Chronic Constipation: Is a Nutritional Approach Reasonable?
Abstract
:1. Introduction
- -
- to analyze the possible impact of water, fiber, and, in general, of the dietary approach on CC;
- -
- to help physicians, dietitians and nutritionists, and, in general, healthcare professionals to understand where they should focus their attention when communicating with patients to provide practical and reliable advice about this topic. This involves both detecting false opinions and misconceptions and suggesting a more correct and healthier nutritional approach on the basis of the scientific evidence available.
2. Diet Components in Constipation Relief
2.1. Mineral Water
2.1.1. How It Works
2.1.2. Clinical Evidence
2.2. Dietary Fiber
2.2.1. How It Works
- solubility, which depends on their hydrophilicity (physical property of molecules to bind with water), and varies according to the degree of polymerization of the molecule;
- viscosity (degree of resistance to flow);
- fermentability (ability to be metabolized by bacteria in the absence of oxygen) [40].
- -
- Soluble, viscous, fermentable (e.g., Guar gum)
- -
- Soluble, viscous, unfermentable (e.g., Psyllium, HPMC—Hydroxypropyl methylcellulose)
- -
- Soluble, non-viscous, fermentable (e.g., Inulin, FOS, GOS, Pectin)
- -
- Soluble, non-viscous, unfermentable (e.g., PHGG—Partially Hydrolyzed Guar Gum)
- -
- Insoluble and slowly fermentable (e.g., Wheat bran, Resistant starch)
- -
- Insoluble and unfermentable (e.g., Cellulose, Lignin)
2.2.2. Clinical Evidence
2.3. The Role of Food
3. Suggestions for Everyday Practice
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shaheen, N.J.; Hansen, R.A.; Morgan, D.R.; Gangarosa, L.M.; Ringel, Y.; Thiny, M.T.; Russo, M.W.; Sandler, R.S. The burden of gastrointestinal and liver diseases, 2006. Off. J. Am. Coll. Gastroenterol. ACG 2006, 101, 2128–2138. [Google Scholar] [CrossRef]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114.e3. [Google Scholar] [CrossRef]
- Suares, N.C.; Ford, A.C. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: Systematic review and meta-analysis. Off. J. Am. Coll. Gastroenterol. ACG 2011, 106, 1582–1591. [Google Scholar] [CrossRef]
- Bharucha, A.E.; Lacy, B.E. Mechanisms, Evaluation, and Management of Chronic Constipation. Gastroenterology 2020, 158, 1232–1249.e3. [Google Scholar] [CrossRef]
- Lacy, B.E.; Mearin, F.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Bellini, M.; Gambaccini, D.; Salvadori, S.; Bocchini, R.; Pucciani, F.; Bove, A.; Alduini, P.; Battaglia, E.; Bassotti, G. Different perception of chronic constipation between patients and gastroenterologists. Neurogastroenterol. Motil. 2018, 30, e13336. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.; Usai-Satta, P.; Bove, A.; Bocchini, R.; Galeazzi, F.; Battaglia, E.; Alduini, P.; Buscarini, E.; Bassotti, G.; ChroCoDiTE Study Group, AIGO. Chronic constipation diagnosis and treatment evaluation: The “CHRO.CO.DI.T.E.” study. BMC Gastroenterol. 2017, 17, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, L.; Basilisco, G.; Corazziari, E.; Stanghellini, V.; Bassotti, G.; Bellini, M.; Perelli, I.; Cuomo, R.; LIRS Study Group. Constipation severity is associated with productivity losses and healthcare utilization in patients with chronic constipation. United Eur. Gastroenterol. J. 2014, 2, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, M.; Gambaccini, D.; Salvadori, S.; Tosetti, C.; Urbano, M.T.; Costa, F.; Monicelli, P.; Mumolo, M.G.; Ricchiuti, A.; De Bortoli, N.; et al. Management of chronic constipation in general practice. Tech. Coloproctol. 