Monitored Supplementation of Vitamin D in Preterm Infants: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design and Participants
2.2. Interventions
2.3. Primary Outcome
- Deficiency: 0–20 ng/mL (0–50 nmol/L)
- Suboptimal concentration: >20–30 ng/mL (>50–75 nmol/L)
- Optimal concentration: >30–50 ng/mL (>75–125 nmol/L)
- Increased level: >50–100 ng/mL (125–250 nmol/L)
- Toxic level: >100–200 ng/mL (>250 nmol/L)
- Acceptable level 20–80 ng/mL (50–200 nmol/L) *
2.4. Secondary Outcomes
2.4.1. Osteopenia
2.4.2. Nephrocalcinosis and Nephrolithiasis
2.5. Adverse Events
2.6. Participants’ Retention in the Study
2.7. Data Monitoring
2.8. Sample Size Calculations
2.9. Ethics Approval and Consent to Participate
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, C.L.; Greer, F.R.; the Section on Breastfeeding and Committee on Nutrition. Prevention of Rickets and Vitamin D Deficiency in Infants, Children, and Adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [Green Version]
- Bitew, Z.W.; Worku, T.; Alemu, A. Effects of vitamin D on neonatal sepsis: A systematic review and meta-analysis. Food Sci. Nutr. 2021, 9, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Zisi, D.; Challa, A.; Makis, A. The association between vitamin D status and infectious diseases of the respiratory system in infancy and childhood. Hormones 2019, 18, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yepes-Nuñez, J.J.; Brożek, J.L.; Fiocchi, A.; Pawankar, R.; Cuello-Garcia, C.; Zhang, Y.; Morgano, G.P.; Agarwal, A.; Gandhi, S.; Terracciano, L.; et al. Vitamin D supplementation in primary allergy prevention: Systematic review of randomized and non-randomized studies. Allergy 2018, 73, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strøm, M.; Halldorsson, T.I.; Hansen, S.; Granström, C.; Maslova, E.; Petersen, S.B.; Cohen, A.S.; Olsen, S.F. Vitamin D Measured in Maternal Serum and Offspring Neurodevelopmental Outcomes: A Prospective Study with Long-Term Follow-Up. Ann. Nutr. Metab. 2014, 64, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.J.O.; Holt, B.J.; Serralha, M.; Holt, P.G.; Kusel, M.M.H.; Hart, P.H. Maternal Serum Vitamin D Levels During Pregnancy and Offspring Neurocognitive Development. Pediatrics 2012, 129, 485–493. [Google Scholar] [CrossRef]
- Markestad, T.; Aksnes, L.; Ulstein, M.; Aarskog, D. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am. J. Clin. Nutr. 1984, 40, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Abrams, S.A.; The Committee on Nutrition; Bhatia, J.J.S.; Corkins, M.R.; De Ferranti, S.D.; Golden, N.H.; Silverstein, J. Calcium and Vitamin D Requirements of Enterally Fed Preterm Infants. Pediatrics 2013, 131, e1676–e1683. [Google Scholar] [CrossRef] [Green Version]
- Czech-Kowalska, J.; Dobrzańska, A. Osteopenia of prematurity—Metabolic bone disease of prematurit. Prz. Pediatryczny 2006, 36, 97–103. [Google Scholar]
- Abrams, S.A. Vitamin D in Preterm and Full-Term Infants. Ann. Nutr. Metab. 2020, 76, 6–14. [Google Scholar] [CrossRef]
