−0.06, 0.34) 0.1602 | 0.07 (0.02, 0.11) 0.0044 | 1.33 (0.70, 1.96) <0.0001 | 0.62 (−1.50, 2.75) 0.5650 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 4.50 (−5.27, 14.27) 0.3664 | 0.02 (−0.01, 0.06) 0.2186 | −0.11 (−0.30, 0.08) 0.2519 | 2.20 (−3.46, 7.87) 0.4462 | 0.32 (0.11, 0.54) 0.0028 | 0.0 (−0.07, 0.25) 0.2967 | 2.01 (−0.16, 4.18) 0.0701 | 4.55 (−2.75, 11.85) 0.2220 |
Tertile 3 | 2.32 (−8.93, 13.56) 0.6866 | 0.05 (0.01, 0.09) 0.0117 | 0.03 (−0.18, 0.25) 0.7557 | 3.90 (−2.63, 10.42) 0.2420 | 0.09 (−0.16, 0.33) 0.4743 | 0.24 (0.06, 0.43) 0.0105 | 3.99 (1.49, 6.49) 0.0018 | 4.50 (−3.91, 12.90) 0.2946 |
DII Tertile | TgAb (IU/mL) | Free T3 (pg/mL) | Free T4 (pmol/L) | Tg (ug/L) | TSH (mIU/L) | Total T4 (μg/dL) | Total T3 (ng/dL) | TPOAb (IU/mL) |
---|---|---|---|---|---|---|---|---|
β (95% CI2), p Value | ||||||||
Normal weight | ||||||||
Continuous | −0.24 (−2.95, 2.46) 0.8610 | −0.01 (−0.03, 0.01) 0.2728 | −0.03 (−0.11, 0.06) 0.5428 | 0.57 (−1.73, 2.86) 0.6285 | 0.05 (−0.05, 0.16) 0.3145 | 0.06 (−0.01, 0.13) 0.1170 | 0.20 (−0.81, 1.21) 0.7039 | −0.16 (−3.13, 2.81) 0.9160 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | −3.89 (−15.18, 7.40) 0.4997 | −0.05 (−0.12, 0.03) 0.2164 | −0.24 (−0.60, 0.12) 0.1979 | 4.74 (−4.81, 14.30) 0.3309 | 0.46 (0.02, 0.91) 0.0394 | −0.07 (−0.38, 0.23) 0.6297 | −0.79 (−5.01, 3.42) 0.7122 | 7.22 (−5.16, 19.60) 0.2535 |
Tertile 3 | −1.22 (−12.65, 10.21) 0.8347 | −0.04 (−0.12, 0.04) 0.2853 | −0.20 (−0.57, 0.16) 0.2782 | 0.64 (−9.04, 10.31) 0.8970 | 0.13 (−0.32, 0.58) 0.5721 | 0.22 (−0.09, 0.53) 0.1664 | 0.63 (−3.64, 4.89) 0.7728 | −0.69 (−13.22, 11.84) 0.9135 |
Overweight | ||||||||
Continuous | −2.79 (−6.40, 0.81) 0.1293 | 0.02 (0.00, 0.03) 0.0204 | 0.04 (−0.03, 0.11) 0.2512 | 0.49 (−0.00, 0.98) 0.0514 | 0.0 (−0.02, 0.10) 0.6721 | 0.07 (0.01, 0.12) 0.0228 | 0.97 (0.14, 1.81) 0.0229 | −0.77 (−3.42, 1.87) 0.5670 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | −2.78 (−17.61, 12.05) 0.7133 | 0.03 (−0.03, 0.09) 0.2974 | −0.03 (−0.31, 0.25) 0.8450 | 0.87 (−1.14, 2.88) 0.3977 | 0.25 (−0.09, 0.60) 0.1530 | 0.22 (−0.01, 0.45) 0.0618 | 4.34 (0.91, 7.77) 0.0132 | 1.28 (−9.60, 12.15) 0.8182 |