2014, 18, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Dionne, J.; Ford, A.C.; Yuan, Y.; Chey, W.D.; Lacy, B.E.; Saito, Y.A.; Quigley, E.M.M.; Moayyedi, P. A Systematic Review and Meta-Analysis Evaluating the Efficacy of a Gluten-Free Diet and a Low FODMAPs Diet in Treating Symptoms of Irritable Bowel Syndrome. Off. J. Am. Coll. Gastroenterol. ACG 2018, 113, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Bellini, M.; Tonarelli, S.; Nagy, A.G.; Pancetti, A.; Costa, F.; Ricchiuti, A.; de Bortoli, N.; Mosca, M.; Marchi, S.; Rossi, A. Low FODMAP Diet: Evidence, Doubts, and Hopes. Nutrients 2020, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Bellini, M.; Gambaccini, D.; Usai-Satta, P.; De Bortoli, N.; Bertani, L.; Marchi, S.; Stasi, C. Irritable bowel syndrome and chronic constipation: Fact and fiction. World J. Gastroenterol. 2015, 21, 11362–11370. [Google Scholar] [CrossRef]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Serra, J.; Pohl, D.; Azpiroz, F.; Chiarioni, G.; Ducrotté, P.; Gourcerol, G.; Hungin, A.P.S.; Layer, P.; Mendive, J.M.; Pfeifer, J.; et al. European society of neurogastroenterology and motility guidelines on functional constipation in adults. Neurogastroenterol. Motil. 2020, 32, e13762. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Hébert, G. Magnesium Sulfate-Rich Natural Mineral Waters in the Treatment of Functional Constipation—A Review. Nutrients 2020, 12, 2052. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Tomita, T.; Fujimura, K.; Asano, H.; Ogawa, T.; Yamasaki, T.; Kondo, T.; Kono, T.; Tozawa, K.; Oshima, T.; et al. A Randomized Double-blind Placebo-controlled Trial on the Effect of Magnesium Oxide in Patients With Chronic Constipation. J. Neurogastroenterol. Motil. 2019, 25, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Gasbarrini, G.; De Luca, S.; Nappi, G. Gastrointestinal and gallbladder motility effects with san pellegrino water med. Clin. Ter. 2002, 14, 389–399. [Google Scholar]
- Ikarashi, N.; Mochiduki, T.; Takasaki, A.; Ushiki, T.; Baba, K.; Ishii, M.; Kudo, T.; Ito, K.; Toda, T.; Ochiai, W.; et al. A mechanism by which the osmotic laxative magnesium sulphate increases the intestinal aquaporin 3 expression in HT-29 cells. Life Sci. 2011, 88, 194–200. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Fornai, M.; Colucci, R.; Antonioli, L.; Ghisu, N.; Tuccori, M.; Gori, G.; Blandizzi, C.; Del Tacca, M. Effects of a bicarbonate-alkaline mineral water on digestive motility in experimental models of functional and inflammatory gastrointestinal disorders. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 261–269. [Google Scholar] [CrossRef]
- Maltinti, G.; Polloni, A.; Marchi, S.; Bonifazi, V.; Costa, F.; Bellini, M.; Marciano, F.; Guglielmini, R. Effetto Delle Acque Bicarbonate, SUI Livelli Gastrinemici Nell’uomo. Clinica Medica I dell’Università di Pisa. Scuola di spec. ne in Malattie dell’apparato digerente—(aprile/giugno). Clinicatermale 1988, 41, 131–133. [Google Scholar]
- Naumann, J.; Sadaghiani, C.; Alt, F.; Huber, R. Effects of Sulfate-Rich Mineral Water on Functional Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. Forsch Komplementmed. 2016, 23, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Dupont, C.; Campagne, A.; Constant, F. Efficacy and safety of a magnesium sulfate-rich natural mineral water for patients with functional constipation. Clin. Gastroenterol. Hepatol. 2014, 12, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Anti, M.; Pignataro, G.; Armuzzi, A.; Valenti, A.; Iascone, E.; Marmo, R.; Lamazza, A.; Pretaroli, A.R.; Pace, V.; Leo, P.; et al. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 1998, 45, 727–732. [Google Scholar]