- Vogiatzi, M.G.; Jacobson-Dickman, E.; DeBoer, M.D. Drugs, and Therapeutics Committee of The Pediatric Endocrine Society. Vitamin D Supplementation and Risk of Toxicity in Pediatrics: A Review of Current Literature. J. Clin. Endocrinol. Metab. 2014, 99, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Płudowski, P.; Karczmarewicz, E.; Bayer, M.; Carter, G.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dębski, R.; Decsi, T.; Dobrzanska, A.; Franek, E.; et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—Recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Polska 2013, 64, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, F.B.; Mandel, D.; Lubetzky, R.; Senterre, T. Calcium, Phosphorus, Magnesium and Vitamin D Requirements of the Preterm Infant. World Rev. Nutr. Diet. 2014, 110, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Rusińska, A.; Pludowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzanska, A.; Franek, E.; Helwich, E.; et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland—Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel with Participation of National Specialist Consultants and Representatives of Scientific Societies—2018 Update. Front. Endocrinol. 2018, 9, 246. [Google Scholar] [CrossRef]
- Kołodziejczyk, A.; Borszewska-Kornacka, M.K.; Seliga-Siwecka, J. MOnitored supplementation of VItamin D in preterm infants (MOSVID trial): Study protocol for a randomised controlled trial. Trials 2017, 18, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef]
- Moreau, E. Meauserment of total 25(OH) vitamin D using bioMérieux VIDAS®: Development of a new assay. In Proceedings of the AACC, Houston, TX, USA, 28 July–1 August 2013. [Google Scholar]
- Moreau, E.; Bächer, S.; Mery, S.; Le Goff, C.; Piga, N.; Vogeser, M.; Hausmann, M.; Cavalier, E. Performance characteristics of the VIDAS® 25-OH Vitamin D Total assay—Comparison with four immunoassays and two liquid chromatography-tandem mass spectrometry methods in a multicentric study. Clin. Chem. Lab. Med. 2016, 54, 45–53. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef]
- Rustico, S.E.; Calabria, A.C.; Garber, S.J. Metabolic bone disease of prematurity. J. Clin. Transl. Endocrinol. 2014, 1, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Nemet, D.; Dolfin, T.; Wolach, B.; Eliakim, A. Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur. J. Nucl. Med. Mol. Imaging 2001, 160, 736–740. [Google Scholar] [CrossRef]
- Rack, B.; Lochmüller, E.-M.; Janni, W.; Lipowsky, G.; Engelsberger, I.; Friese, K.; Kuster, H. Ultrasound for the assessment of bone quality in preterm and term infants. J. Perinatol. 2011, 32, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercy, J.; Dillon, B.; Morris, J.; Emmerson, A.J.; Mughal, M.Z. Relationship of tibial speed of sound and lower limb length to nutrient intake in preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2007, 92, F381–F385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswanathan, S.; Khasawneh, W.; McNelis, K.; Dykstra, C.; Amstadt, R.; Super, D.M.; Groh-Wargo, S.; Kumar, D. Metabolic Bone Disease: A continued challenge in extremely low birth weight infants. J. Parenter. Enter. Nutr. 2014, 38, 982–990. [Google Scholar] [CrossRef]