Tertile 3 | −10.18 (−25.33, 4.98) 0.1884 | 0.06 (0.00, 0.13) 0.0411 | 0.08 (−0.21, 0.36) 0.5974 | 0.05 (−0.30, 0.41) 0.7728 | 0.1 (−0.3, 0.4) 0.7728 | 0.20 (−0.04, 0.44) 0.0996 | 4.06 (0.56, 7.56) 0.0233 | −1.27 (−12.38, 9.84) 0.8231 |
Obese | ||||||||
Continuous | 1.58 (−2.63, 5.78) 0.4627 | 0.01 (−0.00, 0.03) 0.1303 | 0.06 (−0.00, 0.13) 0.0613 | 2.32 (−0.72, 5.36) 0.1347 | 0.01 (−0.04, 0.07) 0.7004 | 0.14 (0.08, 0.20) <0.0001 | 0.79 (−0.06, 1.64) 0.0672 | 1.73 (−0.98, 4.43) 0.2110 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 15.94 (−2.61, 34.50) 0.0925 | 0.01 (−0.06, 0.07) 0.8611 | 0.11 (−0.18, 0.40) 0.4596 | 1.86 (−11.56, 15.27) 0.7863 | 0.20 (−0.04, 0.44) 0.1044 | 0.26 (0.01, 0.51) 0.0445 | −1.35 (−5.11, 2.40) 0.4799 | 5.69 (−6.26, 17.63) 0.3511 |
Tertile 3 | 10.04 (−7.94, 28.01) 0.2740 | 0.03 (−0.03, 0.10) 0.3018 | 0.36 (0.08, 0.65) 0.0125 | 7.92 (−5.08, 20.91) 0.2329 | 0.03 (−0.21, 0.26) 0.8254 | 0.61 (0.37, 0.85) <0.0001 | 1.88 (−1.76, 5.51) 0.3116 | 9.50 (−2.08, 21.07) 0.1081 |
p for interaction | 0.2279 | 0.0516 | 0.2334 | 0.3957 | 0.7557 | 0.1179 | 0.1249 | 0.4014 |
DII Tertile | TgAb (IU/mL) | Free T3 (pg/mL) | Free T4 (pmol/L) | Tg (ug/L) | TSH (mIU/L) | Total T4 (μg/dL) | Total T3 (ng/dL) | TPOAb (IU/mL) |
---|---|---|---|---|---|---|---|---|
β (95% CI2), p Value | ||||||||
Iodine deficient | ||||||||
Continuous | −0.92 (−6.79, 4.94) 0.7575 | 0.01 (−0.01, 0.03) 0.3209 | 0.07 (−0.00, 0.14) 0.0614 | 0.57 (−0.09, 1.24) 0.0908 | 0.02 (−0.03, 0.08) 0.4323 | 0.15 (0.08, 0.21) <0.0001 | 0.98 (0.01, 1.95) 0.0486 | −1.06 (−3.78, 1.67) 0.4474 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 3.41 (−22.76, 29.59) 0.7984 | −0.02 (−0.10, 0.05) 0.5425 | 0.37 (0.04, 0.70) 0.0288 | 0.67 (−2.30, 3.63) 0.6597 | 0.27 (0.02, 0.51) 0.0324 | 0.36 (0.07, 0.65) 0.0148 | −0.97 (−5.31, 3.38) 0.6632 | 11.20 (−0.91, 23.31) 0.0704 |
Tertile 3 | −2.37 (−27.73, 22.99) 0.8550 | 0.02 (−0.05, 0.10) 0.5217 | 0.33 (0.01, 0.65) 0.0415 | 2.17 (−0.70, 5.04) 0.1395 | 0.09 (−0.15, 0.33) 0.4578 | 0.65 (0.37, 0.93) <0.0001 | 2.52 (−1.69, 6.73) 0.2409 | −2.9 (−14.6, 8.8) 0.6271 |
Normal | ||||||||
Continuous | −1.12 (−3.41, 1.17) 0.3372 | 0.01 (−0.00, 0.03) 0.0515 | −0.00 (−0.06, 0.06) 0.9100 | 2.16 (−0.24, 4.55) 0.0778 | 0.01 (−0.04, 0.05) 0.7747 | 0.08 (0.03, 0.13) 0.0027 | 0.74 (0.02, 1.45) 0.0431 | 1.33 (−1.07, 3.73) 0.2775 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 3.48 (−5.99, 12.96) 0.4713 | 0.02 (−0.04, 0.07) 0.5109 | −0.18 (−0.43, 0.07) 0.1486 | 3.90 (−6.02, 13.83) 0.4410 | 0.14 (−0.06, 0.34) 0.1613 | 0.12 (−0.09, 0.33) 0.2558 | 1.56 (−1.40, 4.52) 0.3030 | −0.64 (−10.59, 9.30) 0.8994 |