- American Academy of Family Physicians. Information from your family Doctor. Constipation. Am. Fam. Physician. 2010, 82, 1440–1441. [Google Scholar]
- Hipsley, E.H. Dietary “fibre” and pregnancy toxaemia. Br. Med. J. 1953, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Engineer, A. Denis Burkitt and the origins of the dietary fibre hypothesis. Nutr. Res. Rev. 2018, 31, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trowell, H. Crude fibre, dietary fibre and atherosclerosis. Atherosclerosis 1972, 16, 138–140. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Cummings, J.H. Mechanism of action of dietary fibre in the human colon. Nature 1980, 284, 283–284. [Google Scholar] [CrossRef]
- Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eswaran, S.; Muir, J.; Chey, W.D. Fiber and functional gastrointestinal disorders. Off. J. Am. Coll. Gastroenterol. ACG 2013, 108, 718–727. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef]
- Soret, R.; Chevalier, J.; De Coppet, P.; Poupeau, G.; Derkinderen, P.; Segain, J.P.; Neunlist, M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010, 138, 1772–1782. [Google Scholar] [CrossRef]
- Jouët, P.; Sabaté, J.M.; Coffin, B.; Lémann, M.; Jian, R.; Flourié, B. Fermentation of starch stimulates propagated contractions in the human colon. Neurogastroenterol. Motil. 2011, 23, 450–456, e176. [Google Scholar] [CrossRef]
- McRorie, J.; Pepple, S.; Rudolph, C. Effects of fiber laxatives and calcium docusate on regional water content and viscosity of digesta in the large intestine of the pig. Dig. Dis. Sci. 1998, 43, 738–745. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EU) No 1047/2012. Off. J. 765 Eur. Union 2012, 310, 36–37. [Google Scholar]
- Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and 795 consequences of processing on human physiology. Food Res. Int. 2000, 33, 233–245. [Google Scholar] [CrossRef]
- Tomlin, J.; Read, N.W. Laxative properties of indigestible plastic particles. BMJ Br. Med. J. 1988, 297, 1175–1176. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Heaton, K.W. Roughage revisited: The effect on intestinal function of inert plastic particles of different sizes and shape. Dig. Dis. Sci. 1999, 44, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Suares, N.C.; Ford, A.C. Systematic review: The effects of fibre in the management of chronic idiopathic constipation. Aliment. Pharmacol. Ther. 2011, 33, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, H.P.; Zhou, L.; Xu, C.F. Effect of dietary fiber on constipation: A meta analysis. World J. Gastroenterol. 2012, 18, 7378–7383. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Yu, S.; Fedewa, A. Systematic review: Dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment. Pharmacol. Ther. 2015, 41, 1256–1270. [Google Scholar] [CrossRef]
- Ford, A.C.; Moayyedi, P.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.; Quigley, E.M.; Task Force on the Management of Functional Bowel Disorders. American College of Gastroenterology monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. Am. J. Gastroenterol. 2014, 109 (Suppl. 1), S2–S26. [Google Scholar] [CrossRef] [PubMed]
- Attaluri, A.; Donahoe, R.; Valestin, J.; Brown, K.; Rao, S.S. Randomised clinical trial: Dried plums (prunes) vs. psyllium for constipation. Aliment. Pharmacol. Ther. 2011, 33, 822–828. [Google Scholar] [CrossRef]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [Green Version]
- Rush, E.C.; Patel, M.; Plank, L.D.; Ferguson, L.R. Kiwifruit promotes laxation in the elderly. Asia Pac. J. Clin. Nutr. 2002, 11, 164–168. [Google Scholar] [CrossRef]