- Rodd, C.; Goodyer, P. Hypercalcemia of the newborn: Etiology, evaluation, and management. Pediatr. Nephrol. 1999, 13, 542–547. [Google Scholar] [CrossRef]
- Aladangady, N.; Coen, P.G.; White, M.P.; Rae, M.D.; Beattie, T.J. Urinary excretion of calcium and phosphate in preterm infants. Pediatr. Nephrol. 2004, 19, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Baştuğ, F.; Gündüz, Z.; Tülpar, S.; Poyrazoğlu, H.; Düşünsel, R. Urolithiasis in infants: Evaluation of risk factors. World J. Urol. 2013, 31, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Schell-Feith, E.A.; Holscher, H.C.; Zonderland, H.M.; Holthe, J.E.K.-V.; Conneman, N.; Van Zwieten, P.H.; Brand, R.; Van Der Heijden, A.J. Ultrasonographic features of nephrocalcinosis in preterm neonates. Br. J. Radiol. 2000, 73, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Schell-Feith, E.A.; Holthe, J.E.K.-V.; Van Der Heijden, A.J. Nephrocalcinosis in preterm neonates. Pediatr. Nephrol. 2010, 25, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Monangi, N.; Slaughter, J.L.; Dawodu, A.; Smith, C.; Akinbi, H.T. Vitamin D status of early preterm infants and the effects of vitamin D intake during hospital stay. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F166–F168. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, C.K.; Sankar, M.J.; Agarwal, R.; Pratap, O.T.; Jain, V.; Gupta, N.; Gupta, A.K.; Deorari, A.K.; Paul, V.K.; Sreenivas, V. Trial of Daily Vitamin D Supplementation in Preterm Infants. Pediatrics 2014, 133, e628–e634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czech–Kowalska, J. Vitamin D in preterm infants. In Handbook of Nutrition and Diet in Therapy of Bone Diseases; Watson, R.R., Mahadevan, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 233–246. [Google Scholar]
- Rauch, F. Skeletal development in premature infants: A review of bone physiology beyond nutritional aspects. Arch. Dis. Child.-Fetal Neonatal Ed. 2002, 86, F82–F85. [Google Scholar] [CrossRef] [PubMed]
- Czech-Kowalska, J.; Dobrzańska, A.; Pleskaczynska, A.; Malinowska, E.; Gruszfeld, D.; Karczmarewicz, E.; Kornacka, M.; Majewska, U.; Lorenc, R. Vitamin D status in premature infants at term. Bone 2009, 45, S107. [Google Scholar] [CrossRef]
- Premji, S.S.; Kamaluddeen, M. Should we screen preterm infants for nephrocalcinosis? An evidence-based decision. Pediatr. Health 2010, 4, 25–34. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, H.-K.; Lee, H.J. Efficacy and safety of early supplementation with 800 IU of vitamin D in very preterm infants followed by underlying levels of vitamin D at birth. Ital. J. Pediatr. 2017, 43, 45. [Google Scholar] [CrossRef] [Green Version]
- Matejek, T.; Navratilova, M.; Zaloudkova, L.; Malakova, J.; Maly, J.; Skalova, S.; Palicka, V. Vitamin D status of very low birth weight infants at birth and the effects of generally recommended supplementation on their vitamin D levels at discharge. J. Matern. Neonatal Med. 2020, 33, 3784–3790. [Google Scholar] [CrossRef]
- McCarthy, R.A.; McKenna, M.J.; Oyefeso, O.; Uduma, O.; Murray, B.F.; Brady, J.J.; Kilbane, M.; Murphy, J.F.; Twomey, A.; Donnell, C.P.O.; et al. Vitamin D nutritional status in preterm infants and response to supplementation. Br. J. Nutr. 2013, 110, 156–163. [Google Scholar] [CrossRef]