Tertile 3 | −3.36 (−12.99, 6.27) 0.4941 | 0.04 (−0.02, 0.09) 0.2089 | −0.06 (−0.31, 0.20) 0.6577 | 6.61 (−3.48, 16.70) 0.1995 | 0.01 (−0.20, 0.21) 0.9610 | 0.27 (0.06, 0.49) 0.0116 | 5.91 (−4.20, 16.02) 0.2521 | 5.9 (−4.2, 16.0) 0.2521 |
Excessive Iodine Intakes | ||||||||
Continuous | 1.33 (−2.66, 5.31) 0.5144 | −0.00 (−0.02, 0.02) 0.6609 | 0.04 (−0.05, 0.13) 0.3471 | −0.11 (−1.00, 0.77) 0.7995 | 0.08 (−0.08, 0.25) 0.3183 | 0.06 (−0.02, 0.13) 0.1272 | 0.25 (−0.86, 1.37) 0.6534 | −0.25 (−3.48, 2.97) 0.8774 |
Tertile 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
Tertile 2 | 3.35 (−13.27, 19.96) 0.6932 | −0.01 (−0.09, 0.07) 0.7557 | −0.19 (−0.56, 0.19) 0.3347 | −0.48 (−4.17, 3.22) 0.7998 | 0.70 (0.02, 1.38) 0.0447 | −0.00 (−0.32, 0.31) 0.9803 | 2.04 (−2.60, 6.67) 0.3899 | 8.93 (−4.52, 22.38) 0.1939 |
Tertile 3 | 7.05 (−9.50, 23.60) 0.4042 | 0.00 (−0.08, 0.08) 0.9207 | 0.13 (−0.25, 0.51) 0.4943 | −0.45 (−4.13, 3.23) 0.8110 | 0.23 (−0.45, 0.90) 0.5144 | 0.17 (−0.14, 0.49) 0.2843 | 1.63 (−2.99, 6.24) 0.4907 | 2.81 (−10.59, 16.20) 0.6812 |
p for interaction | 0.6542 | 0.3357 | 0.3183 | 0.3024 | 0.4482 | 0.2063 | 0.2697 | 0.4346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Ma, F.; Feng, Y.; Ma, X. The Association between the Dietary Inflammatory Index and Thyroid Function in U.S. Adult Males. Nutrients 2021, 13, 3330. https://doi.org/10.3390/nu13103330
Liu N, Ma F, Feng Y, Ma X. The Association between the Dietary Inflammatory Index and Thyroid Function in U.S. Adult Males. Nutrients. 2021; 13(10):3330. https://doi.org/10.3390/nu13103330
Chicago/Turabian StyleLiu, Nuozhou, Fang Ma, Ying Feng, and Xue Ma. 2021. "The Association between the Dietary Inflammatory Index and Thyroid Function in U.S. Adult Males" Nutrients 13, no. 10: 3330. https://doi.org/10.3390/nu13103330
APA StyleLiu, N., Ma, F., Feng, Y., & Ma, X. (2021). The Association between the Dietary Inflammatory Index and Thyroid Function in U.S. Adult Males. Nutrients, 13(10), 3330. https://doi.org/10.3390/nu13103330