- Bayer, S.B.; Gearry, R.B.; Drummond, L.N. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Crit. Rev. Food Sci. Nutr. 2018, 58, 2432–2452. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef] [Green Version]
- Ciardiello, M.A.; Meleleo, D.; Saviano, G.; Crescenzo, R.; Carratore, V.; Camardella, L.; Gallucci, E.; Micelli, S.; Tancredi, T.; Picone, D.; et al. Kissper, a kiwi fruit peptide with channel-like activity: Structural and functional features. J. Pept. Sci. 2008, 14, 742–754. [Google Scholar] [CrossRef]
- Lim, T. Carica papaya. In Edible Medicinal and Non-Medicinal Plants; Springer: Berlin, Germany, 2012; pp. 693–717. [Google Scholar]
- Nwankudu, O.N.; Ijioma, S.N.; Nwosu, C. Effects of fresh juices of Ananas comosus (pineapple) and Carica papaya (paw paw) on gastrointestinal motility. Int. J. Gen. Med. Pharm. 2014, 3, 47–52. [Google Scholar]
- Stettler, H. The Laxative Value for Human Subjects of Pineapple Juice and Pineapple Fiber in a Low Residue Diet; University of Wisconsin: Madison, Wisconsin, 1944. [Google Scholar]
- Eady, S.L.; Wallace, A.J.; Butts, C.A.; Hedderley, D.; Drummond, L.; Ansell, J.; Gearry, R.B. The effect of ‘Zesy002’ kiwifruit (Actinidia chinensis var. chinensis) on gut health function: A randomised cross-over clinical trial. J. Nutr. Sci. 2019, 8, e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chey, S.W.; Chey, W.D.; Jackson, K.; Eswaran, S. Exploratory Comparative Effectiveness Trial of Green Kiwifruit, Psyllium, or Prunes in US Patients With Chronic Constipation. Off. J. Am. Coll. Gastroenterol. ACG 2021, 116, 1304–1312. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, J.H.; Jeung, H.W.; Lee, C.U.; Kim, D.S.; Li, B.; Lee, G.H.; Sung, M.S.; Ha, K.C.; Back, H.I.; et al. Effects of Ficus carica paste on loperamide-induced constipation in rats. Food Chem. Toxicol. 2012, 50, 895–902. [Google Scholar] [CrossRef]
- Baek, H.I.; Ha, K.C.; Kim, H.M.; Choi, E.K.; Park, E.O.; Park, B.H.; Yang, H.J.; Kim, M.J.; Kang, H.J.; Chae, S.W. Randomized, double-blind, placebo-controlled trial of Ficus carica paste for the management of functional constipation. Asia Pac. J. Clin. Nutr. 2016, 25, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Shayan, M.; Kamalian, S.; Sahebkar, A.; Tayarani-Najaran, Z. Flaxseed for Health and Disease: Review of Clinical Trials. Comb. Chem. High Throughput Screen. 2020, 23, 699–722. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Society. Chinese Dietary Reference Intakes 2013; Science Press: Beijing, China, 2014. [Google Scholar]
- Sun, J.; Bai, H.; Ma, J.; Zhang, R.; Xie, H.; Zhang, Y.; Guo, M.; Yao, J. Effects of flaxseed supplementation on functional constipation and quality of life in a Chinese population: A randomized trial. Asia Pac. J. Clin. Nutr. 2020, 29, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Palla, A.H.; Gilani, A.H. Dual effectiveness of Flaxseed in constipation and diarrhea: Possible mechanism. J. Ethnopharmacol. 2015, 169, 60–68. [Google Scholar] [CrossRef]
- Wang, J.; Bai, X.; Peng, C.; Yu, Z.; Li, B.; Zhang, W.; Sun, Z.; Zhang, H. Fermented milk containing Lactobacillus casei Zhang and Bifidobacterium animalis ssp. lactis V9 alleviated constipation symptoms through regulation of intestinal microbiota, inflammation, and metabolic pathways. J. Dairy Sci. 2020, 103, 11025–11038. [Google Scholar] [CrossRef]
- Maki, R.; Matsukawa, M.; Matsuduka, A.; Hashinaga, M.; Anai, H.; Yamaoka, Y.; Hanada, K.; Fujii, C. Therapeutic effect of lyophilized, Kefir-fermented milk on constipation among persons with mental and physical disabilities. Jpn. J. Nurs. Sci. 2018, 15, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.I.; Park, S.J.; Choi, C.H.; Lee, S.K.; Kim, W.H. Effect of ear mushroom (Auricularia) on functional constipation. Korean J. Gastroenterol. 2004, 44, 34–41. [Google Scholar] [PubMed]