- Fort, P.; Salas, A.; Nicola, T.; Craig, C.M.; Carlo, W.A.; Ambalavanan, N. A Comparison of 3 Vitamin D Dosing Regimens in Extremely Preterm Infants: A Randomized Controlled Trial. J. Pediatr. 2016, 174, 132–138.e1. [Google Scholar] [CrossRef] [Green Version]
- Tergestina, M.; Rebekah, G.; Job, V.; Simon, A.; Thomas, N. A randomized double-blind controlled trial comparing two regimens of vitamin D supplementation in preterm neonates. J. Perinatol. 2016, 36, 763–767. [Google Scholar] [CrossRef]
- Matejek, T.; Navratilova, M.; Zaloudkova, L.; Malakova, J.; Maly, J.; Skalova, S.; Palicka, V. Parathyroid hormone—Reference values and association with other bone metabolism markers in very low birth weight infants—Pilot study. J. Matern. Neonatal Med. 2019, 32, 2860–2867. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.C.; Swischuk, L.E.; Malloy, M.H.; Mudd, D.; Blanco, C.L.; Geary, C. Parathyroid hormone as a marker for metabolic bone disease of prematurity. J. Perinatol. 2014, 34, 787–791. [Google Scholar] [CrossRef] [PubMed]
Monitored Group | Control Group | p | |||
---|---|---|---|---|---|
(N = 45) | (N = 42) | ||||
Sex, female, n (%) | 45 | 17 (37.8) | 42 | 19 (45.2) | 0.625 |
GA, weeks | 45 | 29.22 ± 2.16 | 42 | 28.76 ± 2.27 | 0.171 |
GA < 28 weeks, n (%) | 45 | 9 (20.0) | 42 | 17 (40.5) | 0.064 |
Mean birth weight (g) | 45 | 1380.89 ± 431.14 | 42 | 1313.81 ± 471.87 | 0.490 |
Birth weight < 1000 g, n (%) | 45 | 8 (17.8) | 42 | 13 (31.0) | 0.236 |
Birth weight condition, n (%) 1 | |||||
SGA | 45 | 4 (8.9) | 42 | 4 (9.5) | >0.999 |
Eutrophy | 38 (84.4) | 35 (83.3) | |||
Hypertrophy | 3 (6.7) | 3 (7.1) | |||
Weight upon discharge, n (%) 1 | |||||
Hypotrophy | 45 | 18 (40.0) | 42 | 20 (47.6) | 0.448 |
Eutrophy | 27 (60.0) | 21 (50.0) | |||
Hypertrophy | 0 (0.0) | 1 (2.4) | |||
Additional source of vitamin D, n (%) 1 | |||||
HMF | 45 | 31 (68.9) | 42 | 26 (61.9) | 0.216 |
HMF/hydrolyzed infant formula | 0 (0.0) | 2 (4.8) | |||
HMF/infant formula | 9 (20.0) | 5 (11.9) | |||
Infant formula | 5 (11.1) | 9 (21.4) | |||
Dose of vitamin D supplementation in pregnancy, IU | 45 | 1031.11 ± 888.77 | 42 | 1214.29 ± 870.82 | 0.335 |
No vitamin D supplementation in pregnancy, n (%) | 45 | 12 (26.7) | 42 | 8 (19.0) | 0.556 |
Vitamin D supplementation in pregnancy ≥ 2000 IU, n (%) | 45 | 17 (37.8) | 42 | 19 (45.2) | 0.625 |
25(OH)D at birth, ng/mL | 43 | 23.40 ± 8.90 | 38 | 23.13 ± 8.59 | 0.893 |
Vitamin D at birth, n (%) | |||||
Deficiency | 43 | 14 (32.6) | 38 | 11 (28.9) | 0.738 |
Suboptimal | 19 (44.2) | 20 (52.6) | |||
Optimal | 10 (23.3) | 7 (18.4) |
Vitamin D Supplementation Change | Vitamin D Concentration (ng/mL) | ||
---|---|---|---|
n | Mean | SD | |
Baseline level | baseline | ||
500 IU | 45 | 27.18 | 10.34 |
Change (baseline-35 weeks of PCA) | 35 weeks of PCA | ||
No change | 36 | 44.31 | 18.27 |
Plus 250 IU | 4 | 35.25 | 10.90 |
Plus 500 IU | 5 | 36.60 | 14.59 |
Change (35 weeks of PCA-40 weeks of PCA) | 40 weeks of PCA | ||
Minus 500 IU | 3 | 72.00 | 3.46 |
Minus 250 IU | 11 | 64.00 | 16.32 |
No change | 23 | 68.17 | 19.33 |
Plus 250 IU | 2 | 38.00 | 1.41 |
Plus 500 IU | 5 | 35.20 | 15.97 |
Change (40 weeks of PCA-52 weeks of PCA) | 52 weeks of PCA | ||
Minus 1000 IU | 1 | 27.00 | n/a |
Minus 500 IU | 5 | 44.00 | 12.71 |
Minus 250 IU | 19 | 56.16 | 20.59 |
No change | 14 | 50.43 | 16.62 |
Plus 250 IU | 3 | 43.67 | 1.53 |
Plus 500 IU | 1 | 26.00 | n/a |
Monitored Group | Standard Group | MD/RR (95% CI) | p (p adj 3) | |||
---|---|---|---|---|---|---|
N | N | |||||
40 weeks of PCA | ||||||
25(OH)D concentration, (ng/mL 1) | 44 | 62.27 ± 20.40 | 42 | 64.43 ± 26.09 | −2.16 (−12.17; 7.86) | 0.670 (0.842) |
Vitamin D deficiency or excess | 44 | 3 (6.8) | 42 | 6 (14.3) | 0.48 (0.13; 1.79) | 0.308 |
Vitamin D deficiency | 44 | 1 (2.3) | 42 | 1 (2.4) | n/a | 0.363 |
Vitamin D suboptimal | 1 (2.3) | 4 (9.5) | ||||
Vitamin D optimal | 9 (20.5) | 9 (21.4) | ||||
Vitamin D increased | 31 (70.5) | 23 (54.8) | ||||
Vitamin D excess | 2 (4.5) | 5 (11.9) | ||||
Vitamin D acceptable 2 | 44 | 35 (79.5) | 42 | 29 (69.0) | 1.15 (0.90; 1.48) | 0.385 |
25(OH)D > 90 ng/mL | 44 | 2 (4.5) | 42 | 10 (23.8) | 0.19 (0.04;0.82) | 0.013 |
4 weeks of PCA | ||||||
25(OH)D concentration, ng/mL 1 | 45 | 31.87 ± 11.39 | 42 | 32.33 ± 13.25 | −0.46 (−5.76;4.82) | 0.861 (0.840) |
Vitamin D deficiency or excess 2 | 45 | 8 (17.8) | 42 | 6 (14.3) | 1.24 (0.47; 3.29) | 0.774 |
Vitamin D deficiency | 45 | 8 (17.8) | 42 | 6 (14.3) | n/a | 0.827 |
Vitamin D suboptimal | 13 (28.9) | 15 (35.7) | ||||
Vitamin D optimal | 22 (48.9) | 18 (42.9) | ||||
Vitamin D increased | 2 (4.4) | 3 (7.1) | ||||
Vitamin D excess | - | - | ||||
Vitamin D acceptable 2 | 45 | 37 (82.2) | 42 | 36 (85.7) | 0.96 (0.80; 1.15) | 0.774 |
35 weeks of PCA | ||||||
25(OH)D concentration, ng/mL 1 | 45 | 42.64 ± 17.44 | 42 | 46.12 ± 18.43 | −3.48 (−11.17; 4.22) | 0.371 (0.989) |
Vitamin D deficiency or excess | 45 | 5 (11.1) | 42 | 2 (4.7) | 2.28 (0.47; 11.11) | 0.437 |
Vitamin D deficiency | 45 | 5 (11.1) | 42 | 2 (4.7) | n/a | 0.778 |
Vitamin D suboptimal | 6 (13.3) | 5 (11.9) | ||||
Vitamin D optimal | 21 (46.7) | 20 (47.6) | ||||
Vitamin D increased | 13 (28.9) | 14 (33.3) | ||||
Vitamin D excess | - | - | ||||
Vitamin D acceptable 2 | 45 | 39 (86.7) | 42 | 37 (90.2) | 0.96 (0.82; 1.12) | 0.741 |
52 weeks of PCA | ||||||
25(OH)D concentration, ng/mL 1 | 43 | 50.63 ± 18.25 | 27 | 62.19 ± 25.31 | −11.56 (−21.96; −1.16) | 0.030 (0.023) |
Vitamin D deficiency or excess | 43 | 1 (2.3) | 27 | 4 (14.8) | 0.16 (0.02; 1.33) | 0.069 |
Vitamin D deficiency | 43 | - | 27 | 1 (3.7) | n/a | 0.161 |
Vitamin D suboptimal | 4 (9.3) | - | ||||
Vitamin D optimal | 20 (46.5) | 12 (44.4) | ||||
Vitamin D increased | 18 (41.9) | 11 (40.7) | ||||
Vitamin D excess | 1 (2.3) | 3 (11.1) | ||||
Vitamin D acceptable 2 | 43 | 40 (93.0) | 27 | 19 (70.4) | 1.32 (1.02; 1.71) | 0.017 |
Monitored Group | Standard Group | MD/RR (95% CI) | p | |||
---|---|---|---|---|---|---|
n | n | |||||
MBD, n (%) | ||||||
35 weeks PCA | 45 | 7 (15.6) | 42 | 4 (9.5) | 1.63 (0.51; 5.18) | 0.524 |
40 weeks PCA | 45 | 2 (4.4) | 42 | 5 (11.9) | 0.37 (0.08; 1.82) | 0.255 |