- Schiller, L.R. Nutrients and constipation: Cause or cure? Practgastroenetrol 2008, 32, 43. [Google Scholar]
- Iovino, P.; Chiarioni, G.; Bilancio, G.; Cirillo, M.; Mekjavic, I.B.; Pisot, R.; Ciacci, C. New onset of constipation during long-term physical inactivity: A proof-of-concept study on the immobility-induced bowel changes. PLoS ONE 2013, 8, e72608. [Google Scholar] [CrossRef] [Green Version]
- Bellini, M.; Tonarelli, S.; Barracca, F.; Morganti, R.; Pancetti, A.; Bertani, L.; de Bortoli, N.; Costa, F.; Mosca, M.; Marchi, S.; et al. A Low-FODMAP Diet for Irritable Bowel Syndrome: Some Answers to the Doubts from a Long-Term Follow-Up. Nutrients 2020, 12, 2360. [Google Scholar] [CrossRef]
- Mahan, L.K.; Raymond, J.L.; Escott-Stump, S. Krause’s Food & the Nutrition Care Process, 13th ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bellini, M.; Tosetti, C.; Costa, F.; Biagi, S.; Stasi, C.; Del Punta, A.; Monicelli, P.; Mumolo, M.G.; Ricchiuti, A.; Bruzzi, P.; et al. The general practitioner’s approach to irritable bowel syndrome: From intention to practice. Dig. Liver Dis. 2005, 37, 934–939. [Google Scholar] [CrossRef]
|
|
|
|
|
|
|
|
|
Water | Chemical Composition | Doses | Outcomes |
---|---|---|---|
Calcium/magnesium sulfate-rich mineral water | 573 mg/L calcium, 105 mg/L magnesium, 1.535 mg/L sulfate, and other 2.650 mg/L carbon dioxide | 1 L/day | Bowel frequency improved |
Magnesium-sulfate mineral water | 549 mg/L calcium, 119 mg/L magnesium, 1.530 mg/L sulfate, 14.2 mg/L sodium, 4.1 mg/L potassium, 383.7 mg/L bicarbonate, 4.3 mg/L nitrate | 1 L/day | Bowel frequency improved |
Bicarbonate-alkaline water | 113.7 mg/L sodium, 11.6 mg/L potassium, 30.5 mg/L magnesium, 206.1 calcium, 689.3 mg/L bicarbonate. | 2 L/day | Bowel frequency improved |
Food | Grams Per Serving | % Daily Value |
---|---|---|
Almonds^—28 g | 3.3 | 13 |
Apple^—1 medium | 3.3 | 13 |
Artichoke *—1 piece | 6.5 | 26 |
Banana^—1 medium | 3.1 | 12 |
Black beans **—½ cup | 7.5 | 30 |
Bran ready-to-eat cereal—½ cup | 8.8 | 35 |
Broccoli *—½ cup | 2.8 | 11 |
Chickpeas *—½ cup | 6.2 | 24 |
Figs, dried, ¼ cup | 3.7 | 14.5 |
Green peas *—½ cup | 4.4 | 18 |
Lentils *—½ cup | 7.8 | 31 |
Navy beans **—½ cup | 9.5 | 38 |
Oat bran—¼ cup | 3.6 | 14 |
Orange^—1 medium | 3.1 | 12 |
Peas *—½ cup | 2.5 | 10 |
Prunes^—½ cup | 3.8 | 15 |
White beans **—½ cup | 6.3 | 25 |
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, M.; Tonarelli, S.; Barracca, F.; Rettura, F.; Pancetti, A.; Ceccarelli, L.; Ricchiuti, A.; Costa, F.; de Bortoli, N.; Marchi, S.; et al. Chronic Constipation: Is a Nutritional Approach Reasonable? Nutrients 2021, 13, 3386. https://doi.org/10.3390/nu13103386
Bellini M, Tonarelli S, Barracca F, Rettura F, Pancetti A, Ceccarelli L, Ricchiuti A, Costa F, de Bortoli N, Marchi S, et al. Chronic Constipation: Is a Nutritional Approach Reasonable? Nutrients. 2021; 13(10):3386. https://doi.org/10.3390/nu13103386
Chicago/Turabian StyleBellini, Massimo, Sara Tonarelli, Federico Barracca, Francesco Rettura, Andrea Pancetti, Linda Ceccarelli, Angelo Ricchiuti, Francesco Costa, Nicola de Bortoli, Santino Marchi, and et al. 2021. "Chronic Constipation: Is a Nutritional Approach Reasonable?" Nutrients 13, no. 10: 3386. https://doi.org/10.3390/nu13103386
APA StyleBellini, M., Tonarelli, S., Barracca, F., Rettura, F., Pancetti, A., Ceccarelli, L., Ricchiuti, A., Costa, F., de Bortoli, N., Marchi, S., & Rossi, A. (2021). Chronic Constipation: Is a Nutritional Approach Reasonable? Nutrients, 13(10), 3386. https://doi.org/10.3390/nu13103386