52 weeks PCA | 40 | 1 (2.5) | 35 | 2 (5.7) | 0.44 (0.04; 4.62) | 0.596 |
Osteopenia with vitamin D deficiency, n (%) | 45 | 0 (0.0) | 42 | 1 (2.4) | 0.31 (0.01; 7.44) | 0.483 |
Hypercalciuria n (%) | ||||||
35 weeks PCA | 45 | 7 (15.6) | 42 | 3 (7.1) | 2.18 (0.60; 7.88) | 0.317 |
40 weeks PCA 2 | 45 | 16 (35.5) | 42 | 8 (19.0) | 1.87 (0.89;3.90) | 0.098 |
52 weeks PCA | 40 | 4 (10.0) | 35 | 5 (14.2) | 0.70 (0.20; 2.40) | 0.726 |
Hypocalcemia, n (%) | ||||||
35 weeks PCA | 45 | 2 (4.4) | 42 | 2 (4.8) | 0.93 (0.14; 6.33) | >0.999 |
40 weeks PCA | 45 | 1 (2.2) | 42 | 0 (0.0) | 2.80 (0.12; 67.00) | >0.999 |
52 weeks PCA | 40 | 0 (0.0) | 35 | 0 (0.0) | 0.88 (0.02; 43.13) | >0.999 |
Hypercalcemia, n (%) | ||||||
35 weeks PCA | 45 | 1 (2.5) | 42 | 0 (0.0) | 2.80 (0.12; 67.00) | >0.999 |
40 weeks PCA | 45 | 0 (0.0) | 42 | 0 (0.0) | 0.66 (0.01; 32.20) | >0.999 |
52 weeks PCA | 40 | 2 (20.0) | 35 | 1 (2.8) | 1.75 (0.17; 18.48) | >0.999 |
TRP <85, n (%) | ||||||
35 weeks PCA | 45 | 1 (2.2) | 42 | 2 (4.8) | 0.47 (0.04; 4.96) | 0.608 |
40 weeks PCA | 45 | 0 (0.0) | 42 | 1 (2.4) | 0.31 (0.01; 7.44) | 0.483 |
52 weeks PCA | 40 | 0 (0.0) | 35 | 1 (2.8) | 0.29 (0.01; 6.96) | 0.447 |
TRP > 95, n (%) | ||||||
35 weeks PCA 2 | 45 | 33 (73.3) | 42 | 30 (71.4) | 1.03 (0.79; 1.33) | >0.999 |
40 weeks PCA 2 | 45 | 39 (88.6) | 42 | 35 (83.3) | 1.04 (0.87; 1.24) | 0.767 |
52 weeks PCA | 40 | 36 (90.0) | 35 | 32 (91.4) | 0.98 (0.85; 1.14) | >0.999 |
Nephrolithiasis, n (%) | ||||||
35 weeks PCA | 42 | 0 (0.0) | 40 | 2 (5.0) | 0.19 (0.01; 3.85) | 0.235 |
52 weeks PCA | 36 | 3 (8.3) | 33 | 5 (15.2) | 0.55 (0.14; 2.12) | 0.466 |
Nephrolithiasis at 52 weeks with vitamin D > 80 at 40 or 52 weeks PCA, n (%) | 36 | 1 (2.8) | 33 | 4 (12.1) | 0.23 (0.03; 1.95) | 0.186 |
Bone mass, SOS, m/s 1 | ||||||
35 weeks PCA | 24 | 2 786.33 ± 152.52 | 26 | 2 745.88 ± 112.15 | 40.45 (−35.26; 116.16) | 0.288 |
40 weeks PCA | 20 | 2 751.50 ± 177.52 | 20 | 2 743.35 ± 112.27 | 8.15 (−86.93; 103.23) | 0.863 |
Bone mass Z score 1 | ||||||
35 weeks PCA | 24 | −1.68 ± 1.24 | 26 | −1.96 ± 1.01 | 0.28 (−0.35; 0.93) | 0.370 |
40 weeks PCA | 20 | −3.02 ± 1.49 | 20 | −3.10 ± 0.99 | 0.08 (−0.74;0.89) | 0.853 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziejczyk-Nowotarska, A.; Bokiniec, R.; Seliga-Siwecka, J. Monitored Supplementation of Vitamin D in Preterm Infants: A Randomized Controlled Trial. Nutrients 2021, 13, 3442. https://doi.org/10.3390/nu13103442
Kołodziejczyk-Nowotarska A, Bokiniec R, Seliga-Siwecka J. Monitored Supplementation of Vitamin D in Preterm Infants: A Randomized Controlled Trial. Nutrients. 2021; 13(10):3442. https://doi.org/10.3390/nu13103442
Chicago/Turabian StyleKołodziejczyk-Nowotarska, Alicja, Renata Bokiniec, and Joanna Seliga-Siwecka. 2021. "Monitored Supplementation of Vitamin D in Preterm Infants: A Randomized Controlled Trial" Nutrients 13, no. 10: 3442. https://doi.org/10.3390/nu13103442
APA StyleKołodziejczyk-Nowotarska, A., Bokiniec, R., & Seliga-Siwecka, J. (2021). Monitored Supplementation of Vitamin D in Preterm Infants: A Randomized Controlled Trial. Nutrients, 13(10), 3442. https://doi.org/10.3390/nu13103442